On the computation of best second-order approximations of Boolean Functions

Nicholas Kolokotronis and Konstantinos Limniotis

Univ. of Peloponnese, Dept. of Computer Science & Tech. Email: nkolok@uop.gr

2nd Int'l Conf. on Cryptography, Network Security and Applications in the Armed Forces

April 2nd., 2014 • Hellenic Military Academy, Athens, Greece

Talk Outline

Introduction

- 2 Boolean functions
- 3 2nd-order nonlinearity

글 🕨 🖌 글

Symmetric ciphers

A typical cryptosystem

Symmetric cryptography

- Encryption Key = Decryption Key
- The key is only shared between the two parties
- Two types of symmetric ciphers
 - Stream ciphers
 - Block ciphers

Stream ciphers

Typical Case: Binary additive stream cipher

- Suitable in environments characterized by a limited computing power or memory, and the need to encrypt at high speed
- The seed of the keystream generators constitutes the secret key
- Security depends on
 - Pseudorandomness of the keystram k_i
 - Properties of the underlying functions in the keystream generator

Block ciphers

Typical Case: Electronic Codebook Mode (ECB)

- Encryption on a per-block basis (typical block size: 128 bits)
- The encryption function *E* performs key-dependent substitutions and permutations (Shannon's principles)
- Security depends on
 - Generation of the sub-keys used in ${\cal E}$
 - Properties of the underlying functions of ${\boldsymbol E}$

A common approach for block and stream ciphers

- Despite their differences, a common study is needed for their building blocks (multi-output and single-output Boolean functions respectively)
- The attacks in block ciphers are, in general, different from the attacks in stream ciphers and vice versa. However:
 - For both cases, almost the same cryptographic criteria of functions should be in place
- Challenges:
 - There are tradeoffs between several cryptographic criteria
 - The relationships between several criteria are still unknown
 - Constructing functions satisfying all the main criteria is still an open problem

Boolean Functions

- A Boolean function f on n variables is a mapping from \mathbb{F}_2^n onto \mathbb{F}_2
 - The vector $f=\big(f(0,0,\ldots,0),f(1,0,\ldots,0),\ldots,f(1,1,\ldots,1)\big)$ of length 2^n is the truth table of f
 - The Hamming weight of f is denoted by $\mathsf{wt}(f)$
 - f is balanced if and only if $wt(f) = 2^{n-1}$
 - The support $\operatorname{supp}(f)$ of f is the set $\{\boldsymbol{b} \in \mathbb{F}_2^n : f(\boldsymbol{b}) = 1\}$

Example: Truth table of balanced f with n = 3

x_1	0	1	0	1	0	1	0	1
x_2	0	0	1	1	0	0	1	1
x_3	0	0	0	0	1	1	1	1
$f(x_1, x_2, x_3)$	0	1	0	0	0	1	1	1

A vectorial Boolean function f on n variables is a mapping from \mathbb{F}_2^n onto \mathbb{F}_2^m , m>1

Algebraic Normal Form and degree of functions

• Algebraic Normal Form (ANF) of *f*:

$$f(x) = \sum_{\boldsymbol{v} \in \mathbb{F}_2^n} a_{\boldsymbol{v}} x^{\boldsymbol{v}}, \quad \text{where } x^{\boldsymbol{v}} = \prod_{i=1}^n x_i^{v_i}$$

- The sum is performed over \mathbb{F}_2 (XOR addition)
- The degree deg(f) of f is the highest number of variables that appear in a product term in its ANF.
- If $\deg(f) = 1$, then f is called affine function
 - If, in addition, the constant term is zero, then the function is called linear
- In the previous example: $f(x_1, x_2, x_3) = x_1x_2 + x_2x_3 + x_1$.

•
$$\deg(f) = 2$$

.

Univariate representation of Boolean functions

- \mathbb{F}_2^n is isomorphic to the finite field \mathbb{F}_{2^n} ,
- \Rightarrow Any function $f \in \mathbb{B}_n$ can also be represented by a univariate polynomial, mapping \mathbb{F}_{2^n} onto \mathbb{F}_2 , as follows

$$f(x) = \sum_{i=0}^{2^n - 1} \beta_i x^i$$

where $\beta_0, \beta_{2^n-1} \in \mathbb{F}_2$ and $\beta_{2i} = \beta_i^2 \in \mathbb{F}_{2^n}$ for $1 \le i \le 2^n - 2$

- The coefficients of the polynomial determine the Discrete Fourier Transform of f
- The degree of f can be directly deduced by the univariate representation
- The univariate representation is more convenient in several cases

Walsh transform

Definition

The Walsh transform $\widehat{\chi}_f(a)$ at $a \in \mathbb{F}_2^n$ of $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is

$$\widehat{\chi}_f(a) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + ax^T} = 2^n - 2\operatorname{wt}(f + \phi_a)$$

where $\phi_a(x) = ax^{\tau} = a_1x_1 + \dots + a_nx_n$

- Computational complexity: $\mathcal{O}(n2^n)$ (via fast Walsh transform)
- Parseval's theorem: $\sum_{a\,\in\,\mathbb{F}_2^n}\widehat{\chi}_f(a)^2=2^{2n}$

医子宫下子 医下

Linear approximation attacks

- Cryptographic functions need to be balanced, as well as of high degree
 - $\bullet\,$ The maximum possible degree of a balanced Boolean function with n variables is n-1
- High degree though is not adequate to prevent linear cryptanalysis (in block ciphers Matsui, 1992) or best affine approximation attacks (in stream ciphers Ding et. al., 1991)
 - A function should not be well approximated by a linear/affine function
 - Any function of degree 1 that best approximates f is a best affine/linear approximation of f

Example of approximation attacks

The Achterbahn cipher [Gammel-Göttfert-Kniffler,2005] (candidate in eSTREAM project)

• Stream cipher, based on a nonlinear combination generator

- Lengths of nonlinear FSRs: 22-31
- $f(x_1, \ldots, x_8) = \sum_{i=1}^4 x_i + x_5 x_7 + x_6 x_7 + x_6 x_8 + x_5 x_6 x_7 + x_6 x_7 x_8$
- Johansson-Meier-Muller, 2006: cryptanalysis via the linear approximation $g(x_1, \ldots, x_8) = x_1 + x_2 + x_3 + x_4 + x_6$, satisfying wt(f + g) = 64 (p(f = g) = 3/4)

The notion of nonlinearity

• The minimum distance between *f* and all affine functions is the nonlinearity of *f*:

$$\mathsf{nl}(f) = \min_{l \in \mathbb{B}_n: \deg(l) = 1} \mathsf{wt}(f + l)$$

• Relathionship with Walsh transform

$$\mathsf{nl}(f) = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}_2^n} |\widehat{\chi}_f(a)|$$

 $\bullet\,\Rightarrow$ Nonlinearity is computed via the Fast Walsh Transform

• High nonlinearity is prerequisite for thwarting attacks based on affine (linear) approximations

(E)

Known results on nonlinearity of Boolean functions

- For even n, the maximum possible nonlinearity is $2^{n-1} 2^{n/2-1}$, achieved by the so-called bent functions
 - Many constructions are known (not fully classified yet)
 - But bent functions are never balanced!
- For odd n, the maximum possible nonlinearity is still unknown
 - By concatenating bent functions, we can get nonlinearity $2^{n-1} 2^{\frac{n-1}{2}}$. Can we impove this?
 - For $n \leq 7$, the answer is no
 - For n ≥ 15, the answer is yes (Patterson-Wiedemann, 1983 -Dobbertin, 1995 - Maitra-Sarkar, 2002)
 - For n = 9, 11, 13, such functions have been found more recently (Kavut, 2006)
- Several constructions of balanced functions with high nonlinearity exist (e.g. Dobbertin, 1995). However:
 - Finding the highest possible nonlinearity of balanced Boolean functions is still an open problem

The Maiorana-McFarland class of functions

- A widely known class of functions with nice cryptographic properties
- $f \in \mathbb{B}_{k+s}$ satisfying the following:

$$f(y,x) = F(y)x + h(y), \ x \in \mathbb{F}_2^k, \ y \in \mathbb{F}_2^s$$

•
$$F$$
 is any mapping from \mathbb{F}_2^k to \mathbb{F}_2^s

•
$$h \in \mathbb{B}_s$$

- If k = s and F is a permutation over $\mathbb{F}_2^k \Rightarrow f$ is bent (e.g. Dillon, 1974)
- For injective F, if wt(F(τ)) ≥ t + 1 for all τ ∈ ℝ₂^s, then f is t-resilient - i.e. resistant against correlation attacks (Camion et. al., 1992).

Higher-order nonlinearity

- Approximating a function by a low-order function (not necessarily linear) may also lead to cryptanalysis (Non–linear cryptanalysis -Knudsen-1996, low-order approximation attacks - Kurosawa et. al. -2002)
- The *r*th order nonlinearity of a Boolean function $f \in \mathbb{B}_n$ is given by

$$\mathsf{nl}_r(f) = \min_{g \in \mathbb{B}_n: \deg(g) \leq r} \mathsf{wt}(f+g)$$

- The rth order nonlinearity remains unknown for r>1
 - Recursive lower bounds on $nl_r(f)$ (Carlet, 2008)
 - Specific lower and upper bounds for nl₂(*f*) (Cohen, 1992 Carlet, 2007)
 - More recent lower bounds for 2-nd order nonlinearity: Gangopadhyay et. al. 2010, Garg et. al. 2011, Singh 2011, Singh et. al. 2013

< 回 > < 三 > < 三 >

-

Problem Statement

What has been done?

- rth order nonlinearity remains unknown, for $r \geq 2$
- No much is known regarding constructions of functions with high r-th nonlinearity, for $r\geq 2$
- Even if r-th order nonlinearity is estimated, finding best r-th order approximations is a difficult task (even for r = 2)

How do we proceed?

- Link internal structure with rth order nonlinearity
- Examine cubic functions of specific form
 - Use of properties of the underlying quadratic functions
- Use of perfect nonlinear mappings to achieve high second-order nonlinearity

Computing best 2nd–order approximations

- Efficient solution for specific class of 3-rd degree functions (Kolokotronis-Limniotis-Kalouptsidis, 2007)
 - The problem is appropriately reduced in computing best affine approximation attacks of the underlying 2-nd degree sub-functions
- The simplest case: There is a common variable x_i in all cubic terms of $f \in \mathbb{B}_n$
- Decompose f into quadratic $f_0, f_1 \in \mathbb{B}_{n-1}$: $f = (1+x_i)f_0 + x_if_1$
- Fixing either f_0 or f_1 , and appropriately modifying the other, gives a best 2nd-order approximation
- The problem of computing best 2nd-order approximations of cubic functions is reduced to finding best linear approximations of quadratic functions (which is an easy task)

くぼう くまう くまう

A simple example

• A best linear approximaton of $q_2 = q_0 + q_1 = x_1x_4 + x_3x_5$ is the all-zeroes function. Then:

•
$$\xi_f^0 = x_1x_5 + x_3x_4 + x_3x_5 + x_2x_3 + x_3$$

• $\xi_f^1 = x_1x_4 + x_1x_5 + x_3x_4 + x_2x_3 + x_3$
 $\operatorname{nl}_2(f) = \operatorname{nl}(q_0 + q_1)$, where $f \in \mathbb{B}_n$, $q_0 + q_1 \in \mathbb{B}_{n-1}$

Practical application

• Recall Achterbahn's combiner function:

$$f(x_1, \dots, x_8) = \sum_{i=1}^{4} x_i + x_5 x_7 + x_6 x_7 + x_6 x_8 + x_5 x_6 x_7 + x_6 x_7 x_8$$

- x_6 is common in all cubic terms
- $q(x) = x_5x_7 + x_6x_8 + x_1 + x_2 + x_3 + x_4$ is a best 2-nd approximation
 - Efficiently computed via the aforementioned procedure
 - All others best approximations can also be computed

• wt
$$(f+q) = 32$$
 ($p(f=q) = 7/8 > 3/4$)

Generalization of the results

- Generalization to separable 3-rd degree functions (Kolokotronis-Limniotis-Kalouptsidis, 2009)
- $f = f_1 + \cdots + f_m$ where f_1, \ldots, f_m are defined cubic terms defined on disjoint sets of variables.
- All the best 2nd-order approximations are efficiently computed
- Large values of m increase 2nd-order nonlinearity
 - Seaparability though seems to pose a risk from a cryptographic point of view
 - The first class of functions whose best 2nd-order approximations can be efficiently found

伺 とう きょう うちょう

A case of highly nonlinear function f with $nl_2(f) = nl(f)$

Cubic functions in the general Maiorana-McFarland class

$$f(x,y) = F(x)y^{\mathsf{T}}, \qquad (x,y) \in \mathbb{F}_2^n \times \mathbb{F}_2^m.$$

• $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$: quadratic vectorial Perfect Nonlinear (PN) function

- $\bullet\,$ All linear combinations of the m underlying Boolean functions are bent
- (Kolokotronis-Limniotis, 2012): Let f ∈ B_{n+m} be cubic function of the above form, where each linear combination of the Boolean functions of F is bent of minimal weight, and m ≤ Lⁿ/₄. Then,

$$\mathsf{nl}_2(f) = 2^{n+m-1} - 2^{n/2-1}(2^{n/2} + 2^m - 1) = \mathsf{nl}(f)$$

• Best 2-nd order approximations are also efficiently computed

• Each linear combination of the output columns of ${\cal F}$

Bounds on the Second Order Nonlinearity

n	KL12	C08	GST10	GG11	GG09	LHG10	S11	SW09	SW11
5	6	6	_	4	5	6	1	4	4
6	12	12	15	10	10	16	10	17	8
7	28	36	30	20	32	36	19	34	16
8	56	72	60	52	64	78	64	84	62
9	120	176	120	104	166	166	128	168	124
10	360	352	378	256	331	351	330	386	248
11	720	802	756	512	768	737	661	772	496
12	1488	1604	1524	1187	1536	1536	1535	1689	1318
13	2976	3468	3048	2374	3372	3184	3071	3378	2636
14	6048	6936	7139	5296	6744	6567	6742	7172	5272
15	14112	14605	14278	10592	14336	13488	13485	14344	10544
16	28224	29210	28556	23027	28672	27608	28669	29877	24561
17	56896	60517	57112	46054	59744	56341	57341	59754	49122
18	113792	121034	122758	98304	119487	114688	119482	122888	98244
19	228480	247951	245516	196608	245760	232952	238968	245776	196488
20	489600	495902	491278	414071	491520	472273	491513	501129	431562

Summary

Significance of our results

- The second-order nonlinearity of the Maiorana-McFarland class outer-performs the second-order nonlinearity of other known constructions.
 - This class is further strengthened in terms of cryptographic properties
- Best quadratic approximations can be efficiently computed.
 - Further extension of the results of [KLK-09] non-separable cases

Concluding remarks

 Constructions based on perfect nonlinear mappings seem to be the right way to obtain functions with high first-order and second-order nonlinearity.

A 3 3 4

Further research

Further Research

- Examine the functions considered so far via the univariate representation
 - This representation seems, in many other cases, to be more convenient
 - How the separability property is being reflected into the univariate representation?
 - Extension of the results achieved so far
- Study trade offs between *r*-th order nonlinearity and other cryptographic criteria

Questions & Answers

Thank you for your attention!