
Strabon: A Semantic Geospatial DBMS ?

Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis

National and Kapodistrian University of Athens, Greece
{kkyzir,mk,koubarak}@di.uoa.gr

Abstract. We present Strabon, a new RDF store that supports the
state of the art semantic geospatial query languages stSPARQL and
GeoSPARQL. To illustrate the expressive power offered by these query
languages and their implementation in Strabon, we concentrate on the
new version of the data model stRDF and the query language stSPARQL
that we have developed ourselves. Like GeoSPARQL, these new versions
use OGC standards to represent geometries where the original versions
used linear constraints. We study the performance of Strabon experimen-
tally and show that it scales to very large data volumes and performs,
most of the times, better than all other geospatial RDF stores it has
been compared with.

1 Introduction

The Web of data has recently started being populated with geospatial data.
A representative example of this trend is project LinkedGeoData where Open-
StreetMap data is made available as RDF and queried using the declarative
query language SPARQL. Using the same technologies, Ordnance Survey makes
available various geospatial datasets from the United Kingdom.

The availability of geospatial data in the linked data “cloud” has moti-
vated research on geospatial extensions of SPARQL [7, 9, 13]. These works have
formed the basis for GeoSPARQL, a proposal for an Open Geospatial Consor-
tium (OGC) standard which is currently at the “candidate standard” stage [1].
In addition, a number of papers have explored implementation issues for such
languages [2, 3]. In this paper we present our recent achievements in both of
these research directions and make the following technical contributions.

We describe a new version of the data model stRDF and the query lan-
guage stSPARQL, originally presented in [9], for representing and querying
geospatial data that change over time. In the new version of stRDF, we use
the widely adopted OGC standards Well Known Text (WKT) and Geography
Markup Language (GML) to represent geospatial data as literals of datatype
strdf:geometry (Section 2). The new version of stSPARQL is an extension of
SPARQL 1.1 which, among other features, offers functions from the OGC stan-
dard “OpenGIS Simple Feature Access for SQL” for the manipulation of spatial

? This work was supported in part by the European Commission project TELEIOS
(http://www.earthobservatory.eu/)

literals and support for multiple coordinate reference systems (Section 3). The
new version of stSPARQL and GeoSPARQL have been developed independently
at about the same time. We discuss in detail their many similarities and few
differences and compare their expressive power.

We present the system Strabon1, an open-source semantic geospatial DBMS
that can be used to store linked geospatial data expressed in stRDF and query
them using stSPARQL. Strabon can also store data expressed in RDF using
the vocabularies and encodings proposed by GeoSPARQL and query this data
using the subset of GeoSPARQL that is closer to stSPARQL (the union of the
GeoSPARQL core, the geometry extension and the geometry topology extension
[1]). Strabon extends the RDF store Sesame, allowing it to manage both thematic
and spatial RDF data stored in PostGIS. In this way, Strabon exposes a variety
of features similar to those offered by geospatial DBMS that make it one of the
richest RDF store with geospatial support available today.

Finally, we perform an extensive evaluation of Strabon using large data vol-
umes. We use a real-world workload based on available geospatial linked datasets
and a workload based on a synthetic dataset. Strabon can scale up to 500 million
triples and answer complex stSPARQL queries involving the whole range of con-
structs offered by the language. We present our findings in Section 5, including
a comparison between Strabon on top of PostgreSQL and a proprietary DBMS,
the implementation presented in [3], the system Parliament [2], and a baseline
implementation. Thus, we are the first to provide a systematic evaluation of RDF
stores supporting languages like stSPARQL and GeoSPARQL and pointing out
directions for future research in this area.

2 A new version of stRDF

In this section we present a new version of the data model stRDF that
was initially presented in [9]. The presentation of the new versions of
stRDF and stSPARQL (Section 3) is brief since the new versions are based
on the initial ones published in [9]. In [9] we followed the ideas of con-
straint databases [12] and chose to represent spatial and temporal data as
quantifier-free formulas in the first-order logic of linear constraints. These for-
mulas define subsets of Qk called semi-linear point sets in the constraint
database literature. In the original version of stRDF, we introduced the
data type strdf:SemiLinearPointSet for modeling geometries. The values
of this datatype are typed literals (called spatial literals) that encode geome-
tries using Boolean combinations of linear constraints in Q2. For example,

(x ≥ 0 ∧ y ≥ 0 ∧ x+ y ≤ 1) ∨ (x ≤ 0 ∧ y ≤ 0 ∧ x+ y ≥ −1)
is such a literal encoding the union of two polygons in Q2. In [9] we also allow
the representation of valid times of triples using the proposal of [6]. Valid times
are again represented using order constraints over the time structure Q. In the
rest of this paper we omit the temporal dimension of stRDF from our discussion
and concentrate on the geospatial dimension only.

1 http://www.strabon.di.uoa.gr

Although our original approach in [9] results in a theoretically elegant frame-
work, none of the application domains we worked with had geospatial data rep-
resented using constraints. Today’s GIS practitioners represent geospatial data
using OGC standards such as WKT and GML. Thus, in the new version of
stRDF and stSPARQL, which has been used in EU projects SemsorGrid4Env
and TELEIOS, the linear constraint representation of spatial data was dropped
in favour of OGC standards. As we demonstrate below, introducing OGC stan-
dards in stRDF and stSPARQL has been achieved easily without changing any-
thing from the basic design choices of the data model and the query language.

In the new version of stRDF, the datatypes strdf:WKT and strdf:GML are
introduced to represent geometries serialized using the OGC standards WKT
and GML. WKT is a widely accepted OGC standard2 and can be used for rep-
resenting geometries, coordinate reference systems and transformations between
coordinate reference systems. A coordinate system is a set of mathematical rules
for specifying how coordinates are to be assigned to points. A coordinate ref-
erence system (CRS) is a coordinate system that is related to an object (e.g.,
the Earth, a planar projection of the Earth) through a so-called datum which
specifies its origin, scale, and orientation. Geometries in WKT are restricted
to 0-, 1- and 2-dimensional geometries that exist in R2, R3 or R4. Geometries
that exist in R2 consist of points with coordinates x and y, e.g., POINT(1,2).
Geometries that exist in R3 consist of points with coordinates x, y and z or
x, y and m where m is a measurement. Geometries that exist in R4 consist of
points with coordinates x, y, z and m. The WKT specification defines syntax for
representing the following classes of geometries: points, line segments, polygons,
triangles, triangulated irregular networks and collections of points, line segments
and polygons. The interpretation of the coordinates of a geometry depends on
the CRS that is associated with it.

GML is an OGC standard3 that defines an XML grammar for modeling,
exchanging and storing geographic information such as coordinate reference sys-
tems, geometries and units of measurement. The GML Simple Features specifi-
cation (GML-SF) is a profile of GML that deals only with a subset of GML and
describes geometries similar to the one defined by WKT.

Given the OGC specification for WKT, the datatype strdf:WKT4 is defined
as follows. The lexical space of this datatype includes finite-length sequences of
characters that can be produced from the WKT grammar defined in the WKT
specification, optionally followed by a semicolon and a URI that identifies the
corresponding CRS. The default case is considered to be the WGS84 coordinate
reference system. The value space is the set of geometry values defined in the
WKT specification. These values are a subset of the union of the powersets of
R2 and R3. The lexical and value space for strdf:GML are defined similarly.
The datatype strdf:geometry is also introduced to represent the serialization
of a geometry independently of the serialization standard used. The datatype

2 http://portal.opengeospatial.org/files/?artifact_id=25355
3 http://portal.opengeospatial.org/files/?artifact_id=39853
4 http://strdf.di.uoa.gr/ontology

strdf:geometry is the union of the datatypes strdf:WKT and strdf:GML, and
appropriate relationships hold for its lexical and value spaces.

Both the original [9] and the new version of stRDF presented in this paper
impose minimal new requirements to Semantic Web developers that want to
represent spatial objects with stRDF; all they have to do is utilize a new literal
datatype. These datatypes (strdf:WKT, strdf:GML and strdf:geometry) can
be used in the definition of geospatial ontologies needed in applications, e.g.,
ontologies similar to the ones defined in [13].

In the examples of this paper we present stRDF triples that come from a
fire monitoring and burnt area mapping application of project TELEIOS. The
prefix noa used refers to the namespace of relevant vocabulary5 defined by the
National Observatory of Athens (NOA) for this application.

Example 1. stRDF triples derived from GeoNames that represent information
about the Greek town Olympia including an approximation of its geometry. Also,
stRDF triples that represent burnt areas.

geonames:26 rdf:type dbpedia:Town. geonames:26 geonames:name "Olympia".

geonames:26 strdf:hasGeometry "POLYGON((21 18,23 18,23 21,21 21,21 18));

<http://www.opengis.net/def/crs/EPSG/0/4326>"^^strdf:WKT.

noa:BA1 rdf:type noa:BurntArea;

strdf:hasGeometry "POLYGON((0 0,0 2,2 2,2 0,0 0))"^^strdf:WKT.

noa:BA2 rdf:type noa:BurntArea;

strdf:hasGeometry "POLYGON((3 8,4 9,3 9,3 8))"^^strdf:WKT.

Features can, in general, have many geometries (e.g., for representing the fea-
ture at different scales). Domain modelers are responsible for their appropriate
utilization in their graphs and queries.

3 A new version of stSPARQL

In this section we present a new version of the query language stSPARQL that
we originally introduced in [9]. The new version is an extension of SPARQL
1.1 with functions that take as arguments spatial terms and can be used in the
SELECT, FILTER, and HAVING clause of a SPARQL 1.1 query. A spatial term is
either a spatial literal (i.e., a typed literal with datatype strdf:geometry or
its subtypes), a query variable that can be bound to a spatial literal, the result
of a set operation on spatial literals (e.g., union), or the result of a geometric
operation on spatial terms (e.g., buffer).

In stSPARQL we use functions from the “OpenGIS Simple Feature Access
- Part 2: SQL Option” standard (OGC-SFA)6 for querying stRDF data. This
standard defines relational schemata that support the storage, retrieval, query
and update of sets of simple features using SQL.

A feature is a domain entity that can have various attributes that describe
spatial and non-spatial (thematic) characteristics. The spatial characteristics of

5 http://www.earthobservatory.eu/ontologies/noaOntology.owl
6 http://portal.opengeospatial.org/files/?artifact_id=25354

a feature are represented using geometries such as points, lines, polygons, etc.
Each geometry is associated with a CRS. A simple feature is a feature with all
spatial attributes described piecewise by a straight line or a planar interpolation
between sets of points. The OGC-SFA standard defines functions for requesting
a specific representation of a geometry (e.g., the function ST_AsText returns
the WKT representation of a geometry), functions for checking whether some
condition holds for a geometry (e.g., the function ST_IsEmpty returns true if a
geometry is empty) and functions for returning some properties of the geometry
(e.g., the function ST_Dimension returns its inherent dimension). In addition,
the standard defines functions for testing named spatial relationships between
two geometries (e.g., the function ST_Overlaps) and functions for constructing
new geometries from existing geometries (e.g., the function ST_Envelope that
returns the minimum bounding box of a geometry).

The new version of stSPARQL extends SPARQL 1.1 with the ma-
chinery of the OGC-SFA standard. We achieve this by defining a URI
for each of the SQL functions defined in the standard and use them
in SPARQL queries. For example, for the function ST IsEmpty defined
in the OGC-SFA standard, we introduce the SPARQL extension function

xsd:boolean strdf:isEmpty(strdf:geometry g)

which takes as argument a spatial term g, and returns true if g is the empty
geometry. Similarly, we have defined a Boolean SPARQL extension function for
each topological relation defined in OGC-SFA (topological relations for sim-
ple features), [5] (Egenhofer relations) and [4] (RCC-8 relations). In this way
stSPARQL supports multiple families of topological relations our users might
be familiar with. Using these functions stSPARQL can express spatial selec-
tions, i.e., queries with a FILTER function with arguments a variable and a con-
stant (e.g., strdf:contains(?geo, "POINT(1 2)"^^strdf:WKT)), and spatial
joins, i.e., queries with a FILTER function with arguments two variables (e.g.,
strdf:contains(?geoA, ?geoB)).

The stSPARQL extension functions can also be used in the SELECT clause of a
SPARQL query. As a result, new spatial literals can be generated on the fly dur-
ing query time based on pre-existing spatial literals. For example, to obtain the
buffer of a spatial literal that is bound to the variable ?geo, we would use the ex-
pression SELECT (strdf:buffer(?geo,0.01) AS ?geobuffer). In stSPARQL
we have also the following three spatial aggregate functions:

– strdf:geometry strdf:union(set of strdf:geometry a), returns a ge-
ometry that is the union of the set of input geometries.

– strdf:geometry strdf:intersection(set of strdf:geometry a),
returns a geometry that is the intersection of the set of input geometries.

– strdf:geometry strdf:extent(set of strdf:geometry a), returns a
geometry that is the minimum bounding box of the set of input geometries.

stSPARQL also supports update operations (insertion, deletion, and update
of stRDF triples) conforming to the declarative update language for SPARQL,
SPARQL Update 1.1, which is a current proposal of W3C.

The following examples demonstrate the functionality of stSPARQL.

Example 2. Return the names of towns that have been affected by fires.

SELECT ?name

WHERE { ?t a dbpedia:Town; geonames:name ?name; strdf:hasGeometry ?tGeo.

?ba a noa:BurntArea; strdf:hasGeometry ?baGeo.

FILTER(strdf:intersects(?tGeo,?baGeo))}

The query above demonstrates how to use a topological function in a query. The
results of this query are the names of the towns whose geometries “spatially
overlap” the geometries corresponding to areas that have been burnt.

Example 3. Isolate the parts of the burnt areas that lie in coniferous forests.

SELECT ?ba (strdf:intersection(?baGeom,strdf:union(?fGeom)) AS ?burnt)

WHERE { ?ba a noa:BurntArea. ?ba strdf:hasGeometry ?baGeom.

?f a noa:Area. ?f noa:hasLandCover noa:ConiferousForest.

?f strdf:hasGeometry ?fGeom.

FILTER(strdf:intersects(?baGeom,?fGeom)) }

GROUP BY ?ba ?baGeom

The query above tests whether a burnt area intersects with a coniferous for-
est. If this is the case, groupings are made depending on the burnt area. The
geometries of the forests corresponding to each burnt area are unioned, and
their intersection with the burnt area is calculated and returned to the user.
Note that only strdf:union is an aggregate function in the SELECT clause;
strdf:intersection performs a computation involving the result of the aggre-
gation and the value of ?baGeom which is one of the variables determining the
grouping according to which the aggregate computation is performed.

More details of stRDF and stSPARQL are given in [11].

4 Implementation

Strabon 3.0 is a fully-implemented, open-source, storage and query evaluation
system for stRDF/stSPARQL and the corresponding subset of GeoSPARQL. We
concentrate on stSPARQL only, but given the similarities with GeoSPARQL to
be discussed in Section 6, the applicability to GeoSPARQL is immediate. Strabon
has been implemented by extending the widely-known RDF store Sesame. We
chose Sesame because of its open-source nature, layered architecture, wide range
of functionalities and the ability to have PostGIS, a ‘spatially enabled’ DBMS,
as a backend to exploit its variety of spatial functions and operators. Strabon
is implemented by creating a layer that is included in Sesame’s software stack
in a transparent way so that it does not affect its range of functionalities, while
benefitting from new versions of Sesame. Strabon 3.0 uses Sesame 2.6.3 and
comprises three modules: the storage manager, the query engine and PostGIS.

The storage manager utilizes a bulk loader to store stRDF triples using the
“one table per predicate” scheme of Sesame and dictionary encoding. For each
predicate table, two B+ tree two-column indices are created. For each dictio-
nary table a B+ tree index on the id column is created. All spatial literals are

also stored in a table with schema geo values(id int, value geometry, srid int).
Each tuple in the geo values table has an id that is the unique encoding of the
spatial literal based on the mapping dictionary. The attribute value is a spatial
column whose data type is the PostGIS type geometry and is used to store the
geometry that is described by the spatial literal. The geometry is transformed
to a uniform, user-defined CRS and the original CRS is stored in the attribute
srid. Additionally, a B+ tree index on the id column and an R-tree-over-GiST
spatial index on the value column are created.

Query processing in Strabon is performed by the query engine which consists
of a parser, an optimizer, an evaluator and a transaction manager. The parser
and the transaction manager are identical to the ones in Sesame. The optimizer
and the evaluator have been implemented by modifying the corresponding com-
ponents of Sesame as we describe below.

The query engine works as follows. First, the parser generates an abstract
syntax tree. Then, this tree is mapped to the internal algebra of Sesame, re-
sulting in a query tree. The query tree is then processed by the optimizer that
progressively modifies it, implementing the various optimization techniques of
Strabon. Afterwards, the query tree is passed to the evaluator to produce the
corresponding SQL query that will be evaluated by PostgreSQL. After the SQL
query has been posed, the evaluator receives the results and performs any post-
processing actions needed. The final step involves formatting the results. Besides
the standard formats offered by RDF stores, Strabon offers KML and GeoJSON
encodings, which are widely used in the mapping industry.

We now discuss how the optimizer works. First, it applies all the Sesame
optimizations that deal with the standard SPARQL part of an stSPARQL query
(e.g., it pushes down FILTERs to minimize intermediate results etc.). Then, two
optimizations specific to stSPARQL are applied. The first optimization has to
do with the extension functions of stSPARQL. By default, Sesame evaluates
these after all bindings for the variables present in the query are retrieved. In
Strabon, we modify the behaviour of the Sesame optimizer to incorporate all
extension functions present in the SELECT and FILTER clause of an stSPARQL
query into the query tree prior to its transformation to SQL. In this way, these
extension functions will be evaluated using PostGIS spatial functions instead of
relying on external libraries that would add an unneeded post-processing cost.
The second optimization makes the underlying DBMS aware of the existence of
spatial joins in stSPARQL queries so that they would be evaluated efficiently.
Let us consider the query of Example 2. The first three triple patterns of the
query are related to the rest via the topological function strdf:intersects.
The query tree that is produced by the Sesame optimizer, fails to deal with
this spatial join appropriately. It will generate a Cartesian product for the third
and the fifth triple pattern of the query, and the evaluation of the spatial predi-
cate strdf:intersects will be wrongly postponed after the calculation of this
Cartesian product. Using a query graph as an intermediate representation of the
query, we identify such spatial joins and modify the query tree with appropriate
nodes so that Cartesian products are avoided. For the query of Example 2, the

modified query tree will result in a SQL query that contains a θ-join where θ is
the spatial function ST Intersects.

More details of the query engine including examples of query trees and the
SQL queries produced are given in the long version of this paper7.

To quantify the gains of the optimization techniques used in Strabon, we
also developed a naive, baseline implementation of stSPARQL which has none
of the optimization enhancements to Sesame discussed above. The naive imple-
mentation uses the native store of Sesame as a backend instead of PostGIS (since
the native store outperforms all other Sesame implementations using a DBMS).
Data is stored on disk using atomic operations and indexed using B-Trees.

5 Experimental Evaluation

This section presents a detailed evaluation of the system Strabon using two dif-
ferent workloads: a workload based on linked data and a synthetic workload. For
both workloads, we compare the response time of Strabon on top of PostgreSQL
(called Strabon PG from now on) with our closest competitor implementation
in [3], the naive, baseline implementation described in Section 4, and the RDF
store Parliament. To identify potential benefits from using a different DBMS as
a relational backend for Strabon, we also executed the SQL queries produced by
Strabon in a proprietary spatially-enabled DBMS (which we will call System X,
and Strabon X the resulting combination).

[3] presents an implementation which enhances the RDF-3X triple store with
the ability to perform spatial selections using an R-tree index. The implemen-
tation of [3] is not a complete system like Strabon and does not support a
full-fledged query language such as stSPARQL. In addition, the only way to
load data in the system is the use of a generator which has been especially de-
signed for the experiments of [3] thus it cannot be used to load other datasets
in the implementation. Moreover, the geospatial indexing support of this imple-
mentation is limited to spatial selections. Spatial selections are pushed down in
the query tree (i.e., they are evaluated before other operators). Parliament is an
RDF storage engine recently enhanced with GeoSPARQL processing capabilities
[2], which is coupled with Jena to provide a complete RDF system.

Our experiments were carried out on an Ubuntu 11.04 installation on an Intel
Xeon E5620 with 12MB L2 cache running at 2.4 GHz. The system has 16GB of
RAM and 2 disks of striped RAID (level 0). We measured the response time for
each query posed by measuring the elapsed time from query submission till a
complete iteration over the results had been completed. We ran all queries five
times on cold and warm caches. For warm caches, we ran each query once before
measuring the response time, in order to warm up the caches.

7 http://www.strabon.di.uoa.gr/files/Strabon-ISWC-2012-long-version.pdf

Dataset Size Triples Spatial
terms

Distinct
spatial
terms

Points Linestrings
(min/ max/
avg # of
points/
linestring)

Polygons
(min/max/avg
of points/
polygon)

DBpedia 7.1 GB 58,727,893 386,205 375,087 375,087 - -

GeoNames 2.1GB 17,688,602 1,262,356 1,099,964 1,099,964 - -

LGD 6.6GB 46,296,978 5,414,032 5,035,981 3,205,015 353,714 (4/20/9) 1,704,650
(4/20/9)

Pachube 828KB 6,333 101 70 70 - -

SwissEx 33MB 277,919 687 623 623 - -

CLC 14GB 19,711,926 2,190,214 2,190,214 - - 2,190,214
(4/1,255,917/129)

GADM 146MB 255 51 51 - - 51 (96/ 510,018/
79,831)

Fig. 1: Summary of unified linked datasets

5.1 Evaluation using Linked Data

This section describes the experiments we did to evaluate Strabon using a work-
load based on linked data. We combined multiple popular datasets that include
geospatial information: DBpedia, GeoNames, LinkedGeoData, Pachube, Swiss
Experiment. We also used the datasets Corine Land Use/Land Cover and Global
Administrative Areas that were published in RDF by us in the context of the EU
projects TELEIOS and SemsorGrid4Env. The size of the unified dataset is 30GB
and consists of 137 million triples that include 176 million distinct RDF terms,
of which 9 million are spatial literals. As we can see in Table 1, the complexity
of the spatial literals varies significantly. More information on the datasets men-
tioned and the process followed can be found in the long version of the paper. It
should be noted that we could not use the implementation of [3] to execute this
workload since it is not a complete system like Strabon as we explained above.
Storing stRDF Documents. For our experimental evaluation, we used the
bulk loader mentioned in Section 4 emulating the “per-predicate” scheme since
preliminary experiments indicated that the query response times in PostgreSQL
were significantly faster when using this scheme compared to the “monolithic”
scheme. This decision led to the creation of 48,405 predicate tables. Figure 2a
presents the time required by each system to store the unified dataset.

The difference in times between Strabon and the naive implementation is
natural given the very large number of predicate tables that had to be produced,
processed and indexed. In this dataset, 80% of the total triples used only 17
distinct predicates. The overhead imposed to process the rest 48,388 predicates
cancels the benefits of the bulk loader. A hybrid solution storing triples with
popular predicates in separate tables while storing the rest triples in a single
table, would have been more appropriate for balancing the tradeoff between
storage time and query response time but we have not experimented with this
option. In Section 5.2 we show that the loader scales much better when fewer
distinct predicates are present in our dataset, regardless its size.

In the case of Strabon X, we followed the same process with Strabon PG.
System X required double the amount of time that it took PostgreSQL to store
and index the data. In the case of Parliament we modified the dataset to conform

to GeoSPARQL and measured the time required for storing the resulting file.
After incorporating the additional triples required by GeoSPARQL, the resulting
dataset had approximately 15% more triples than the original RDF file.
Evaluating stSPARQL Queries. In this experiment we chose to evaluate
Strabon using eight real-world queries. Our intention was to have enough queries
to demonstrate Strabon’s performance and functionality based on the following
criteria: query patterns should be frequently used in Semantic Web applications
or demonstrate the spatial extensions of Strabon. The first criterion was ful-
filled by taking into account the results of [14] when designing the queries. [14]
presents statistics on real-world SPARQL queries based on the logs of DBpe-
dia. We also studied the query logs of the LinkedGeoData endpoint (which were
kindly provided to us) to determine what kind of spatial queries are popular.
According to this criterion, we composed the queries Q1, Q2 and Q7. According
to [14] queries like Q1 and Q2 that consist of a few triple patterns are very com-
mon. Query Q7 consists of few triple patterns and a topological FILTER function,
a structure similar to the queries most frequently posed to the LGD endpoint.
The second criterion was fulfilled by incorporating spatial selections (Q4 and Q5)
and spatial joins (Q3,Q6,Q7 and Q8) in the queries. In addition, we used non-
topological functions that create new geometries from existing ones (Q4 and Q8)
since these functions are frequently used in geospatial relational databases. In
Table 2b we report the response time results. In queries Q1 and Q2, the baseline
implementation outperforms all other systems as these queries do not include
any spatial function. As mentioned earlier, the native store of Sesame outper-
forms Sesame implementations on top of a DBMS. All other systems produce
comparable result times for these non-spatial queries. In all other queries the
DBMS-based implementations outperform Parliament and the naive implemen-
tation. Strabon PG outperforms the naive implementation since it incorporates
the two stSPARQL-specific optimizations discussed in Section 4. Thus, spatial
operations are evaluated by PostGIS using a spatial index, instead of being eval-
uated after all the results have been retrieved. The naive implementation and
Parliament fail to execute Q3 as this query involves a spatial join that is very ex-
pensive for systems using a naive approach. The only exception in the behavior
of the naive implementation is Q4 in the case of warm caches, where the non-
spatial part of the query produces very few results and the file blocks needed for
query evaluation are cached in main memory. In this case, the non-spatial part
of the query is executed rapidly while the evaluation of the spatial function over
the results thus far is not significant. All queries except Q8 are executed signifi-
cantly faster when run using Strabon on warm caches. Q8 involves many triple
patterns and spatial functions which result in the production of a large number
of intermediate results. As these do not fit in the system’s cache, the response
time is unaffected by the cache contents. System X decides to ignore the spatial
index in queries Q3, Q6-Q8 and evaluate any spatial predicate exhaustively over
the results of a thematic join. In queries Q6-Q8, it also uses Cartesian products
in the query plan as it considers their evaluation more profitable. These decisions
are correct in the case of Q8 where it outperforms all other systems significantly,
but very costly in the cases of Q3, Q6 and Q7.

Total time (sec)
System Linked

Data
10mil 100mil 500mil

Naive 9,480 1,053 12,305 72,433

Strabon PG 19,543 458 3,241 21,155

Strabon X 28,146 818 7,274 40,378

RDF-3X * 780 8,040 43,201

Parliament 81,378 734 6,415 >36h

(a)

Caches System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Cold Naive 0.08 1.65 >8h 28.88 89 170 844 1.699
(sec.) Strabon-PG 2.01 6.79 41.39 10.11 78.69 60.25 9.23 702.55

Strabon-X 1.74 3.05 1623.57 46.52 12.57 2409.98 >8h 57.83
Parliament 2.12 6.46 >8h 229.72 1130.98 872.48 3627.62 3786.36

Warm Naive 0.01 0.03 >8h 0.79 43.07 88 708 1712
(sec.) Strabon-PG 0.01 0.81 0.96 1.66 38.74 1.22 2.92 648.1

Strabon-X 0.01 0.26 1604.9 35.59 0.18 3196.78 >8h 44.72
Parliament 0.01 0.04 >8h 10.91 358.92 483.29 2771 3502.53

(b)

Fig. 2: (a) Storage time for each dataset (b) Response time for real-world queries

5.2 Evaluation using a Synthetic Dataset

Although we had tested Strabon with datasets up to 137 million triples (Sec-
tion 5.1), we wanted better control over the size and the characteristics of the
spatial dataset being used for evaluation. By using a generator to produce a syn-
thetic dataset, we could alter the thematic and spatial selectivities of our queries
and closely monitor the performance of our system, based on both spatial and
thematic criteria. Since we could produce a dataset of arbitrary size, we were
able to stress our system by producing datasets of size up to 500 million triples.
Storing stRDF Documents. The generator we used to produce our datasets
is a modified version of the generator used by the authors of [3], which was kindly
provided to us. The data produced follows a general version of the schema of
Open Street Map depicted in Figure 3. Each node has a spatial extent (the lo-
cation of the node) and is placed uniformly on a grid. By modifying the step
of the grid, we produce datasets of arbitrary size. In addition, each node is as-
signed a number of tags each of which consists of a key-value pair of strings.
Every node is tagged with key 1, every second node with key 2, every fourth
node with key 4, etc. up to key 1024. We generated three datasets consisting
of 10 million, 100 million and 500 million triples and stored them in Strabon
using the per-predicate scheme. Figure 2a shows the time required to store these
datasets. In the case of [3], the generator produces directly a binary file using the
internal format of RDF-3X and computes exhaustively all indices, resulting in
higher storage times. On the contrary, Strabon, Parliament and the naive imple-
mentation store an RDF file for each dataset. We observed that Strabon’s bulk
loader is very efficient when dealing with any dataset not including an excessive
amount of scarcely used distinct predicates, and regardless of the underlying
DBMS. In the case of Parliament, the dataset resulting from the conversion to
GeoSPARQL was 27% bigger than the original 100 million triples dataset. Its
storage time was shorter than that of all other systems but Strabon PG. How-
ever, Parliament failed to store the 500 million triples dataset after 36 hours.
Evaluating stSPARQL Queries. In this experiment we used the fol-
lowing query template that is identical to the query template used in [3]:
SELECT * WHERE {?node geordf:hasTag ?tag. ?node strdf:hasGeography ?geo.

?tag geordf:key PARAM A. FILTER (strdf:inside(?geo, PARAM B))}
In this query template, PARAM A is one of the values used when tagging a
node and PARAM B is the WKT representation of a polygon. We define the

osm:Node23

osm:Tag1osm:Tag

osm:Node

osm:key osm:value

osm:hasTag

rdf:type

rdf:type

osm:id
geordf:

hasGeometry1

“1” “1”

“14”“POINT(37.9 23.1)”

Fig. 3: LGD schema Fig. 4: Plan A Fig. 5: Plan B

thematic selectivity of an instantiation of the query template as the fraction of
the total nodes that are tagged with a key equal to PARAM A. For example, by
altering the value of PARAM A from 2 to 4, we reduce the thematic selectivity of
the query by selecting half the nodes we previously did. We define the spatial
selectivity of an instantiation of the query template as the fraction of the total
nodes that are inside the polygon defined by PARAM B. We modify the size of
the polygon in order to select from 10 up to 106 nodes.

We will now discuss representative experiments with the 100 and 500 million
triples datasets. For each dataset we present graphs depicting results based on
various combinations of parameters PARAM A and PARAM B in the case of cold
or warm caches. These graphs are presented in Figure 6. In the case of Stra-
bon, the stSPARQL query template is mapped to a SQL query, which is sub-
sequently executed by PostgreSQL or System X. This query involves the predi-
cate tables key(subj,obj), hasTag(subj,obj) and hasGeography(subj,obj)

and the spatial table geo values(id,value,srid). We created two B+ tree
two-column indices for each predicate table and an R-tree index on the value

column of the spatial table. The main point of interest in this SQL query is the
order of join execution in the following sub-query: σobj=T (key) on hastag on
σvalue inside S(hasgeography) where T and S are values of the parameters
PARAM A and PARAM B respectively. Different orders give significant differences
in query execution time. After consulting the query logs of PostgreSQL, we no-
ticed that the vast majority of the SQL queries that were posed and derived
from the query template adhered to one of the query plans of Figures 4,5. Ac-
cording to plan A, query evaluation starts by evaluating the thematic selection
over table key using the appropriate index. The results are retrieved and joined
with the hasTag and hasGeography predicate tables using appropriate indices.
Finally, the spatial selection is evaluated by scanning the spatial index and the
results are joined with the intermediate results of the previous operations. On
the contrary, plan B starts with the evaluation of the spatial selection, leaving
the application of the thematic selection for the end.

Unfortunately, in the current version of PostGIS spatial selectivities are not
computed properly. The functions that estimate the selectivity of a spatial se-
lection/join return a constant number regardless of the actual selectivity of the
operator. Thus, only the thematic selectivity affects the choice of a query plan.
To state it in terms of our query template, altering the value PARAM A between
1 and 1024 was the only factor influencing the selection of a query plan.

A representative example is shown in Figure 6g, where we present the re-
sponse times for all values of PARAM A and observe two patterns. When thematic
selectivity is high (values 1-2), the response time is low when the spatial selec-
tivity (captured by the x-axis) is low, while it increases along with the spatial
selectivity. This happens because for these values PostgreSQL chooses plan B,
which is good only when the spatial selectivity is low. In cases of lower thematic
selectivity (values 4-1024), the response time is initially high but only increases
slightly as spatial selectivity increases. In this case, PostgreSQL chooses plan A,
which is good only when the spatial selectivity is high. The absence of dynamic
estimation of spatial selectivity is affecting the system performance since it does
not necessarily begin with a good plan and fails to switch between plans when
the spatial selectivity passes the turning point observed in the graph.

Similar findings were observed for System X. The decision of which query
plan to select was influenced by PARAM A. In most cases, a plan similar to plan
B is selected, with the only variation that in the case of the 500 million triples
dataset the access methods defined in plan B are full table scans instead of index
scans. The only case in which System X selected another plan was when posing
a query with very low thematic selectivity (PARAM A = 1024) on the 500 million
triples dataset, in which case System X switched to a plan similar to plan A.

In Figures 6a-6d we present the results for the 100 million dataset for the
extreme values 1 and 1024 of PARAM A. Strabon PG outperforms the other sys-
tems in the case of warm caches, while the implementation of [3] and Strabon X
outperform Strabon PG for value 1024 in the case of cold caches (Figure 6b). In
this case, as previously discussed, PostgreSQL does not select a good plan and
the response times are even higher than the times where PARAM A is equal to 1
(Figure 6a), despite producing significantly more intermediate results.

In Figures 6e, 6f and 6h we present the respective graphs for the 500 million
dataset and observe similar behavior as before, with a small deviation in Figure
6e, where the implementation of [3] outperforms Strabon. In this scenario, Stra-
bon X also gradually outperforms Strabon PG as spatial selectivity increases,
although PostgreSQL had chosen the correct query plan. Taking this into ac-
count, we tuned PostgreSQL to make better use of the system resources. We
allowed the usage of more shared buffers and the allocation of larger amounts of
memory for internal sort operations and hash tables. As observed in Figure 6e,
the result of these modifications (labeled Strabon PG2) led to significant perfor-
mance improvement. This is quite typical with relational DBMS; the more you
know about their internals and the more able you are to tune them for queries
of interest, the better performance you will get.

In general, Strabon X performs well in cases of high spatial selectivity. In
Figure 6f, the response time of Strabon X is almost constant. In this case a
plan similar to plan A is selected, with the variation that the spatial index is
not utilized for the evaluation of the spatial predicate. This decision would be
correct only for queries with high spatial selectivity. The effect of this plan is
more visible in Figure 6h, where the large number of intermediate results prevent
the system to utilize its caches, resulting in constant, yet high response times.

10
0

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

10
6

re
s
p
o
n
s
e
 t
im

e
 [
s
e
c
]

Naive
RDF3X-*

Strabon PG
Strabon X

Parliament

(a) 100 mil.,tag 1 (cold)

10
0

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

10
6

Naive

RDF3X-*

Strabon PG

Strabon X

Parliament

(b) 100 mil.,tag 1024 (cold)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

10
6

Naive

RDF3X-*

Strabon PG

Strabon X

Parliament

(c) 100 mil.,tag 1 (warm)

10
-1

10
0

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

10
6

Naive

RDF3X-*

Strabon PG

Strabon X

Parliament

(d) 100 mil.,tag 1024(warm)

10
0

10
1

10
2

10
3

10
4

10
3

10
4

10
5

10
6

re
s
p

o
n

s
e

 t
im

e
 [

s
e

c
]

number of Nodes in query region

Strabon PG2

(e) 500 mil.,tag 1 (cold)

10
0

10
1

10
2

10
3

10
3

10
4

10
5

10
6

number of Nodes in query region

(f) 500 mil.,tag 1024(cold)

10
0

10
1

10
2

10
3

10
3

10
4

10
5

10
6

number of Nodes in query region

key=1
key=2
key=4

key=16
key=32
key=64

key=128
key=256
key=512

key=1024

(g) 500 mil. (cold)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

number of Nodes in query region

(h) 500 mil.,tag 1024(warm)

Fig. 6: Response times

Regarding Parliament, although the results returned by each query posed
were correct, the fact that the response time was very high did not allow us
to execute queries using all instantiations of the query template. We instanti-
ated the query template using the extreme values of PARAM A and PARAM B and
executed them to have an indication of the system’s performance.

In all datasets used, we observe that the naive implementation has constant
performance regardless of the spatial selectivity of a query since the spatial
operator is evaluated against all bindings retrieved thus far. The baseline imple-
mentation also outperforms System X and the implementation of [3] in queries
with low thematic selectivity (value 1024) over warm caches.

In summary, Strabon PG outperforms the other implementations when
caches are warmed up. Results over cold caches are mixed, but we showed that
aggressive tuning of PostgreSQL can increase the performance of Strabon result-
ing to response times slightly better than the implementation of [3]. Nevertheless,
modifications to the optimizer of PostgreSQL are needed in order to estimate
accurately the spatial selectivity of a query to produce better plans by combining
this estimation with the thematic selectivity of the query. Given the significantly
better performance of RDF-3X over Sesame for standard SPARQL queries, an-

other open question in our work is how to go beyond [3] and modify the optimizer
of RDF-3X so that it can deal with the full stSPARQL query language.

6 Related Work

Geospatial extensions of RDF and SPARQL have been presented recently in [7,
9, 13]. An important addition to this line of research is the recent OGC candidate
standard GeoSPARQL discussed in [1] and the new version of stRDF/stSPARQL
presented in this paper. Like stRDF/stSPARQL, GeoSPARQL aims at provid-
ing a basic framework for the representation and querying of geospatial data on
the Semantic Web. The two approaches have been developed independently at
around the same time, and have concluded with very similar representational
and querying constructs. Both approaches represent geometries as literals of
an appropriate datatype. These literals may be encoded in various formats like
GML, WKT etc. Both approaches map spatial predicates and functions that sup-
port spatial analysis to SPARQL extension functions. GeoSPARQL goes beyond
stSPARQL in that it allows binary topological relations to be used as RDF prop-
erties anticipating their possible utilization by spatial reasoners (this is the topo-
logical extension and the related query rewrite extension of GeoSPARQL). In our
group, such geospatial reasoning functionality is being studied in the more gen-
eral context of “incomplete information in RDF” of which a preliminary overview
is given in [10]. Since stSPARQL has been defined as an extension of SPARQL
1.1, it goes beyond GeoSPARQL by offering geospatial aggregate functions and
update statements that have not been considered at all by GeoSPARQL. An-
other difference between the two frameworks is that GeoSPARQL imposes an
RDFS ontology for the representation of features and geometries. On the con-
trary, stRDF only asks that a specific literal datatype is used and leaves the
responsibility of developing any ontology to the users. In the future, we expect
user communities to develop more specialized ontologies that extend the basic
ontologies of GeoSPARQL with relevant geospatial concepts from their own ap-
plication domain. In summary, strictly speaking, stSPARQL and GeoSPARQL
are incomparable in terms of representational power. If we omit aggregate func-
tions and updates from stSPARQL, its features are a subset of the features
offered by the GeoSPARQL core, geometry extension and geometry topology
extension components. Thus, it was easy to offer full support in Strabon for
these three parts of GeoSPARQL.

Recent work has also considered implementation issues for geospatial exten-
sions of RDF and SPARQL. [3] presents an implementation based on RDF-3X,
which we already discussed in detail. Virtuoso provides support for the represen-
tation and querying of two-dimensional point geometries expressed in multiple
reference systems. Virtuoso models geometries by typed literals like stSPARQL
and GeoSPARQL. Vocabulary is offered for a subset of the SQL/MM standard
to perform geospatial queries using SPARQL. The open-source edition does not
incorporate these geospatial extensions. [2] introduces GeoSPARQL and the im-
plementation of a part of it in the RDF store Parliament. [2] discusses interesting

ideas regarding query processing in Parliament but does not give implementa-
tion details or a performance evaluation. A more detailed discussion of current
proposals for adding geospatial features to RDF stores is given in our recent sur-
vey [8]. None of these proposals goes beyond the expressive power of stSPARQL
or GeoSPARQL discussed in detail above.

7 Conclusions and Future Work

We presented the new version of the data model stRDF and the query language
stSPARQL, the system Strabon which implements the complete functionality
of stSPARQL (and, therefore, a big subset of GeoSPARQL) and an experimen-
tal evaluation of Strabon. Future work concentrates on experiments with even
larger datasets, comparison of Strabon with other systems such as Virtuoso, and
stSPARQL query processing in the column store MonetDB.

References

1. Open Geospatial Consortium. OGC GeoSPARQL - A geographic query language
for RDF data. OGC Candidate Implementation Standard (02 2012)

2. Battle, R., Kolas, D.: Enabling the Geospatial Semantic Web with Parliament and
GeoSPARQL. In: Semantic Web Interoperability, Usability, Applicability (2011)

3. Brodt, A., Nicklas, D., Mitschang, B.: Deep integration of spatial query processing
into native RDF triple stores. In: ACM SIGSPATIAL (2010)

4. Cohn, A., Bennett, B., Gooday, J., Gotts, N.: Qualitative Spatial Representation
and Reasoning with the Region Connection Calculus. Geoinformatica (1997)

5. Egenhofer, M.J.: A Formal Definition of Binary Topological Relationships. In:
FODO. LNCS, vol. 367, pp. 457–472. Springer (1989)

6. Gutierrez, C., Hurtado, C., Vaisman, A.: Introducing Time into RDF. IEEE Trans.
Knowl. Data Eng. 19(2), 207–218 (2007)

7. Kolas, D., Self, T.: Spatially Augmented Knowledgebase. In: ISWC/ASWC (2007)
8. Koubarakis, M., Karpathiotakis, M., Kyzirakos, K., Nikolaou, C., Sioutis, M.: Data

Models and Query Languages for Linked Geospatial Data. LNCS, vol. 7487, pp.
291–328. Springer (2012)

9. Koubarakis, M., Kyzirakos, K.: Modeling and Querying Metadata in the Semantic
Sensor Web: The Model stRDF and the Query Language stSPARQL. In: ESWC.
pp. 425–439 (2010)

10. Koubarakis, M., Kyzirakos, K., Karpathiotakis, M., Nikolaou, C., Sioutis, M., Vas-
sos, S., Michail, D., Herekakis, T., Kontoes, C., Papoutsis, I.: Challenges for Qual-
itative Spatial Reasoning in Linked Geospatial Data. In: BASR 2011

11. Koubarakis, M., Kyzirakos, K., Nikolaou, B., Sioutis, M., Vassos, S.: A data
model and query language for an extension of RDF with time and space. Del.
2.1, TELEIOS

12. Kuper, G., Ramaswamy, S., Shim, K., Su, J.: A Constraint-based Spatial Extension
to SQL. In: ACM-GIS. pp. 112–117 (1998)

13. Perry, M.: A Framework to Support Spatial, Temporal and Thematic Analytics
over Semantic Web Data. Ph.D. thesis, Wright State University (2008)

14. Picalausa, F., Vansummeren, S.: What are real SPARQL queries like? In: Interna-
tional Workshop on Semantic Web Information Management (2011)

