
Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 1

Evaluation of Relational Operations:
Other Techniques

Chapter 14, Part B

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 2

Using an Index for Selections

Cost depends on #qualifying tuples, and clustering.

Cost of finding qualifying data entries (typically small) plus
cost of retrieving records (could be large w/o clustering).

In example, assuming uniform distribution of names, about
10% of tuples qualify (100 pages, 10000 tuples). With a
clustered index, cost is little more than 100 I/Os; if
unclustered, upto 10000 I/Os!

Important refinement for unclustered indexes:
1. Find qualifying data entries.

2. Sort the rid’s of the data records to be retrieved.

3. Fetch rids in order. This ensures that each data page is
looked at just once (though # of such pages likely to be
higher than with clustering).

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 3

Two Approaches to General Selections

First approach: Find the most selective access path,
retrieve tuples using it, and apply any remaining
terms that don’t match the index:

Most selective access path: An index or file scan that we
estimate will require the fewest page I/Os.

Terms that match this index reduce the number of tuples
retrieved; other terms are used to discard some retrieved
tuples, but do not affect number of tuples/pages fetched.

Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree
index on day can be used; then, bid=5 and sid=3 must be
checked for each retrieved tuple. Similarly, a hash index on
<bid, sid> could be used; day<8/9/94 must then be checked.

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 4

Intersection of Rids

Second approach (if we have 2 or more matching
indexes that use Alternatives (2) or (3) for data
entries):

Get sets of rids of data records using each matching index.

Then intersect these sets of rids (we’ll discuss intersection
soon!)

Retrieve the records and apply any remaining terms.

Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B
+ tree index on day and an index on sid, both using
Alternative (2), we can retrieve rids of records satisfying
day<8/9/94 using the first, rids of recs satisfying sid=3 using
the second, intersect, retrieve records and check bid=5.

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 5

The Projection Operation

An approach based on sorting:

Modify Pass 0 of external sort to eliminate unwanted fields.
Thus, runs of about 2B pages are produced, but tuples in
runs are smaller than input tuples. (Size ratio depends on #
and size of fields that are dropped.)

Modify merging passes to eliminate duplicates. Thus,
number of result tuples smaller than input. (Difference
depends on # of duplicates.)

Cost: In Pass 0, read original relation (size M), write out
same number of smaller tuples. In merging passes, fewer
tuples written out in each pass. Using Reserves example,
1000 input pages reduced to 250 in Pass 0 if size ratio is 0.25

SELECT DISTINCT
 R.sid, R.bid
FROM Reserves R

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 6

Projection Based on Hashing

Partitioning phase: Read R using one input buffer. For
each tuple, discard unwanted fields, apply hash
function h1 to choose one of B-1 output buffers.

Result is B-1 partitions (of tuples with no unwanted fields).
2 tuples from different partitions guaranteed to be distinct.

Duplicate elimination phase: For each partition, read it
and build an in-memory hash table, using hash fn h2
(<> h1) on all fields, while discarding duplicates.

If partition does not fit in memory, can apply hash-based
projection algorithm recursively to this partition.

Cost: For partitioning, read R, write out each tuple,
but with fewer fields. This is read in next phase.

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 7

Discussion of Projection

Sort-based approach is the standard; better handling
of skew and result is sorted.

If an index on the relation contains all wanted
attributes in its search key, can do index-only scan.

Apply projection techniques to data entries (much smaller!)

If an ordered (i.e., tree) index contains all wanted
attributes as prefix of search key, can do even better:

Retrieve data entries in order (index-only scan), discard
unwanted fields, compare adjacent tuples to check for
duplicates.

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 8

Set Operations

Intersection and cross-product special cases of join.

Union (Distinct) and Except similar; we’ll do union.

Sorting based approach to union:
Sort both relations (on combination of all attributes).

Scan sorted relations and merge them.

Alternative: Merge runs from Pass 0 for both relations.

Hash based approach to union:
Partition R and S using hash function h.

For each S-partition, build in-memory hash table (using h2),
scan corr. R-partition and add tuples to table while
discarding duplicates.

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 9

Aggregate Operations (AVG, MIN, etc.)
Without grouping:

In general, requires scanning the relation.

Given index whose search key includes all attributes in the
SELECT or WHERE clauses, can do index-only scan.

With grouping:
Sort on group-by attributes, then scan relation and compute
aggregate for each group. (Can improve upon this by
combining sorting and aggregate computation.)

Similar approach based on hashing on group-by attributes.

Given tree index whose search key includes all attributes in
SELECT, WHERE and GROUP BY clauses, can do index-only
scan; if group-by attributes form prefix of search key, can
retrieve data entries/tuples in group-by order.

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 10

Impact of Buffering

If several operations are executing concurrently,
estimating the number of available buffer pages is
guesswork.

Repeated access patterns interact with buffer
replacement policy.

e.g., Inner relation is scanned repeatedly in Simple
Nested Loop Join. With enough buffer pages to hold
inner, replacement policy does not matter. Otherwise,
MRU is best, LRU is worst (sequential flooding).

Does replacement policy matter for Block Nested Loops?

What about Index Nested Loops? Sort-Merge Join?

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 11

Summary

A virtue of relational DBMSs: queries are composed of a
few basic operators; the implementation of these
operators can be carefully tuned (and it is important
to do this!).

Many alternative implementation techniques for each
operator; no universally superior technique for most
operators.

Must consider available alternatives for each
operation in a query and choose best one based on
system statistics, etc. This is part of the broader task
of optimizing a query composed of several ops.

