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Symmetric ciphers

A typical cryptosystem

Plaintext
Encryption

Ciphertext
Decryption

Plaintext
� � �

Sender Receiver

� �

�

Encryption Key Decryption Key

Eavesdropper

Symmetric cryptography

Encryption Key = Decryption Key

The key is only shared between the two parties

Two types of symmetric ciphers

Stream ciphers

Block ciphers
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Stream ciphers

Typical Case: Binary additive stream cipher
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Suitable in environments characterized by a limited computing power

or memory, and the need to encrypt at high speed

The seed of the keystream generators constitutes the secret key

Security depends on

Pseudorandomness of the keystram ki

Properties of the underlying functions in the keystream generator
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Block ciphers

Typical Case: Electronic Codebook Mode (ECB)

Plaintext

. . . Block Mi−1 Block Mi Block Mi+1
. . .

?

Encryption

E

-
Key K

?
. . . Block Ci−1 Block Ci Block Ci+1

. . .

Ciphetext

Encryption on a per-block basis (typical block size: 128 bits)

The encryption function E performs key-dependent substitutions

and permutations (Shannon’s principles)

Security depends on

Generation of the sub-keys used in E

Properties of the underlying functions of E

5/26 N. Kolokotronis, K. Limniotis On the computation of best 2nd–order approximations of functions



Introduction Boolean functions 2nd–order nonlinearity Summary Talk Outline Encryption algorithms

A common approach for block and stream ciphers

Despite their differences, a common study is needed for their

building blocks (multi-output and single-output Boolean functions

respectively)

The attacks in block ciphers are, in general, different from the

attacks in stream ciphers and vice versa. However:

For both cases, almost the same cryptographic criteria of functions

should be in place

Challenges:

There are tradeoffs between several cryptographic criteria

The relationships between several criteria are still unknown

Constructing functions satisfying all the main criteria is still an open

problem
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Boolean Functions

A Boolean function f on n variables is a mapping from Fn
2 onto F2

The vector f =
(
f(0, 0, . . . , 0), f(1, 0, . . . , 0), . . . , f(1, 1, . . . , 1)

)
of

length 2n is the truth table of f

The Hamming weight of f is denoted by wt(f)
f is balanced if and only if wt(f) = 2n−1

The support supp(f) of f is the set {b ∈ Fn
2 : f(b) = 1}

Example: Truth table of balanced f with n = 3

x1 0 1 0 1 0 1 0 1
x2 0 0 1 1 0 0 1 1
x3 0 0 0 0 1 1 1 1

f(x1, x2, x3) 0 1 0 0 0 1 1 1

A vectorial Boolean function f on n variables is a mapping from Fn
2 onto

Fm
2 , m > 1
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Algebraic Normal Form and degree of functions

Algebraic Normal Form (ANF) of f :

f(x) =
∑

v∈Fn
2

avx
v, where xv =

n∏

i=1

xvi
i

.

The sum is performed over F2 (XOR addition)

The degree deg(f) of f is the highest number of variables that

appear in a product term in its ANF.

If deg(f) = 1, then f is called affine function

If, in addition, the constant term is zero, then the function is called

linear

In the previous example: f(x1, x2, x3) = x1x2 + x2x3 + x1.

deg(f) = 2
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Univariate representation of Boolean functions

Fn
2 is isomorphic to the finite field F2n ,

⇒ Any function f ∈ Bn can also be represented by a univariate

polynomial, mapping F2n onto F2, as follows

f(x) =
2n−1∑

i=0

βix
i

where β0, β2n−1 ∈ F2 and β2i = β2
i ∈ F2n for 1 ≤ i ≤ 2n − 2

The coefficients of the polynomial determine the Discrete Fourier

Transform of f

The degree of f can be directly deduced by the univariate

representation

The univariate representation is more convenient in several cases
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Walsh transform

Definition

The Walsh transform χ̂f (a) at a ∈ Fn
2 of f : Fn

2 → F2 is

χ̂f (a) =
∑

x∈ Fn
2

(−1)f(x)+axT

= 2n − 2 wt(f + φa)

where φa(x) = axT = a1x1 + · · ·+ anxn

Computational complexity: O(n2n) (via fast Walsh transform)

Parseval’s theorem:
∑

a∈ Fn
2
χ̂f (a)2 = 22n
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Linear approximation attacks

Cryptographic functions need to be balanced, as well as of high

degree

The maximum possible degree of a balanced Boolean function with

n variables is n− 1

High degree though is not adequate to prevent linear cryptanalysis

(in block ciphers - Matsui, 1992) or best affine approximation

attacks (in stream ciphers - Ding et. al., 1991)

A function should not be well approximated by a linear/affine

function

Any function of degree 1 that best approximates f is a best

affine/linear approximation of f
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Example of approximation attacks

The Achterbahn cipher [Gammel-Göttfert-Kniffler,2005] (candidate in

eSTREAM project)

Stream cipher, based on a nonlinear combination generator

NLFSR 8
xn

j
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NLFSR i xi
j
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NLFSR 1
x1

j
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Boolean function f - yj

Lengths of nonlinear FSRs: 22-31

f(x1, . . . , x8) =
∑4

i=1 xi + x5x7 + x6x7 + x6x8 + x5x6x7 + x6x7x8

Johansson-Meier-Muller, 2006: cryptanalysis via the linear

approximation g(x1, . . . , x8) = x1 + x2 + x3 + x4 + x6, satisfying

wt(f + g) = 64 (p(f = g) = 3/4)
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The notion of nonlinearity

The minimum distance between f and all affine functions is the

nonlinearity of f :

nl(f) = min
l∈Bn:deg(l)=1

wt(f + l)

Relathionship with Walsh transform

nl(f) = 2n−1 − 1
2

max
a∈Fn

2

|χ̂f (a)|

⇒ Nonlinearity is computed via the Fast Walsh Transform

High nonlinearity is prerequisite for thwarting attacks based on affine

(linear) approximations
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Known results on nonlinearity of Boolean functions

For even n, the maximum possible nonlinearity is 2n−1 − 2n/2−1,

achieved by the so-called bent functions

Many constructions are known (not fully classified yet)

But bent functions are never balanced!

For odd n, the maximum possible nonlinearity is still unknown

By concatenating bent functions, we can get nonlinearity

2n−1 − 2
n−1

2 . Can we impove this?

For n ≤ 7, the answer is no

For n ≥ 15, the answer is yes (Patterson-Wiedemann, 1983 -

Dobbertin, 1995 - Maitra-Sarkar, 2002)

For n = 9, 11, 13, such functions have been found more recently

(Kavut, 2006)

Several constructions of balanced functions with high nonlinearity

exist (e.g. Dobbertin, 1995). However:

Finding the highest possible nonlinearity of balanced Boolean

functions is still an open problem
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The Maiorana-McFarland class of functions

A widely known class of functions with nice cryptographic properties

f ∈ Bk+s satisfying the following:

f(y, x) = F (y)x+ h(y), x ∈ Fk
2 , y ∈ Fs

2

F is any mapping from Fk
2 to Fs

2

h ∈ Bs

If k = s and F is a permutation over Fk
2 ⇒ f is bent (e.g. Dillon,

1974)

For injective F , if wt(F (τ)) ≥ t+ 1 for all τ ∈ Fs
2, then f is

t-resilient - i.e. resistant against correlation attacks (Camion et. al.,

1992).
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Higher-order nonlinearity

Approximating a function by a low-order function (not necessarily

linear) may also lead to cryptanalysis (Non–linear cryptanalysis -

Knudsen-1996, low-order approximation attacks - Kurosawa et. al. -

2002)

The rth order nonlinearity of a Boolean function f ∈ Bn is given by

nlr(f) = min
g∈Bn:deg(g)≤r

wt(f + g)

The rth order nonlinearity remains unknown for r > 1

Recursive lower bounds on nlr(f) (Carlet, 2008)

Specific lower and upper bounds for nl2(f) (Cohen, 1992 - Carlet,

2007)

More recent lower bounds for 2-nd order nonlinearity: Gangopadhyay

et. al. - 2010, Garg et. al. - 2011, Singh - 2011, Singh et. al. - 2013
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Problem Statement

What has been done?
rth order nonlinearity remains unknown, for r ≥ 2

No much is known regarding constructions of functions with high

r-th nonlinearity, for r ≥ 2

Even if r-th order nonlinearity is estimated, finding best r-th order

approximations is a difficult task (even for r = 2)

How do we proceed?

Link internal structure with rth order nonlinearity

Examine cubic functions of specific form

I Use of properties of the underlying quadratic functions

Use of perfect nonlinear mappings to achieve high second–order

nonlinearity

17/26 N. Kolokotronis, K. Limniotis On the computation of best 2nd–order approximations of functions



Introduction Boolean functions 2nd–order nonlinearity Summary Motivation Separable functions The Maiorana–McFarland class

Computing best 2nd–order approximations

Efficient solution for specific class of 3-rd degree functions

(Kolokotronis-Limniotis-Kalouptsidis, 2007)

The problem is appropriately reduced in computing best affine

approximation attacks of the underlying 2-nd degree sub-functions

The simplest case: There is a common variable xi in all cubic terms

of f ∈ Bn

Decompose f into quadratic f0, f1 ∈ Bn−1: f = (1 + xi)f0 + xif1

Fixing either f0 or f1, and appropriately modifying the other, gives a

best 2nd–order approximation

The problem of computing best 2nd–order approximations of cubic

functions is reduced to finding best linear approximations of

quadratic functions (which is an easy task)
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A simple example

f(x1, . . . , x5) = x1x2x4 + x2x3x5 + x1x5 + x2x3 + x3x4 + x3x5 + x3
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1 + x2 x2

f0 = x1x5 + x3x4 + x3x5︸ ︷︷ ︸
q0

+x3 f1 = x1x4 + x1x5 + x3x4︸ ︷︷ ︸
q1

Case 1: Fix f0

ξ0
f
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1 + x2 x2

f0 q0 + λx1x4 + x3x5︸ ︷︷ ︸
q0+q1

Case 2: Fix f1

ξ1
f
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1 + x2 x2

q1 + x3 + λx1x4 + x3x5︸ ︷︷ ︸
q0+q1

f1

A best linear approximaton of q2 = q0 + q1 = x1x4 + x3x5 is the

all-zeroes function. Then:

ξ0f = x1x5 + x3x4 + x3x5 + x2x3 + x3

ξ1f = x1x4 + x1x5 + x3x4 + x2x3 + x3

nl2(f) = nl(q0 + q1), where f ∈ Bn, q0 + q1 ∈ Bn−1
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Practical application

Recall Achterbahn’s combiner function:

f(x1, . . . , x8) =
4∑

i=1

xi + x5x7 + x6x7 + x6x8 + x5x6x7 + x6x7x8

x6 is common in all cubic terms

q(x) = x5x7 + x6x8 + x1 + x2 + x3 + x4 is a best 2-nd

approximation

Efficiently computed via the aforementioned procedure

All others best approximations can also be computed

wt(f + q) = 32 (p(f = q) = 7/8 > 3/4)
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Generalization of the results

Generalization to separable 3-rd degree functions

(Kolokotronis-Limniotis-Kalouptsidis, 2009)

f = f1 + · · ·+ fm where f1, . . . , fm are defined cubic terms defined

on disjoint sets of variables.

All the best 2nd–order approximations are efficiently computed

Large values of m increase 2nd–order nonlinearity

Seaparability though seems to pose a risk from a cryptographic point

of view

The first class of functions whose best 2nd–order approximations can

be efficiently found
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A case of highly nonlinear function f with nl2(f) = nl(f)

Cubic functions in the general Maiorana–McFarland class

f(x, y) = F (x)yT, (x, y) ∈ Fn
2 × Fm

2 .

F : Fn
2 → Fm

2 : quadratic vectorial Perfect Nonlinear (PN) function

All linear combinations of the m underlying Boolean functions are

bent

(Kolokotronis-Limniotis, 2012): Let f ∈ Bn+m be cubic function of

the above form, where each linear combination of the Boolean

functions of F is bent of minimal weight, and m ≤ bn
4 c. Then,

nl2(f) = 2n+m−1 − 2n/2−1(2n/2 + 2m − 1) = nl(f)

Best 2-nd order approximations are also efficiently computed

Each linear combination of the output columns of F
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Bounds on the Second Order Nonlinearity

n KL12 C08 GST10 GG11 GG09 LHG10 S11 SW09 SW11

5 6 6 – 4 5 6 1 4 4

6 12 12 15 10 10 16 10 17 8

7 28 36 30 20 32 36 19 34 16

8 56 72 60 52 64 78 64 84 62

9 120 176 120 104 166 166 128 168 124

10 360 352 378 256 331 351 330 386 248

11 720 802 756 512 768 737 661 772 496

12 1488 1604 1524 1187 1536 1536 1535 1689 1318

13 2976 3468 3048 2374 3372 3184 3071 3378 2636

14 6048 6936 7139 5296 6744 6567 6742 7172 5272

15 14112 14605 14278 10592 14336 13488 13485 14344 10544

16 28224 29210 28556 23027 28672 27608 28669 29877 24561

17 56896 60517 57112 46054 59744 56341 57341 59754 49122

18 113792 121034 122758 98304 119487 114688 119482 122888 98244

19 228480 247951 245516 196608 245760 232952 238968 245776 196488

20 489600 495902 491278 414071 491520 472273 491513 501129 431562
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Summary

Significance of our results

The second–order nonlinearity of the Maiorana–McFarland class

outer–performs the second–order nonlinearity of other known

constructions.

I This class is further strengthened in terms of cryptographic properties

Best quadratic approximations can be efficiently computed.

I Further extension of the results of [KLK-09] - non-separable cases

Concluding remarks

Constructions based on perfect nonlinear mappings seem to be the

right way to obtain functions with high first–order and second–order

nonlinearity.
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Further research

Further Research
Examine the functions considered so far via the univariate

representation

I This representation seems, in many other cases, to be more

convenient

I How the separability property is being reflected into the univariate

representation?

I Extension of the results achieved so far

Study trade offs between r–th order nonlinearity and other

cryptographic criteria
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Questions & Answers

Thank you for your attention!
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