

Hecataeus: A Framework for Representing SQL
Constructs as Graphs

George Papastefanatos1, Kostis Kyzirakos1, Panos Vassiliadis2, Yannis Vassiliou1

1 National Technical University of Athens,
Dept. of Electrical and Computer Eng.,

Athens, Greece
{gpapas, kkyzir, yv}@dbnet.ece.ntua.gr

2 University of Ioannina,
Dept. of Computer Science,

Ioannina, Greece
pvassil@cs.uoi.gr

Abstract. Traditional modeling techniques typically focus on the static part of
databases and ignore their dynamic part (e.g., queries or data-centric
workflows). In this paper, we first introduce and sketch a graph-based model
that captures relations, views, constraints and queries. We then present
HECATAEUS, a tool for implementing and visualizing the above framework.

Keywords: Database Modeling and Query Languages, Meta-modeling

1. Introduction

Traditional database modeling techniques, like ER diagrams, UML, etc., have been
widely used in modeling database entities and relationships between them. Most of
them, however, restrict themselves in explicitly modeling the main database parts
(e.g., entities, relationships) of an information system, while ignoring components that
interface with the database, such as queries, views, stored procedures, applications,
etc. An ER diagram, for example, can describe in a precise way how data is to be
stored and treated within a database, but cannot tell what is happening “around” the
database in terms of queries, or how information flows through the components that
interface with the database. This kind of knowledge is valuable to database
administrators and designers, since it can be used for several purposes, including (a)
the forecasting of the impact of changes in the system (e.g., what happens if we delete
a certain attribute of a table?), (b) the visualization of the workload of the system
(e.g., which queries pose the heaviest load on the system?) and (c) the evaluation of
the quality of the database design.

So far, research has provided visualization techniques for queries [BaOO02],
[CCLB97], [JaTh03], [MuGP98], [HFLP89], [PaKi95]; nevertheless, to our
knowledge, a graph-based, uniform way to represent tables and queries has not been
introduced yet. In this paper, we provide a simple model for representing databases
and queries in a coherent way. We employ a graph theoretic approach and we map the
aforementioned constructs to graphs. Moreover, we describe the internal architecture
of a tool that is currently under implementation, HECATAEUS, that visualizes the

aforementioned constructs in a user friendly way. Finally, we demonstrate the usage
of the tool over the OLTP example of TPC-C [TPCC].

Our contributions can be listed as follows:
− We introduce and sketch a graph-based model for an extended system catalog,

capturing relations, views, constraints and queries in a cohesive framework
[PaVV04].

− We describe a tool for automating the analysis of a database system and
representing and visualizing its characteristics to the aforementioned graph-
based model.

This paper is organized as follows. In Section 2, we sketch the graph model for
database systems. We present the main features and the architecture of HECATAEUS
framework in Section 3 and model the TPC-C example in Section 4. Finally, in
Section 5 we provide insights for future work.

2. A Graph-based Model for SQL Constructs

In this section, we present a graph modeling technique that uniformly covers
relational tables, views, database constraints and SQL queries as first class citizens
[PaVV04]. The proposed technique provides an overall picture not only for the actual
database schema but also for the architecture of a database system as a whole, since
queries are incorporated in the model. Moreover, we distinguish the following
essential components, which are included in our model: relations, conditions
(covering database constraints and query conditions), queries and views. The
proposed modeling technique represents all the aforementioned database parts as a
directed graph. Graphs are employed as a modeling technique because they can
address the large size and complexity that characterize a database schema. In the rest
of this section we discuss how we model each of these constructs as well as the
overall graph of the database.

Relations. Each relation R(A1,A2,…,An) in the database schema is represented as a
directed graph, which comprises (a) a relation node, representing the relation schema,
(b) n attribute nodes, one for each of the attributes, and (c) n schema edges directing
from the relation node towards the attribute nodes, indicating that the attribute
belongs to the relation. We call these relationships, schema relationships.

Conditions. Conditions refer both to constraints of the database schema and
selection conditions of queries and views. We consider two classes of atomic
conditions (a) A op constant and (b) A op A’, where A, A’ are attributes of the
underlying relations and op is a binary operator (i.e., <, >, =, ≤, ≥, !=, IN, etc.).

In our graph model, a condition node is used for the representation of the
condition. The node is tagged with the respective operator and it is connected to the
two operand nodes of the conjunct clause through the respective operand edges.
Composite conditions are easily constructed by tagging the condition node with an
AND or an OR symbol and the respective edges (possibly more than two) to the
conditions composing the composite condition.

Well-known constraints of database relations are easily captured by this modeling
technique. Foreign keys are subset relations of the source and the target attribute,

range constraints are simple value-based conditions. Unique-value constraints (hence,
primary keys) require a different modeling – in the context of this paper we explicitly
represent them through a dedicated node and a single operand node.

Queries and Views. Queries and views are mapped to graphs in a similar manner.
The graph representation of the query involves a new node representing the query,
named query node, and attribute nodes corresponding to the schema of the query. The
query graph is therefore a directed graph connecting the query node with all its
schema attributes, via schema edges. In order to represent the relationship between
the query graph and the underlying relations, we make the convention that each query
is decomposed into the following essential parts: the SELECT, FROM, WHERE and
GROUP BY parts, each of which is eventually mapped to a subgraph. Based on the
above, the graph representation of a query is the composition of the three subgraphs,
which are defined as follows:
- Each query/view is assumed to own a schema that comprises the named

attributes appearing in the SELECT clause. In this context, the SELECT part of
the query maps the respective attributes of the involved relations to the
attributes of the query schema through a map-select edge, directing from the
query attributes towards the relation attributes.

- The FROM part of a query can be regarded as the relationship between the
query and the relations involved in this query. Therefore, for each relation
included in the FROM part, a from edge, directing from the query node towards
the relation node, is used.

- We assume that the WHERE clause of a query is in conjunctive normal form.
Having explained conditions already, we can construct the graph
corresponding to the WHERE clause of a query by introducing a directed where
edge starting from the query node towards the operator node corresponding to
the conjunction of the highest level.

- For the representation of aggregate queries, we employ two special purpose
nodes: (a) a new node denoted as GB, to capture the set of attributes acting as
the aggregators and (b) one node per aggregate function (e.g., COUNT, SUM,
MIN, etc.) labelled with the name of the employed aggregate function. For the
aggregators, an edge is used, directing from the query node towards the GB
node, and labelled <group-by>, indicating group-by relationship. Then, the
GB node is connected with each of the aggregators through an edge tagged also
as <group-by>, directing from the GB node towards the respective attributes.
These edges are tagged according to the order of the aggregators (i.e., 1 for the
first aggregator, 2 for the second, etc.). Moreover, for every aggregated
attribute in the query schema, there exists an edge directing from this attribute
towards the aggregate function node as well as an edge from the function node
towards the respective relation attribute. Both edges are labelled <map-
select>, as this relationship indicates mapping of the query attribute to the
corresponding relation attribute through the aggregate function node.

The following example demonstrates the proposed graph representation. Assume a
query Q on three self-explanatory relations from [GMRR01], involving employees
and the projects they work for. The database system S comprising the following
relations and the query are:

Emp(Emp#,Name,Address,Age,Salary)
Works(Emp#,Proj#,Hours)
Proj(Proj#,Projname,Leader#,Location,Budget)

Q: SELECT E.Emp# as ID,Name as NAME,P.Projname as PRJNAME
FROM Emp E,Works W,Proj P
WHERE P.EMP#=W.EMP# AND W.Proj#=P.Proj#

In Figure 1, we present this graph representation for system S, comprising the
relations, constraints and the internal constructs for the above query.

op2

op2

op1

op1

where

wherewhere

from

from

from

map-select

map-select

map-select

W.EMP#.FK W.PROJ#.FK

AND
=

=PRJNAME

NAME

ID

S

S

S

Q

Emp# Name Address SalaryAge

SSS

EMP

R.PK

SS

Projname LocationBudget Leader#Proj#

S SS

PROJ

R.PK

S S

Emp# Proj#Hours

S SS

K.PK

WORKS

P.LEADER#.FK

op

op

op op

op

op

op

op
op

op

Figure 1: Graph representation of query Q

As far as modification queries are concerned, there is a straightforward way to
incorporate them in the graph, too. Still, their behavior with respect to adaptation to
changes in the database schema can be captured by SELECT queries. For lack of
space, we simply mention that (a) INSERT statements can be dealt as simple SELECT
queries and (b) DELETE and UPDATE statements can be treated as SELECT queries
comprising a WHERE clause.

Definition 1. The Database Graph-Model is a directed graph G=(V,E) where V is
a finite set of nodes and E a finite set of directed edges. The set V comprises the
following kinds of nodes: relation nodes, attribute nodes, query nodes, condition
nodes, operator nodes, constant nodes and group by nodes. The set E comprises the
directed edges of the graph, classified as: schema edges, map-select edges, where
edges, operand edges, from edges and group by edges.

3. Implementation of the Framework

In the context of the aforementioned graph model, we have prototypically
implemented a framework for graphical representation, HECATAEUS. The user defines
the file that contains the DDL definitions, and the file that contains the queries
accessing the underlying schema. The tool creates and presents a graph that holds all
the semantics of the nodes and edges of the aforementioned graph model. Moreover,
the tool assists the user in several ways: apart from the zoom-in/zoom-out capability,
HECATAEUS offers the ability to the user to isolate and highlight a part of a graph, in
order to facilitate the accurate and complete understanding of the whole system. A
distinctive feature of the HECATAEUS, is the ability to define graph algorithms and
metrics to the graph, or to a specific sub-graph.

The framework’s architecture consists of the coordination of HECATAEUS’ four
main components: the Parser, the Graph Manager, the Metrics Manager and the
catalog.
- The Parser first parses the DDL file, provided as input, and passes each

command to the database, where the tables are created, and then to the Graph
Manager. Secondly, it parses the SQL script file, also provided as input, to the
Graph Manager.

- The functionality of the Catalog is to maintain the schema of the relations as
well as to validate the syntax of the queries parsed, before they are modeled by
the Graph Manager.

- The Graph Manager component is responsible for representing the underlying
database schema and the parsed queries in the proposed graph model. The
Graph Manager holds all the semantics of nodes and edges of the
aforementioned graph model, assigning nodes and edges to their respective
classes. The Graph Manager communicates with the repository and the parser
and constructs the node and edge objects for each class of nodes and edges
(i.e., relation nodes, query nodes, etc.). It also processes each query to the
database in order to validate it against its syntactical correctness and then
creates its graph – constructing the respective subgraphs (i.e., select, from,
where, group by subgraphs). Also, the Graph Manager allows distinct
colorization for each set of nodes and edges, and offers the user the ability to
edit the graph elements. The Graph Manager allows the direct manipulation of
the graph components so that the user may change the way that the graph is
presented (including labels for edges and nodes, structure of the graph etc.) in
order to create different views/perspectives of the graph. Finally, the Graph
Manager offers the ability for modularization or abstraction of the graph, by
isolating and highlighting a part of the graph (i.e., a set of queries operating on
a relation) or hiding specific classes of edges and nodes, respectively.

- Lastly, the Metrics Manager component is responsible for the definition and
application of metrics and algorithms on the graph.

In Figure 2, we present the overall architecture of the proposed framework.
HECATAEUS is implemented in the MS Visual Studio .NET platform [V.NET],

[TeOl03]. For the parser and the database engine, we have used SharpHSQL, an open
source database engine [HSQL], whereas for the graph visualization we have used the
LEDA C++ class library [LEDA].

DDL files
SQL scripts

Catalog

Parser

Create
Tables

Graph Manager

Create Relation Graph

Create Query Graph

Create
Select

sub-graph

Validate
Query

Create
From

sub-graph

Create
Where

sub-graph

Create
Group By
sub-graph

Definition of Metrics

Definition of Graph Algorithms

Metrics Manager

G
raph visualization

Input

Figure 2: HECATAEUS architecture

4. Case study: Modeling TPC-C benchmark

In this section we present the representation of the TPC-C benchmark [TPCC] to the
proposed graph model. TPC-C benchmark comprises five types of transactions, which
are carried out through respective stored procedures in the database. Each of these
transactions operates against a database of nine tables through a set of 27 queries,
performing update, insert, delete and select operations. According to the proposed
graph model, the TPC-C example is mapped to the graph shown in Figure 3.

The tables of the TPC-C benchmark are represented by relation nodes (displayed as
blue oval-shaped nodes), labeled with the name of each table, and connected through
schema edges (tagged with an S) to the respective attribute nodes (displayed as gray
oval-shaped nodes). Queries are represented by query nodes (displayed as red circle-
shaped nodes), labeled with the name of each query1, which are connected through
from edges (displayed as red directed edges) with the relation nodes. Finally, each
query subgraph comprises, apart from the query node, the attribute nodes representing
the attributes of the schema of the query (displayed as gray oval-shaped nodes), the
where and operand edges as well as the operand nodes (displayed as green square-
shaped nodes) representing the operands in the where clause of the query. In the top-
most corner of Figure 3, a more detailed view of a part of the TPC-C graph (isolated
and transformed by the framework) is presented, which represents the query: SELECT
* FROM HISTORY.

 The TPC-C graph of Figure 3 allows us to stress some useful remarks:
- The TPC-C graph consists of a set of non-connected subgraphs, (basically due

to the fact that there are no foreign keys imposed on these relations).
- Each subgraph comprises the respective relation subgraph(s) along with the

query subgraphs operating on these relations. Queries, doing join operations

1 According to the order with which each query is parsed by the framework, it is automatically

assigned a name, i.e., Q1 for the first query parsed, Q2 for the second query parsed, etc.

on relations, act as bridges between these relation subgraphs (e.g., right-most
subgraph of Figure 3).

Figure 3: TPC-C graph

- Simpler subgraphs (i.e., comprising small numbers of nodes and edges)
correspond to relations with smaller schemata (fewer attributes) on which a
small number of queries operate (e.g., history relation which is accessed by
only one query), whereas more complex subgraphs indicate relations being
accessed by a large number of queries (e.g., customer relation which is
accessed by 9 queries).

5. Discussion

In this paper, we have presented HECATAEUS, a tool for visualizing a graph-based
model that that uniformly captures relations, views, constraints and queries. Modeling
queries and relations through graphs can be used by database administrators and
designers for several purposes, including (a) the visualization of both the structure
and, interestingly, the workload of the system, (b) the forecasting of the impact of
changes, and (c) the evaluation of the quality of the database design.

Simple visualization has great value, by its own. For example, highlighting highly
used attributes is useful for workload balancing and impact forecasting in the
presence of changes. As another example, observing the frequent correlation of two
tables possibly might lead the database administrator to the definition of a new view.

The smooth evolution around the database of an information system can be
supported by our framework through the detection of node dependencies, at all levels
of abstraction (attribute, relation, or query). The graph model aids both visually and
algorithmically to this end. Algorithms can easily be applied to prevent attribute/table
deletions that would lead to semantic or syntactic inconsistencies of deployed, query-
based modules (forms, reports, etc) around the database. Also, our work in progress
includes algorithms that can be used to determine (or even, automate) the adaptation
of such modules towards additions (or updates) to the database schema.

The definition of graph-based database metrics for the evaluation of the quality of
a graph is also an issue that we currently investigate. For example, when in dilemma,
the designer can isolate parts of the graph and test alternatives. The minimization of
graph complexity possibly implies the minimization of the maintenance effort, too.

References

[BaOO02] N. H. Balkir, G. Ozsoyoglu, Z. M. Ozsoyoglu. A Graphical Query Language:
VISUAL and Its Query Processing, IEEE Trans. Knowl. Data Eng. 14(5): 955-978
(2002)

[CCLB97] T. Catarci, M. F. Costabile, S. Levialdi, C. Batini: Visual Query Systems for
Databases: A Survey. J. Vis. Lang. Comput. 8(2): 215-260 (1997)

[GMRR01] A. Gupta, I. S. Mumick, J. Rao, K. A. Ross. Adapting materialized views after
redefinitions: Techniques and a performance study. In Information Systems, 26
(2001), p.323-362

[HFLP89] L. M. Haas, J. C. Freytag, G. M. Lohman, H. Pirahesh: Extensible Query Processing
in Starburst. SIGMOD Conference 1989: 377-388

[HSQL] SharpHSQL - An SQL engine written in C#, http://www.c-
sharpcorner.com/database/SharpHSQL.asp

[JaTh03] H. Jaakkola, B. Thalheim: Visual SQL - High-Quality ER-Based Query Treatment.
ER (Workshops) 2003: 129-139

[LEDA] LEDA. C++ class library of efficient data types and algorithms,
http://www.algorithmic-solutions.com/enleda.htm

[MuGP98] N. Murray, C. A. Goble, N. W. Paton: A Framework for Describing Visual
Interfaces to Databases. J. Vis. Lang. Comput. 9(4): 429-456 (1998)

[PaKi95] A. Papantonakis, P. J. H. King: Syntax and Semantics of Gql, a graphical query
language. J. Vis. Lang. Comput. 6(1): 3-25 (1995)

[PaVV05] G. Papastefanatos, P. Vassiliadis, Y. Vassiliou. A Graph-based Representation of
Database Systems and Applications. Working Draft 2005. Available upon request.

[TeOl03] Templeman, J. and Olsen, A., Microsoft Visual C++ .NET Step By Step, Microsoft
Press, 2003.

[TPCC] Overview of the TPC Benchmark C: The Order-Entry Benchmark.
http://www.tpc.org/tpcc/

[V.NET] Ms Visual Studio .NET, http://msdn.microsoft.com/vstudio/

http://www.c-sharpcorner.com/database/SharpHSQL.asp
http://www.c-sharpcorner.com/database/SharpHSQL.asp
http://www.algorithmic-solutions.com/enleda.htm
http://www.tpc.org/tpcc/
http://msdn.microsoft.com/vstudio/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

