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Introduction - Definitions

Symmetric ciphers

A typical cryptosystem

Encryption Key Decryption Key
Plaintext Ciphertext Plaintext
— | Encryption Decryption ~ f————»
*
I .
Sender ! Receiver
Eavesdropper

Symmetric cryptography
@ Encryption Key = Decryption Key
@ The key is only shared between the two parties
o The security rests with the secrecy of the key (Kerchoffs principle)

Two types of symmetric ciphers
@ Stream ciphers

@ Block ciphers

K. Limniotis Cryptograpchic properties of Boolean functions



Symmetric ciphers
tream ciphers
B iphers

Introduction - Definitions

Stream ciphers

Simplest Case: Binary additive stream cipher

Transmitter Receiver
Keystream Keystream
Generator Generator
l{,‘ k,'
m; c=m; Dk; Ci m; =c¢ Dk;

@ Suitable in environments characterized by a limited computing power
or memory, and the need to encrypt at high speed
@ The seed of the keystream generators constitutes the secret key
@ Security depends on
o Pseudorandomness of the keystram k;
o Properties of the underlying functions that form the keystream
generator
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Introduction - Definitions

The optimal cipher: one-time pad

Description
o If M =myms...my, then k = k1ks ...k, satisfying
e k is trully random
o k is aperiodic

o For each different message, we use different key

Encryption: ¢, =m; ®k;, it =1,2,....n

Decryption: m; =¢; @ k;, i =1,2,...,n

Such cipher is perfectly secure (Claude Shannon - 1949)
e p(M|C) = p(M) for any pair M,C

However both randomness as well as aperiodicity can not be ensured

in a realistic model

Designing of stream ciphers strives to resemble the one-time pad

K. Limniotis Cryptograpchic properties of Boolean functions



Symmetric ciphers
Stream ciphers
B

Introduction - Definitions

ciphers

Classical Keystream Generators

@ Unpredictability of

keystreams is ensured by
appropriately choosing the

underlying Boolean functions

nonlinear filter function g S+ oulput sequence

@ If these functions though do

(a) Nonlinear filter generator

not satisfy certain properties,

the system may be

vulnerable to attacks

P .

: output sequence @ More recently, nonlinear

i the N LFSRs are pairwise different, FSRs are preferred (although
of different lengths

their mathematics are not
(b) Nonlinear combiner generator

well-known)
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Introduction - Definitions

Known stream ciphers

e RC4

o Used in WEP, WPA, SSL/TLS
e A5/1

o Used in mobile telephony (GSM)
e EO

o Used in Bluetooth protocol

eStream project (2004-2008): Effort to promote the design of efficient
and compact stream ciphers suitable for widespread adoption.
o Finalists:

o Software implementation: HC-128, Rabbit, Salsa20/12,
SOSEMANUK
o Hardware implementation: Grain vl, MICKEY 2.0, Trivium
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Symmetric ciphe
Stream
Block ciphers

Introduction - Definitions

Block ciphers

Simplest Case: Electronic Codebook Mode (ECB)

Plaintext
‘ Block M;_, ‘ ‘ Block M, ‘ ‘ Block M., ‘
Key K
— | Encryption
E
‘ Block C;_, ‘ ‘ Block C; ‘ Block Cipy
Ciphetext

@ Encryption on a per-block basis (typical block size: 128 bits)
@ The encryption function E performs key-dependent substitutions
and permutations (Shannon's principles)
@ Security depends on
o Generation of the sub-keys used in E
o Properties of the underlying functions of
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Introduction - Definitions

The encryption function E in a block cipher

@ lterative structure
e Several rounds occur
@ A sub-key is being used in each round
@ The round function f performs substitution and permutations, via
multi-output Boolean functions (S-boxes, P-boxes)
o S-boxes and P-boxes provide the cryptographic properties of diffusion
and confusion respectively (Claude Shannon - 1949)
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Known block ciphers

Advanced Encryption Standard (AES)
e NIST'’s standard since 2001 (initial submission: Rijndael cipher)
o Supported key lengths: 128, 192, 256 bits
o Widespread adoption (SSL/TLS, IPSec, commercial products,...)
Data Encryption Standard (DES)
e The predecessor of AES (1976-1996)
o Official withdrawing: 2004 (although it is still being met today)
o Key size: 56 bits (actually, the only flaw of the algorithm)
e 3DES
o Modification of DES, to use key of 112 or 168 bit length

o Still in use today - although not very efficient

Other block ciphers: IDEA, MARS, RC6, Serpent, Twofish
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Introduction - Definitions

A common approach for block and stream ciphers

@ Despite their differences, a common study is needed for their
building blocks (multi-output and single-output Boolean functions
respectively)

@ The attacks in block ciphers are, in general, different from the
attacks in stream ciphers and vice versa. However:

o For both cases, almost the same cryptographic criteria of functions
should be in place

o Challenges:

o There are tradeoffs between several cryptographic criteria

o The relationships between several criteria are still unknown

o Constructing functions satisfying all the main criteria is still an open
problem
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Properties of cryptographic functions

Boolean Functions

A Boolean function f on n variables is a mapping from F5 onto Fy
e The vector f = (f(0,0,...,0), f(1,0,...,0),..., f(1,1,...,1)) of
length 2™ is the truth table of f
@ The Hamming weight of f is denoted by wt(f)
o fis balanced if and only if wt(f) =2""!

@ The support supp(f) of f is the set {b € F} : f(b) = 1}
Example: Truth table of balanced f with n =3

T 01010101
T 00110011
T3 000071111
f(ry,20,23) |0 1. 0 0 0 1 1 1

A vectorial Boolean function f on n variables is a mapping from FJ onto

5, m > 1
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Prel es

Cor immunity
Properties of cryptographic functions Nonline:

- ic immunity

Algebraic Normal Form and degree of functions

o Algebraic Normal Form (ANF) of f:

n
f(z) = Z ayxz®, where ¥ = H:Ef
i=1

velFy

o The sum is performed over Fo (XOR addition)
@ The degree deg(f) of f is the highest number of variables that
appear in a product term in its ANF.
o If deg(f) =1, then f is called affine function

o If, in addition, the constant term is zero, then the function is called

linear
@ In the previous example: f(x1,z2,23) = 122 + Toxs + 1.

o deg(f) =2
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Properties of cryptographic functions

Univariate representation of Boolean functions

e F7 is isomorphic to the finite field Fon,

@ = Any function f € B,, can also be represented by a univariate
polynomial, mapping Fo» onto Fs, as follows

2r -1
flx) = Z Biz*
i=0

where Gy, Oon_1 € Fo and [y = ﬁf €Fyn for1 <¢<2™—2

@ The coefficients of the polynomial determine the Discrete Fourier
Transform of f

@ The degree of f can be directly deduced by the univariate
representation

@ The univariate representation is more convenient in several cases
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Properties of cryptographic functions

Walsh transform

Definition
The Walsh transform Xs(a) at a € F5 of f:Fy — Fy is
Rela)= D (~)IrT = 9" —2wi(f + 6)

z ey

where ¢, () = ax” = a1z1 + - + apzy
o Computational complexity: O(n2") (via fast Walsh transform)

o Parseval’s theorem: 3, g Xf(a)® = 27"
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Preliminaries
Correlation immunity
Properties of cryptographic functions rit;
c immunity

Correlation immunity

@ If the output of a Boolean function f is correlated to at least one of
its inputs, then it is vulnerable to correlation attacks (Siegenthaler,
1984).

@ The f € B, is t-th correlation immune if it is not correlated with
any t-subset of {x1,...,z,}; namely if

PT(f(:B) = O‘IIJZ‘I = bi17~ cey T, = bit) = Pr(f(ac) = 0)

for any t positions x;,,...,x;, and any b;,,...,b;, € Fo

t
@ If a t-th order correlation immune function is also balanced, then it

is called t-th order resilient.
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Preliminaries
Correlation immunity
Properties of cryptographic functions

Properties of correlation immunity

@ Siegenthaler, 1984: A known trade-off: If f is k-th order resilient for
1<k<n-—2 thendeg(f) <n—k-—1.

@ Xiao-Massey, 1988: A function f € B,, is t-th order correlation
immune iff its Walsh transform satisfies

Xfla)=0,V1<wt(a) <t

o Note that f is balanced iff X7(0) = 0.
e = A function f € B, is t-th order resilient iff its Walsh transform
satisfies Xr(a) =0,V 0 < wt(a) <t
@ Siegenthaler also proposed a recursive procedure to construct m-th
order resilient Boolean functions, for any desired m, with the
maximum possible degree

@ Several other constructions are currently known
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Properties of cryptographic functions N

Linear approximation attacks

@ Cryptographic functions need to be balanced, as well as of high
degree
e The maximum possible degree of a balanced Boolean function with

n variables is n — 1

@ High degree though is not adequate to prevent linear cryptanalysis
(in block ciphers - Matsui, 1992) or best affine approximation
attacks (in stream ciphers - Ding et. al., 1991)

o A function should not be well approximated by a linear/affine
function

o Any function of degree 1 that best approximates f is a best
affine/linear approximation of f
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Properties of cryptographic functions

immunity

Example of approximation attacks

The Achterbahn cipher [Gammel-Géttfert-Kniffler,2005] (candidate in
eSTREAM project)

=
NLFSR 1 ’
NLFSR i zi— B

ion
NLFSR 8 n
Ti

@ Lengths of nonlinear FSRs: 22-31

o f(xy,...,a8) = Z?Zl T; + T5T7 + TeT7 + Ty + TsxTeXr + Tex7TS

@ Johansson-Meier-Muller, 2006: cryptanalysis via the linear
approximation g(z1,...,2s) = x1 + 2 + x3 + x4 + ¢, satisfying
wi(f +g) =64 (p(f = g) = 3/4)
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Properties of cryptographic functions

The notion of nonlinearity

@ The minimum distance between f and all affine functions is the
nonlinearity of f:

I = i t l
ni(f) ze&fgég(z)ﬂw (F+0)

@ Relathionship with Walsh transform

1

nl(f) = 27" — 5 max [g;(a)
acly

o = Nonlinearity is computed via the Fast Walsh Transform

@ High nonlinearity is prerequisite for thwarting attacks based on affine
(linear) approximations
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Properties of cryptographic functions

Known results on nonlinearity of Boolean functions

@ For even n, the maximum possible nonlinearity is 27~ — 27/2-1,
achieved by the so-called bent functions
o Many constructions are known (not fully classified yet)
e But bent functions are never balanced!
@ For odd n, the maximum possible nonlinearity is still unknown
e By concatenating bent functions, we can get nonlinearity
271 _ 2" Can we impove this?
@ For n <7, the answer is no
e For n > 15, the answer is yes (Patterson-Wiedemann, 1983 -
Dobbertin, 1995 - Maitra-Sarkar, 2002)
e Forn =9,11,13, such functions have been found more recently
(Kavut, 2006)
@ Several constructions of balanced functions with high nonlinearity
exist (e.g. Dobbertin, 1995). However:
o Finding the highest possible nonlinearity of balanced Boolean
functions is still an open problem
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Properties of cryptographic functions N

Nonlinearity and correlation immunity

e If f € B, is m-th order resilient, then nl(f) <27~ — 2m+1
(Sarkar-Maitra, 2000)
o If the upper bound is achieved, the Walsh transform takes 3 values

@ For n even, the best possible nonlinearity is 2"~ — 27/2=1 (bent
functions)
o If f € B, is m-th order resilient, n even, with m < n/2 — 2, then
nl(f) < 2=t — /271 _ gmitl
@ For n odd, the maximum possible nonlinearity nl,,q,. is unknown

o The above bound holds if 2™t <2771 — nl 0w
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Properties of cryptographic functions
immunity

The Maiorana-McFarland class of functions

@ A widely known class of functions with nice cryptographic properties

o f € By, satisfying the following:
fly, ) = F(y)z + h(y), = €F}, y € F3

o F is any mapping from F% to F$
o heBy

o If k = s and F is a permutation over F5 = f is bent (e.g. Dillon,
1974)

e For injective F', if wt(F'(7)) > t+ 1 for all 7 € F§, then f is
t-resilient (Camion et. al., 1992).
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Properties of cryptographic functions N

Higher-order nonlinearity

@ Approximating a function by a low-order function (not necessarily
linear) may also lead to cryptanalysis (Non-linear cryptanalysis -

Knudsen-1996, low-order approximation attacks - Kurosawa et. al. -
2002)

@ The rth order nonlinearity of a Boolean function f € B,, is given by

IL.(f) = i t
nl.-(f) jos, in W (f+9)

@ The rth order nonlinearity remains unknown for r > 1

e Recursive lower bounds on nl.(f) (Carlet, 2008)

e Specific lower and upper bounds for nlz(f) (Cohen, 1992 - Carlet,
2007)

o More recent lower bounds for 2-nd order nonlinearity: Gangopadhyay
et. al. - 2010, Garg et. al. - 2011, Singh - 2011, Singh et. al. - 2013
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Properties of cryptographic functions

Computing best low order approximations

@ Computing even the best 2-nd order approximations is a difficult
task

o Efficient solution for specific class of 3-rd degree functions
(Kolokotronis-Limniotis-Kalouptsidis, 2009)

@ The problem is appropriately reduced in computing best affine

approximation attacks of the underlying 2-nd degree sub-functions

o For the Achterbahn's combiner function:

q(x) = T5w7 + T6ws + T1 + T2 + T3 + T4 is a best 2-nd approximation
o wt(f+q) =32 (p(f =q) =7/8>3/4)
@ No much is known regarding constructions of functions with high
r-th nonlinearity, for r > 2
o Even if a high lower bound on the nonlinearity is proved, best r-th

order approximations can not be computed
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Properties of cryptographic functions
immunity

A case of highly nonlinear function f with nly(f) = nl(f)

Cubic functions in the general Maiorana—McFarland class

flz,y) = F(x)y",  (2,y) € F3 xF3'.

e F':Fy — 4. quadratic vectorial Perfect Nonlinear (PN) function

@ All linear combinations of the m underlying Boolean functions are
bent

o (Kolokotronis-Limniotis, 2012): Let f € B, ., be cubic function of
the above form, where each linear combination of the Boolean
functions of F' is bent of minimal weight, and m < [%]. Then,

n|2(f) — gn+m—1 _ 2n/2—1(2n/2 Lom _ 1) _ nl(f)

@ Best 2-nd order approximations are also efficiently computed
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Properties of cryptographic functions
Algebraic immunity

More recent attacks: Algebraic attacks

Milestones
o Algebraic attacks (Courtois-Meier, 2003)
o Fast algebraic attacks (Courtois, 2003)

@ The basic idea is to reduce the degree of the mathematical

equations employing the secret key

@ Known cryptographic Boolean functions failed to thwart these
attacks

@ Some applications of algebraic attacks

o Six rounds of DES, with only one known plaintext (Courtois-Bard,
2006)

o Keeloq block cipher (Courtois-Bard-Wagner, 2008)

o Hitag2 stream cipher (Courtois et. al., 2009)
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Properties of cryptographic functions

Algebraic immunity

Algebraic attacks

Example

@ Stream cipher based on a nonlinear filter generator

nonlinear filter function f AN

e k; = f(L¥(xg,x1,...,2N-1)) - the filter function f has high degree
@ Assume that there exists g € B,, of low degree such that f x g = h,
where h is also of low degree. Then,
kig(L'(xo, 21, ..., an—1)) = h(L'(z0, 21, .., 2N 1))
@ Several other proper choices of g, h may also reduce the degree of

the system
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Properties of cryptographic functions

Algebraic immunity

An example: The Toyocrypt cipher

a ag

nonlinear filter function f —_— K

@ The nonlinear filter function is
62
f(@1, .. @108) = q(@1, ..., T128) + T10T23032042 + Hl’i+

i=1
+ T1T2T9T12718T20T23725T26L28T33L 38141 L4251 053259
where deg(q) = 2.

e By multiplying f with the affine functions 1 + 223 or 1 4+ z42, we get
two functions of degree only 3
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Properties of cryptographic functions Nc rit;
Algebraic immunity

How to proceed with algebraic attacks

@ Once the degree of the equations have been reduced, several
algebraic techniques have been proposed for solving the (still
nonlinear) system:

o Linearization of the system
o Use of Grobner bases
e More specific techniques: XL, XSL

@ Hence, the core of the algebraic attacks is the transformation of the
initial system to a new one having low degree
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Properties of cryptographic functions N
Algebraic immunity

Annihilators and algebraic immunity

Definition
Given f € B,,, we say that g € B,, is an annihilator of f if and only if g
lies in the set
AN(f)={g€B,: fxg=0}
Definition

The algebraic immunity Al,,(f) of f € B, is defined by

Aln(f) = min{deg(g) : g € AN (f) UAN(f +1)}

g9

@ A high algebraic immunity is prerequisite for preventing algebraic
attacks (Meier-Pasalic-Carlet, 2004)

@ Well-known upper bound: Al,(f) < [§]
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Properties of cryptographic functions
Algebraic immunity

Algebraic immunity and nonlinearity

e Carlet et. al., 2006: nl.(f) > Zf;’b(f)frfl (™
o Low nonlinearity implies low algebraic immunity
@ Especially for r = 1 (Lobanov, 2005): nl(f) > 2ZAI n(f)=2 (" 1)

@ Mesnager, 2008: Improvements one the above bounds:

Al (f)—r—1 Al (f)—r—1
nl(f) 2 M+ > )
i=0 i=Al, (f)—2r

@ Rizomiliotis, 2010: Further improvements

e The notion of complementary algebraic immunity is defined

Al (f) £ max{dggr;){f *g= 0},dreléi(lg1){(f +1) % g =0}}
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Properties of cryptographic functions N
Algebraic immunity

Fast algebraic attacks

o Consider again the filter generator: k; = f(L(xg,71,...,2N_1))
@ Assume that there exists a low degree g € B,, such that h = fx g is
of reasonable degree. Then again,
kig(L'(z0, 21, ..., oN_1)) = ML (z0, 21, ..., 2Nn_1))

deg(h)

o There exists a linear combination of the first 355" () equations

that sum the right-hand part to zero = We get one equation of
degree at most deg(g)

Comparison with conventional algebraic attacks
@ g+ h € AN(f) = the degree of g+ h may be greater than Al,,(f),

o Maximum Al does not imply resistance to fast algebraic attacks

@ But: Knowledge of consecutive keystream bits is required
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Properties of cryptographic functions
Algebraic immunity

Fast Algebraic Immunity

Known result: For any pair of integers (e, d) such that e + d > n, there
exists a nonzero function g of degree at most e such that f * g has

degree at most d.

Definition
The fast algebraic immunity FAL,(f) of f € B, is defined by

FALL(f) = chgg)igAln(f)& Al (f),deg(g) + deg(f * )}

e Upper bound: FAL,(f) <n
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Properties of cryptographic functions
Algebraic immunity

Constructions of functions with maximum Al

Dalai-Maitra-Sarkar, 2006: Majority function

o For even n, a slight modification of the majority function also

preserves maximum Al

o Carlet-Dalai-Gupta-Maitra-Sarkar, 2006: lterative construction

Li-Qi, 2006: Modification of the majority function

@ Sarkar-Maitra, 2007: Rotation Symmetric functions of odd n

Carlet, 2008: Based on properties of affine subspaces

o Further investigation in Carlet-Zeng-Li-Hu, 2009
o Generalization (for odd n) in Limniotis-Kolokotronis-Kalouptsidis,
2011

Balanceness and/or high nonlinearity are not always attainable,

whereas their fast algebraic immunity remains unknown
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Properties of cryptographic functions
gebraic immunity

The Carlet-Feng construction

e Carlet-Feng, 2008: supp(f) = {0,1,a,0a?,..., a2n_1’2}, where « a
primitive element of the finite field Fan.
o Degree n — 1 (i.e. the maximum possible)
o High (first-order) nonlinearity is ensured

o Best currently known lower bound (Tang et. al., 2013:)

nln(2)

nl(f) > 2" —( +0.74)2™/2 — 1

o Experiments show that the actual values of nonlinearities may be
higher enough

o Optimal against fast algebraic attacks, as subsequently shown
(Liu-Zhang-Lin, 2012)
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Properties of cryptographic functions
Algebraic immunity

Generalizations of Carlet-Feng construction

@ Rizomiliotis, 2010: A new construction based on the univariate
representation

e For odd n, it is affine equivalent to the Carlet-Feng construction

@ Zeng-Carlet-Shan-Hu, 2011: Modifications of the Rizomiliotis
construction

@ Further generalizations in Limniotis-Kolokotronis-Kalouptsidis, 2013:

e Finding swaps between supp(f) and supp(f + 1) that preserve
maximum Al
@ Via solving a system of linear equations, with upper-triangular
coefficient matrix
@ Each nonzero entry in the solution vector indicates a swapping
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Conclusions

Conclusions - Open problems

@ Evaluation of known families of cryptographic functions in terms of
resistance against (fast) algebraic attacks
e Construction of functions with maximum (fast) algebraic immunity

o Much progress on constructing functions with maximum Al, but the
case of maximum FAI is much more difficult

o High r-th order nonlinearity, for » > 1, has not been studied at all
@ Relationships between (fast) algebraic immunity and correlation
immunity
o A preliminary result is only known (Limniotis, 2013)
@ Improve our knowledge regarding relationships between Al and nl

@ Nonlinear FSRs (or other nonlinear structures) have not been
studied to the same extent w.r.t. algebraic attacks
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Conclusions

Questions & Answers

Thank you for your attention!
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