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Symmetric ciphers

A typical cryptosystem

Plaintext
Encryption

Ciphertext
Decryption

Plaintext
� � �

Sender Receiver

� �

�

Encryption Key Decryption Key

Eavesdropper

Symmetric cryptography

Encryption Key = Decryption Key

The key is only shared between the two parties

The security rests with the secrecy of the key (Kerchoffs principle)

Two types of symmetric ciphers

Stream ciphers

Block ciphers
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Stream ciphers

Simplest Case: Binary additive stream cipher
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Suitable in environments characterized by a limited computing power

or memory, and the need to encrypt at high speed

The seed of the keystream generators constitutes the secret key

Security depends on

Pseudorandomness of the keystram ki

Properties of the underlying functions that form the keystream

generator
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The optimal cipher: one-time pad

Description

If M = m1m2 . . .mn, then k = k1k2 . . . kn satisfying

k is trully random

k is aperiodic

For each different message, we use different key

Encryption: ci = mi ⊕ ki, i = 1, 2, . . . , n

Decryption: mi = ci ⊕ ki, i = 1, 2, . . . , n

Such cipher is perfectly secure (Claude Shannon - 1949)

p(M |C) = p(M) for any pair M,C

However both randomness as well as aperiodicity can not be ensured

in a realistic model

Designing of stream ciphers strives to resemble the one-time pad
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Classical Keystream Generators

nonlinear filter function g

xi+n−1 xi+n−2 · · ·

· · ·

xi

output sequence
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(a) Nonlinear filter generator

LFSR 1

LFSR 2

...

LFSR n

�
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f �
output sequence

the N LFSRs are pairwise different,
of different lengths

(b) Nonlinear combiner generator

Unpredictability of

keystreams is ensured by

appropriately choosing the

underlying Boolean functions

If these functions though do

not satisfy certain properties,

the system may be

vulnerable to attacks

More recently, nonlinear

FSRs are preferred (although

their mathematics are not

well-known)
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Known stream ciphers

RC4

Used in WEP, WPA, SSL/TLS

A5/1

Used in mobile telephony (GSM)

E0

Used in Bluetooth protocol

eStream project (2004–2008): Effort to promote the design of efficient

and compact stream ciphers suitable for widespread adoption.

Finalists:

Software implementation: HC-128, Rabbit, Salsa20/12,

SOSEMANUK

Hardware implementation: Grain v1, MICKEY 2.0, Trivium
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Block ciphers

Simplest Case: Electronic Codebook Mode (ECB)
Plaintext

. . . Block Mi−1 Block Mi Block Mi+1
. . .

?

Encryption

E

-
Key K

?
. . . Block Ci−1 Block Ci Block Ci+1

. . .

Ciphetext

Encryption on a per-block basis (typical block size: 128 bits)

The encryption function E performs key-dependent substitutions

and permutations (Shannon’s principles)

Security depends on

Generation of the sub-keys used in E

Properties of the underlying functions of E
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The encryption function E in a block cipher

Iterative structure

Several rounds occur

A sub-key is being used in each round

The round function f performs substitution and permutations, via

multi-output Boolean functions (S-boxes, P-boxes)

S-boxes and P-boxes provide the cryptographic properties of diffusion

and confusion respectively (Claude Shannon - 1949)
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Known block ciphers

Advanced Encryption Standard (AES)

NIST’s standard since 2001 (initial submission: Rijndael cipher)

Supported key lengths: 128, 192, 256 bits

Widespread adoption (SSL/TLS, IPSec, commercial products,...)

Data Encryption Standard (DES)

The predecessor of AES (1976-1996)

Official withdrawing: 2004 (although it is still being met today)

Key size: 56 bits (actually, the only flaw of the algorithm)

3DES

Modification of DES, to use key of 112 or 168 bit length

Still in use today - although not very efficient

Other block ciphers: IDEA, MARS, RC6, Serpent, Twofish
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A common approach for block and stream ciphers

Despite their differences, a common study is needed for their

building blocks (multi-output and single-output Boolean functions

respectively)

The attacks in block ciphers are, in general, different from the

attacks in stream ciphers and vice versa. However:

For both cases, almost the same cryptographic criteria of functions

should be in place

Challenges:

There are tradeoffs between several cryptographic criteria

The relationships between several criteria are still unknown

Constructing functions satisfying all the main criteria is still an open

problem
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Boolean Functions

A Boolean function f on n variables is a mapping from Fn
2 onto F2

The vector f =
(
f(0, 0, . . . , 0), f(1, 0, . . . , 0), . . . , f(1, 1, . . . , 1)

)
of

length 2n is the truth table of f

The Hamming weight of f is denoted by wt(f)
f is balanced if and only if wt(f) = 2n−1

The support supp(f) of f is the set {b ∈ Fn
2 : f(b) = 1}

Example: Truth table of balanced f with n = 3

x1 0 1 0 1 0 1 0 1
x2 0 0 1 1 0 0 1 1
x3 0 0 0 0 1 1 1 1

f(x1, x2, x3) 0 1 0 0 0 1 1 1

A vectorial Boolean function f on n variables is a mapping from Fn
2 onto

Fm
2 , m > 1
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Algebraic Normal Form and degree of functions

Algebraic Normal Form (ANF) of f :

f(x) =
∑

v∈Fn
2

avx
v, where xv =

n∏

i=1

xvi
i

.

The sum is performed over F2 (XOR addition)

The degree deg(f) of f is the highest number of variables that

appear in a product term in its ANF.

If deg(f) = 1, then f is called affine function

If, in addition, the constant term is zero, then the function is called

linear

In the previous example: f(x1, x2, x3) = x1x2 + x2x3 + x1.

deg(f) = 2

K. Limniotis Cryptograpchic properties of Boolean functions 13/39



Talk overview
Introduction - Definitions

Properties of cryptographic functions
Conclusions

Preliminaries
Correlation immunity
Nonlinearity
Algebraic immunity

Univariate representation of Boolean functions

Fn
2 is isomorphic to the finite field F2n ,

⇒ Any function f ∈ Bn can also be represented by a univariate

polynomial, mapping F2n onto F2, as follows

f(x) =
2n−1∑

i=0

βix
i

where β0, β2n−1 ∈ F2 and β2i = β2
i ∈ F2n for 1 ≤ i ≤ 2n − 2

The coefficients of the polynomial determine the Discrete Fourier

Transform of f

The degree of f can be directly deduced by the univariate

representation

The univariate representation is more convenient in several cases
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Walsh transform

Definition

The Walsh transform χ̂f (a) at a ∈ Fn
2 of f : Fn

2 → F2 is

χ̂f (a) =
∑

x∈ Fn
2

(−1)f(x)+axT

= 2n − 2 wt(f + φa)

where φa(x) = axT = a1x1 + · · ·+ anxn

Computational complexity: O(n2n) (via fast Walsh transform)

Parseval’s theorem:
∑

a∈ Fn
2
χ̂f (a)2 = 22n
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Correlation immunity

If the output of a Boolean function f is correlated to at least one of

its inputs, then it is vulnerable to correlation attacks (Siegenthaler,

1984).

The f ∈ Bn is t-th correlation immune if it is not correlated with

any t-subset of {x1, . . . , xn}; namely if

Pr(f(x) = 0|xi1 = bi1 , . . . , xit
= bit) = Pr(f(x) = 0)

for any t positions xi1 , . . . , xit
and any bi1 , . . . , bit

∈ F2

If a t-th order correlation immune function is also balanced, then it

is called t-th order resilient.
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Properties of correlation immunity

Siegenthaler, 1984: A known trade-off: If f is k-th order resilient for

1 ≤ k ≤ n− 2, then deg(f) ≤ n− k − 1.

Xiao-Massey, 1988: A function f ∈ Bn is t-th order correlation

immune iff its Walsh transform satisfies

χ̂f (a) = 0,∀ 1 ≤ wt(a) ≤ t

Note that f is balanced iff χ̂f (0) = 0.

⇒ A function f ∈ Bn is t-th order resilient iff its Walsh transform

satisfies χ̂f (a) = 0,∀ 0 ≤ wt(a) ≤ t

Siegenthaler also proposed a recursive procedure to construct m-th

order resilient Boolean functions, for any desired m, with the

maximum possible degree

Several other constructions are currently known
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Linear approximation attacks

Cryptographic functions need to be balanced, as well as of high

degree

The maximum possible degree of a balanced Boolean function with

n variables is n− 1

High degree though is not adequate to prevent linear cryptanalysis

(in block ciphers - Matsui, 1992) or best affine approximation

attacks (in stream ciphers - Ding et. al., 1991)

A function should not be well approximated by a linear/affine

function

Any function of degree 1 that best approximates f is a best

affine/linear approximation of f
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Example of approximation attacks

The Achterbahn cipher [Gammel-Göttfert-Kniffler,2005] (candidate in

eSTREAM project)

NLFSR 8
xn

j

�
�
��.

.

.

NLFSR i xi
j
-

.

.

.

NLFSR 1
x1

j

@
@
@R

Boolean function f - yj

Lengths of nonlinear FSRs: 22-31

f(x1, . . . , x8) =
∑4

i=1 xi + x5x7 + x6x7 + x6x8 + x5x6x7 + x6x7x8

Johansson-Meier-Muller, 2006: cryptanalysis via the linear

approximation g(x1, . . . , x8) = x1 + x2 + x3 + x4 + x6, satisfying

wt(f + g) = 64 (p(f = g) = 3/4)
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The notion of nonlinearity

The minimum distance between f and all affine functions is the

nonlinearity of f :

nl(f) = min
l∈Bn:deg(l)=1

wt(f + l)

Relathionship with Walsh transform

nl(f) = 2n−1 − 1
2

max
a∈Fn

2

|χ̂f (a)|

⇒ Nonlinearity is computed via the Fast Walsh Transform

High nonlinearity is prerequisite for thwarting attacks based on affine

(linear) approximations
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Known results on nonlinearity of Boolean functions

For even n, the maximum possible nonlinearity is 2n−1 − 2n/2−1,

achieved by the so-called bent functions

Many constructions are known (not fully classified yet)

But bent functions are never balanced!

For odd n, the maximum possible nonlinearity is still unknown
By concatenating bent functions, we can get nonlinearity

2n−1 − 2
n−1

2 . Can we impove this?

For n ≤ 7, the answer is no

For n ≥ 15, the answer is yes (Patterson-Wiedemann, 1983 -

Dobbertin, 1995 - Maitra-Sarkar, 2002)

For n = 9, 11, 13, such functions have been found more recently

(Kavut, 2006)

Several constructions of balanced functions with high nonlinearity

exist (e.g. Dobbertin, 1995). However:

Finding the highest possible nonlinearity of balanced Boolean

functions is still an open problem
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Nonlinearity and correlation immunity

If f ∈ Bn is m-th order resilient, then nl(f) ≤ 2n−1 − 2m+1

(Sarkar-Maitra, 2000)

If the upper bound is achieved, the Walsh transform takes 3 values

For n even, the best possible nonlinearity is 2n−1 − 2n/2−1 (bent

functions)

If f ∈ Bn is m-th order resilient, n even, with m ≤ n/2− 2, then

nl(f) ≤ 2n−1 − 2n/2−1 − 2m+1

For n odd, the maximum possible nonlinearity nlmax is unknown

The above bound holds if 2m+1 ≤ 2n−1 − nlmax
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The Maiorana-McFarland class of functions

A widely known class of functions with nice cryptographic properties

f ∈ Bk+s satisfying the following:

f(y, x) = F (y)x+ h(y), x ∈ Fk
2 , y ∈ Fs

2

F is any mapping from Fk
2 to Fs

2

h ∈ Bs

If k = s and F is a permutation over Fk
2 ⇒ f is bent (e.g. Dillon,

1974)

For injective F , if wt(F (τ)) ≥ t+ 1 for all τ ∈ Fs
2, then f is

t-resilient (Camion et. al., 1992).
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Higher-order nonlinearity

Approximating a function by a low-order function (not necessarily

linear) may also lead to cryptanalysis (Non–linear cryptanalysis -

Knudsen-1996, low-order approximation attacks - Kurosawa et. al. -

2002)

The rth order nonlinearity of a Boolean function f ∈ Bn is given by

nlr(f) = min
g∈Bn:deg(g)≤r

wt(f + g)

The rth order nonlinearity remains unknown for r > 1
Recursive lower bounds on nlr(f) (Carlet, 2008)

Specific lower and upper bounds for nl2(f) (Cohen, 1992 - Carlet,

2007)

More recent lower bounds for 2-nd order nonlinearity: Gangopadhyay

et. al. - 2010, Garg et. al. - 2011, Singh - 2011, Singh et. al. - 2013
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Computing best low order approximations

Computing even the best 2-nd order approximations is a difficult

task

Efficient solution for specific class of 3-rd degree functions

(Kolokotronis-Limniotis-Kalouptsidis, 2009)

The problem is appropriately reduced in computing best affine

approximation attacks of the underlying 2-nd degree sub-functions

For the Achterbahn’s combiner function:

q(x) = x5x7 +x6x8 +x1 +x2 +x3 +x4 is a best 2-nd approximation

wt(f + q) = 32 (p(f = q) = 7/8 > 3/4)

No much is known regarding constructions of functions with high

r-th nonlinearity, for r ≥ 2
Even if a high lower bound on the nonlinearity is proved, best r-th

order approximations can not be computed
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A case of highly nonlinear function f with nl2(f) = nl(f)

Cubic functions in the general Maiorana–McFarland class

f(x, y) = F (x)yT, (x, y) ∈ Fn
2 × Fm

2 .

F : Fn
2 → Fm

2 : quadratic vectorial Perfect Nonlinear (PN) function

All linear combinations of the m underlying Boolean functions are

bent

(Kolokotronis-Limniotis, 2012): Let f ∈ Bn+m be cubic function of

the above form, where each linear combination of the Boolean

functions of F is bent of minimal weight, and m ≤ bn
4 c. Then,

nl2(f) = 2n+m−1 − 2n/2−1(2n/2 + 2m − 1) = nl(f)

Best 2-nd order approximations are also efficiently computed
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More recent attacks: Algebraic attacks

Milestones

Algebraic attacks (Courtois-Meier, 2003)

Fast algebraic attacks (Courtois, 2003)

The basic idea is to reduce the degree of the mathematical

equations employing the secret key

Known cryptographic Boolean functions failed to thwart these

attacks

Some applications of algebraic attacks

Six rounds of DES, with only one known plaintext (Courtois-Bard,

2006)

Keeloq block cipher (Courtois-Bard-Wagner, 2008)

Hitag2 stream cipher (Courtois et. al., 2009)

K. Limniotis Cryptograpchic properties of Boolean functions 27/39



Talk overview
Introduction - Definitions

Properties of cryptographic functions
Conclusions

Preliminaries
Correlation immunity
Nonlinearity
Algebraic immunity

Algebraic attacks

Example

Stream cipher based on a nonlinear filter generator
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ki = f(Li(x0, x1, . . . , xN−1)) - the filter function f has high degree

Assume that there exists g ∈ Bn of low degree such that f ∗ g = h,

where h is also of low degree. Then,

kig(Li(x0, x1, . . . , xN−1)) = h(Li(x0, x1, . . . , xN−1))

Several other proper choices of g, h may also reduce the degree of

the system
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An example: The Toyocrypt cipher

A submission to a Japanese government call
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The nonlinear filter function is

f(x1, . . . , x128) = q(x1, . . . , x128) + x10x23x32x42 +
62∏

i=1

xi+

+ x1x2x9x12x18x20x23x25x26x28x33x38x41x42x51x53x59

where deg(q) = 2.

By multiplying f with the affine functions 1 + x23 or 1 + x42, we get

two functions of degree only 3
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How to proceed with algebraic attacks

Once the degree of the equations have been reduced, several

algebraic techniques have been proposed for solving the (still

nonlinear) system:

Linearization of the system

Use of Gröbner bases

More specific techniques: XL, XSL

Hence, the core of the algebraic attacks is the transformation of the

initial system to a new one having low degree
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Annihilators and algebraic immunity

Definition
Given f ∈ Bn, we say that g ∈ Bn is an annihilator of f if and only if g

lies in the set

AN (f) = {g ∈ Bn : f ∗ g = 0}

Definition

The algebraic immunity AIn(f) of f ∈ Bn is defined by

AIn(f) = min
g 6=0
{deg(g) : g ∈ AN (f) ∪ AN (f + 1)}

A high algebraic immunity is prerequisite for preventing algebraic

attacks (Meier-Pasalic-Carlet, 2004)

Well-known upper bound: AIn(f) ≤ dn
2 e
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Algebraic immunity and nonlinearity

Carlet et. al., 2006: nlr(f) ≥∑AIn(f)−r−1
i=0

(
n
i

)

Low nonlinearity implies low algebraic immunity

Especially for r = 1 (Lobanov, 2005): nl(f) ≥ 2
∑AIn(f)−2

i=0

(
n−1

i

)

Mesnager, 2008: Improvements one the above bounds:

nlr(f) ≥
AIn(f)−r−1∑

i=0

(
n
i

)
+

AIn(f)−r−1∑

i=AIn(f)−2r

(
n−r

i

)
,

Rizomiliotis, 2010: Further improvements

The notion of complementary algebraic immunity is defined

AIn(f) , max{ min
deg(g)

{f ∗ g = 0}, min
deg(g)

{(f + 1) ∗ g = 0}}

K. Limniotis Cryptograpchic properties of Boolean functions 32/39



Talk overview
Introduction - Definitions

Properties of cryptographic functions
Conclusions

Preliminaries
Correlation immunity
Nonlinearity
Algebraic immunity

Fast algebraic attacks

Consider again the filter generator: ki = f(Li(x0, x1, . . . , xN−1))

Assume that there exists a low degree g ∈ Bn such that h = f ∗ g is

of reasonable degree. Then again,

kig(Li(x0, x1, . . . , xN−1)) = h(Li(x0, x1, . . . , xN−1))

There exists a linear combination of the first
∑deg(h)

i=0

(
N
i

)
equations

that sum the right-hand part to zero ⇒ We get one equation of

degree at most deg(g)

Comparison with conventional algebraic attacks

g+ h ∈ AN (f)⇒ the degree of g+ h may be greater than AIn(f),

Maximum AI does not imply resistance to fast algebraic attacks

But: Knowledge of consecutive keystream bits is required
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Fast Algebraic Immunity

Known result: For any pair of integers (e, d) such that e+ d ≥ n, there

exists a nonzero function g of degree at most e such that f ∗ g has

degree at most d.

Definition

The fast algebraic immunity FAIn(f) of f ∈ Bn is defined by

FAIn(f) = min
1≤deg(g)≤AIn(f)

{2 AIn(f),deg(g) + deg(f ∗ g)}

Upper bound: FAIn(f) ≤ n
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Constructions of functions with maximum AI

Dalai-Maitra-Sarkar, 2006: Majority function

For even n, a slight modification of the majority function also

preserves maximum AI

Carlet-Dalai-Gupta-Maitra-Sarkar, 2006: Iterative construction

Li-Qi, 2006: Modification of the majority function

Sarkar-Maitra, 2007: Rotation Symmetric functions of odd n

Carlet, 2008: Based on properties of affine subspaces

Further investigation in Carlet-Zeng-Li-Hu, 2009

Generalization (for odd n) in Limniotis-Kolokotronis-Kalouptsidis,

2011

Balanceness and/or high nonlinearity are not always attainable,

whereas their fast algebraic immunity remains unknown
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The Carlet-Feng construction

Carlet-Feng, 2008: supp(f) = {0, 1, α, α2, . . . , α2n−1−2}, where α a

primitive element of the finite field F2n .

Degree n− 1 (i.e. the maximum possible)

High (first-order) nonlinearity is ensured

Best currently known lower bound (Tang et. al., 2013:)

nl(f) ≥ 2n−1 − (
n ln(2)

π
+ 0.74)2n/2 − 1

Experiments show that the actual values of nonlinearities may be

higher enough

Optimal against fast algebraic attacks, as subsequently shown

(Liu-Zhang-Lin, 2012)
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Generalizations of Carlet-Feng construction

Rizomiliotis, 2010: A new construction based on the univariate

representation

For odd n, it is affine equivalent to the Carlet-Feng construction

Zeng-Carlet-Shan-Hu, 2011: Modifications of the Rizomiliotis

construction

Further generalizations in Limniotis-Kolokotronis-Kalouptsidis, 2013:

Finding swaps between supp(f) and supp(f + 1) that preserve

maximum AI

Via solving a system of linear equations, with upper-triangular

coefficient matrix

Each nonzero entry in the solution vector indicates a swapping
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Conclusions - Open problems

Evaluation of known families of cryptographic functions in terms of

resistance against (fast) algebraic attacks

Construction of functions with maximum (fast) algebraic immunity

Much progress on constructing functions with maximum AI, but the

case of maximum FAI is much more difficult

High r-th order nonlinearity, for r > 1, has not been studied at all

Relationships between (fast) algebraic immunity and correlation

immunity

A preliminary result is only known (Limniotis, 2013)

Improve our knowledge regarding relationships between AI and nl

Nonlinear FSRs (or other nonlinear structures) have not been

studied to the same extent w.r.t. algebraic attacks
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Questions & Answers

Thank you for your attention!
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