
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 4, APRIL 2006 1459

On the Least-Squares Performance of a Novel
Efficient Center Estimation Method for
Clustering-Based MLSE Equalization

Eleftherios Kofidis, Member, IEEE, Yannis Kopsinis, Member, IEEE, and Sergios Theodoridis, Senior Member, IEEE

Abstract—Recently, a novel maximum-likelihood sequence esti-
mation (MLSE) equalizer was reported that avoids the explicit es-
timation of the channel impulse response. Instead, it is based on the
fact that the (noise-free) channel outputs, needed by the Viterbi al-
gorithm, coincide with the points around which the received (noisy)
samples are clustered and can thus be estimated directly with the
aid of a supervised clustering method. Moreover, this is achieved
in a computationally efficient manner that exploits the channel lin-
earity and the symmetries underlying the transmitted signal con-
stellation. The resulting computational savings over the conven-
tional MLSE equalization scheme are significant even in the case
of relatively short channels where MLSE equalization is practically
applicable. It was demonstrated, via simulations, that the perfor-
mance of this algorithm is close to that using a least-squares (LS)
channel estimator, although its computational complexity is even
lower than that of the least-mean squares (LMS)-trained MLSE
equalizer. This paper investigates the relationship of the center es-
timation (CE) part of the proposed equalizer with the LS method.
It is proved that, when using LS with the training sequence em-
ployed by CE, the two methods lead to the same solution. However,
when LS is trained with random data, it outperforms CE, with the
performance difference being proportional to the channel length.
A modified CE method, called MCE, is thus developed, that at-
tains the performance of LS with perfectly random data, while still
being much simpler computationally than classical LS estimation.
Through the results of this paper, CE is confirmed as a method-
ology that combines high performance, simplicity, and low compu-
tational cost, as required in a practical equalization task. An alter-
native, algebraic viewpoint on the CE method is also provided.

Index Terms—Center estimation (CE), channel equalization,
clustering, least-squares (LS), maximum-likelihood sequence
estimation (MLSE).

I. INTRODUCTION

ONE of the major problems encountered in the receiver de-
sign of any communication system is that of combatting

intersymbol interference (ISI) arising due to limited channel
bandwidth or multipath propagation. The part of the receiver
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used to mitigate ISI is the equalizer, and the related literature is
very rich (see, e.g., [20] and [23]).

The equalizers based on the maximum-likelihood sequence
estimation (MLSE) scheme [5], [20] are commonly imple-
mented via the Viterbi algorithm (VA) [6], and they require the
channel impulse response (CIR) to be known. For this purpose,
one may resort to any appropriate identification method [11],
[12]. Once the CIR has been identified, its inner products (con-
volution) with all possible channel input vectors (associated
with the states) are computed and subsequently used in the
metrics computations for the VA.

Recently, a novel MLSE equalizer was proposed, that circum-
vents the problem of explicit CIR parametric modeling, leading
to substantial computational savings [13]–[17]. It belongs to
the class of the so-called clustering-based sequence equalizers
(CBSEs) (e.g., [7], [8], and [24]), since it is based on the idea
that the set of all possible channel output values, needed at the
Viterbi stage, are simply the centers of the clusters formed by
the received observations at the receiver front end and can thus
be estimated via a supervised clustering approach. In contrast to
earlier CBSE methods, however, which appeal to clustering in
a high-dimensional space, defined by successive observations,1

the novel algorithm operates in a one-dimensional space [13].
Furthermore, it uses an efficient cluster center estimation (CE)
technique that exploits the structural symmetries underlying the
generation mechanism of the clusters of the received samples.
This leads to a considerable reduction of the number of cluster
centers required to be estimated directly from the training data.
It turns out that the centers of all the clusters, formed by
the noisy output of a channel of length with an input alphabet
of size , can be determined on the basis of estimates of only

properly selected ones. This has a twofold advantage. First,
since only clusters need to be learned, a considerably shorter
sequence suffices for training, compared to previously proposed
CBSE receivers. It is constructed so as to generate a cyclic rep-
etition of only input vectors, corresponding to the selected
clusters. Second, the computational complexity is drastically re-
duced.

It has been observed, via simulations [16], [17], that the pro-
posed CE technique exhibits a similar to least-squares (LS) per-
formance, despite its low computational complexity. This paper
investigates this issue. It is shown that CE yields the same esti-
mates for the cluster centers that would result from computing

1This is also the case in symbol-by-symbol equalizers that are based on clus-
tering (see, e.g., [2], [3], [19]).
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Fig. 1. Communication system model.

them as convolution sums using the channel estimate provided
by the LS method, trained on the same data with CE. More-
over, the computational requirements of the two methods are
compared, clearly demonstrating the computational advantage
of CE over the LS method. This comes from the fact that CE
estimates the cluster centers directly, in an efficient manner that
exploits constellation symmetries, and not via convolutions. On
the other hand, simulation results show that if the LS method is
employed with random, instead of periodic training data, it per-
forms better compared to the CE method and this improvement
increases as the CIR becomes longer. A mean-squared error per-
formance analysis is carried out to theoretically justify this fact.
The improvement resulting from the use of random data in the
LS method is shown to be proportional to the channel length,

. It is shown that, in order to minimize this difference in per-
formance, the CE method has to be appropriately modified so
that it uses a periodic repetition of a longer (than ) training se-
quence, enjoying perfect randomness. Although this increases
the computational demands, the new version of the CE algo-
rithm [modified CE (MCE)] is still more economic than direct
LS estimation in terms of computational complexity.

The rest of this paper is organized as follows. Section II de-
scribes the discrete-time model for the communication system
and states the problem. The CE method is briefly reviewed in
Section III. In Section IV a proof of least-squares optimality of
the solution provided by CE is presented. An analysis of the ob-
served performance hysteresis of CE with respect to LS, when
the latter employs random training data, is provided in Sec-
tion V. The modified CE method is presented and analyzed in
Section VI. The methods are compared in terms of their com-
putational complexity in Section VII. Section VIII presents the
conclusions.

Notation. Vectors and matrices will be denoted by bold lower
and upper case letters, respectively. The superscripts and
will, respectively, stand for complex conjugation and transposi-
tion.

II. DESCRIPTION OF THE COMMUNICATION SYSTEM

A block diagram of the adopted discrete-time model for the
communication system is depicted in Fig. 1. A sequence of in-
dependent and identically distributed (i.i.d.) symbols, , drawn
from a finite alphabet of size is transmitted through the
channel, assumed to be invariant during the transmission of the
training data and modeled as a finite impulse response filter of
length and transfer function . The input signal constel-
lation is assumed symmetric. That is, is even and con-
tains both the symbols , and their neg-
atives. This includes both real (e.g., -PAM [17]) and com-
plex (e.g., -PSK and -QAM [16]) constellations.
For the sake of generality, the results will be presented for the
complex case. In the examples, we will assume 2-PAM [binary

Fig. 2. Plot of the clusters formed by the received samples when
BPSK symbols are transmitted, the transfer function of the channel is
H(z) = 1� 0:5z + 0:2z and white Gaussian noise of SNR = 20 dB is
present. Stars denote cluster centers, while circles correspond to noisy channel
output samples.

phase-shift keyed (BPSK)] and 4-QAM [quadrature phase-shift
keyed (QPSK)] signaling. The received sequence is given by

(1)

where is the vector of the
(generally complex) symbol-spaced taps of the CIR,

is the input data vector, is
the noiseless channel output, and is additive white noise,
uncorrelated with . The noise is assumed zero-mean with
variance . If it is complex, its real and imaginary components
are assumed to be uncorrelated with each other and each one
of variance . The noisy observations are fed to the
sequence estimator, whose aim is to provide estimates of
the input symbol sequence.

III. CENTER ESTIMATION

As it is well known [20], in MLSE equalization one has to
estimate the CIR first and then use this estimate in the VA [6]
(or one of its variants) to obtain the required estimate of the
symbol sequence , based on metric computations of the form

, with ranging over the set of all pos-
sible -tuples of input symbols.2 However, it can be readily seen
that what one really needs, instead, are the noiseless observa-
tions , since . Hence, the CIR
estimation step can be bypassed [13] by estimating the quanti-
ties directly. This has been introduced in [14]–[17], and its
computational advantages have been demonstrated. The basic
idea stems from the fact that all possible values which can
take are simply the points (centers) around which the received
samples (observations) are clustered (due to the presence
of the noise). These centers can be estimated via any super-
vised clustering technique. An example is given in Fig. 2, where
the received samples for a 3-tap channel with transfer function

and BPSK input are shown.
The noise is assumed to be white Gaussian, corresponding to an
SNR of 20 dB. The notation denotes the cluster
center which is associated with the transmitted symbol sequence

at time . The spread of the clusters de-
pends on the power of the noise. The number of clusters as well
as their position on the real line depend on the number and the
values of the CIR taps.

In total, there are cluster centers that have to be esti-
mated. This number evaluates to for the example of

2Forney’s MLSE scheme [5] is adopted here.
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Fig. 3. �’s denote cluster centers that correspond to the 3-tap channelH(z) =
1�0:5z +0:2z with BPSK input. The centers of the clusters that are due
only to the first (and the second) tap are shown as o’s (�’s).

Fig. 2 and can easily grow very large in practical situations (e.g.,
for a 5-tap channel with 4-PAM input). Neverthe-

less, a deeper thought reveals that there is a lot of redundant in-
formation shared by the cluster centers, which can be exploited
for the benefit of the computational complexity. This is due to
the intrinsic dependency between the locations of the cluster
centers, caused by the linearity of the channel as well as the
symmetry of the symbol alphabet. Fig. 3 depicts the centers of
the clusters formed by the output samples of the channels con-
sisting of only the first tap (o’s), the two first taps ( ’s) and all
3 taps ( ’s) of the channel of Fig. 2. The pair of the centers
due to the first tap is symmetrically located around zero. The
four centers resulting from the combination of the first and the
second taps can be grouped in two pairs, each of them being
symmetrically located around the (previous) centers associated
with the first tap. This rationale carries on for the centers gener-
ated when all 3 taps of the channel act together.3 In other words,
the locations of the observations follow a hierarchical pattern
of symmetries, depending on the channel length.

It has been shown [15], [17] that this structure in the cluster
center constellation, demonstrated by the above example, im-
plies that only (out of the ) properly selected cluster cen-
ters need to be estimated directly from the training sequence.
The rest of them can then be easily determined using
the obtained estimates of these selected centers. To explain
the method in some more detail, observe that

(2)

is the contribution of the th tap of the CIR in the summation
part of (1). That is, is the contribution of the th tap to the
generation of a cluster center. Using this notation, the term
in (1) can be rewritten as

(3)

3The reader is referred to [16] for an analogous example of a complex channel
with two-dimensional (QPSK) input.

where is the cluster center associated with
the transmitted -tuple . Furthermore,
it is easy to realize that, for each tap , only one of the
possible values of needs to be computed; all the others can
be obtained via a simple multiplication, as follows:

(4)

For BPSK signaling, i.e., , the above translates
to a simple sign change , whereas in the QPSK
case rotations are needed, e.g.,

. Therefore, the computation
of all the cluster centers (via (3)) requires the estimation of only

tap contributions one for each channel tap, which, as it
will be seen shortly, are in turn computed via the estimates of
only properly selected centers.

A method for the appropriate selection of the centers
which have to be estimated directly from the training data
was proposed in [14]–[17]. First, choose any one of the

centers, say . We call it the basic center,
, and the corresponding -tuple the basic sequence,

.4 Then the centers to be es-
timated directly are chosen as those which correspond to
the basic sequence with a sign change in one of its entries:

. These centers can be estimated via any
supervised clustering algorithm [25]. For example, a simple
averaging of all the observations that belong to the corre-
sponding cluster was proposed in [14]–[17]

(5)

where denotes the number of observations associated with
the th cluster center . Once estimates for

have been computed, is estimated as [14],
[15]

(6)

The computation of the tap contributions is then straightforward
[14], [15]

(7)

Using (6) in (7), an equivalent formula for results as fol-
lows:

(8)

4The index in x here does not represent (absolute) time.
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For the example of Fig. 3, one can set, e.g., .
Then, it suffices to estimate the centers

, and . The tap con-
tributions are then determined as5

, and . For a 3-tap channel
with QPSK input, a possible choice for the basic sequence is

. Then the centers that have to be
estimated are , and

, and the corresponding tap contributions
are again computed as above.

The above procedure does not apply when (cf. (6)).
A different approach must be taken in this case. This is pre-
sented in the Appendix, where the 2-tap channel case is sepa-
rately treated. In the rest of the paper, it will be assumed that

.
The above method for estimating the cluster centers,

based on an averaging procedure of direct estimation of only
of them, will be referred to, simply, as the CE algorithm. If the
employed training sequence is to be as short and effective as pos-
sible, it has to be chosen so that it “visits” the selected clusters
(i.e., generates the corresponding input vectors) as many times
as possible and equally often. It is readily seen that, if only the

-tuples corresponding to the centers are to appear in the
training sequence, the symbols in the basic sequence should co-
incide, i.e.,

(9)

Such a choice of training sequence for the BPSK scheme, and
for , can be the periodic repetition6 of the
sequence (for ) [15]. This gives rise to

possible input data vectors, which appear at the rows of the
matrix

...
...

. . .
...

(10)

In practice, when input symbols are drawn from an alphabet ,
one may construct a training sequence by simply multiplying
the above sequence, used for the BPSK scheme, with a selected
symbol, .7 The corresponding data matrix will then equal

times the matrix given in (10). In the sequel, it will be seen
that, as expected, should be chosen so that its modulus is as
high as possible.

5When L = 3, only two of the three centers are used for the estimation
of each tap contribution. This point needs special attention and will be further
elaborated upon in Section VI.

6A periodic training sequence is employed here with period equal to the
channel length, as in the periodic training approach [21], [22] followed in
cyclic equalization [1, pp. 380–383]. However, the special structure and role
(visiting particular centers) of the sequence used here, as well as the clustering
flavor of the method, differentiate CE from the periodic training approach.

7For example, with QPSK signaling and x = 1 + j, the training sequence
corresponding to xxx = [1 + j; 1 + j; . . . ; 1 + j] will be constructed by
periodically repeating the sequence [1 + j; 1 + j; 1 + j; . . . ; 1 + j;�1� j].

IV. EQUIVALENCE WITH LS ESTIMATION

A. CE as a Channel Identification Method

More generally, if the basic sequence is
(with ), the corresponding

matrix keeping the training -tuples at its rows is of the form

...
...

. . .
...

(11)

where is given by (10) and denotes the diagonal
matrix with the vector on its main diagonal. Then the centers
that are estimated directly from the training data are given by

(12)

Denote by the estimates for these
centers, resulting from the CE algorithm. It will be shown that

they are LS optimal. In other words, the result is the same as if
one had first identified the CIR via the LS method, using the
data in (11) as the training sequence, and then use the estimated
CIR to estimate all possible (noise-free) channel outputs, , via
convolutions. For the purposes of this analysis, and only in order
to have a common testbed for the comparison of the CE and LS
methods, we shall view CE as a method of channel identification
and consider the equivalent CIR estimate (although this is not
needed when using the CE method8). This is indeed possible, in
view of the relation between the tap contributions (estimated by
CE) and the channel taps, namely, (cf. (2)). If

is the vector of tap contribution estimates, an estimate for the
CIR vector can be computed as

(13)

Equation (12) implies that the estimated taps will be related to
the estimated centers via the relation

(14)

which, in view of (11) and (13), can be written as

or equivalently ( is nonsingular)

(15)

8CE estimates directly the cluster centers and not the CIR taps. The channel
taps enter only implicitly in the tap contributions that are computed from the
L directly estimated centers as a means for the computation of the remaining
M � L ones.
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Noting that

...
...

. . .
...

(16)

it is seen that (8) is, in fact, a computationally efficient manner
of implementing the matrix-vector multiplication in (15).

We will now show how the mean-squared error (MSE) in the
estimation of the centers is related to that of the channel taps.
If is the matrix containing at its rows all of the

-tuples of symbols from , the vector of all center
estimates, call it , will be given by

and its covariance matrix will be equal to

Recalling that
, it is readily verified that satisfies the rela-

tion9

where denotes the th-order identity matrix and

(17)

is the input signal power. Hence, since the rows of are
equally probable, the average MSE for the estimation of a center

will be given by10

(18)

9Note that each of the symbols a ;�a ; i = 1; 2; . . . ;M=2 appears
M =M = M times in each of the columns of �XXX : Moreover, the columns
of this matrix are orthogonal.

10Note that both CE and LS provide unbiased estimates, i.e., E[ĥhh] = hhh.

B. Proof of Equivalence of CE With the LS Method

Let be the received samples (observations)
when the rows of are periodically used as input data vec-
tors, with resulting from row .11 Write the number
of observations as , where . This im-
plies that centers have used one more
sample for their estimation than the rest (which have used
samples each). Since is determined as the average of those
observations that belong to the th cluster, it can be written as

or, equivalently, in matrix-vector form

... (19)

where

(20)

and . The estimate for the tap vector,

call it , results then via (11), (13), and (15), as follows:

(21)

(22)

The corresponding problem for the LS estimation of the CIR
can be formulated as

(23)

where the training data matrix is built as

(24)

with denoting the first columns of . The solution to
(23) is [11], [4]

(25)

where

(26)

is the sampled data autocorrelation matrix and

(27)

11y ’s are not necessarily contiguous in time. Such would be the case if
only the particular L-tuples appeared in the training sequence. Then (9) would
hold and the training sequence should be constructed by periodically repeating
[x; x; . . . ; x;�x].



1464 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 4, APRIL 2006

denotes the sampled cross-correlation vector. Noting that

(28)

(25) becomes

(29)

which is identical with the equivalent CIR estimate that would
result from the CE method (cf. (22).

It is of interest to note that the above proof applies to any
matrix with linearly independent rows, not necessarily of
the form of (11).12 It thus provides an alternative viewpoint on
the LS method through its relationship with averaging for cluster
center estimation.

V. MEAN-SQUARED ERROR PERFORMANCE ANALYSIS

The results of the previous section show that CE is equivalent
with the LS method when input vectors of the specific form
(11) are repeatedly presented to the channel. Note that this type
of training sequence is required in order that the CE method have
its very attractive computational simplicity [16], [17].13 How-
ever, the CE method is outperformed by LS when the latter em-
ploys randomly selected -tuples of training symbols. Exam-
ples are shown in Fig. 4(a) and (b) for BPSK input and chan-
nels of length and , respectively. White Gaussian
noise of SNR 20 dB was added to the channel output. In each
case, estimates of 500 independent, randomly generated CIR’s
were computed using both the CE algorithm with the training
data of the form of (10) and LS with random training data and
the results were ensemble averaged. The average mean-squared
tap-estimation error (MSE), , is plotted.14 For
comparison purposes, the MSE learning curve of the least-mean
squares (LMS) algorithm [11], [12] trained with random data
and using a step size of15 0.01, is also included, along with the
curve for the theoretically minimum MSE, i.e., [4]. It is
apparent that the discrepancy in the obtained performance of
the LS method between the two training data sets grows with
the CIR length. To explain this phenomenon, let us have a look
at the MSE incurred in the two cases. As it is well known, this
is given by [11]

(30)

12It is only for matrices of this form, however, that (21) corresponds to the
CE method.

13Observe that all but one of the entries in each row of the matrix in (16)
coincide. This results in significant computational savings.

14Note that, as before and for the sake of the comparison, CE is viewed here
as a channel estimation method.

15This value was chosen so that an acceptable MSE is obtained in a reason-
able number of iterations. A smaller step size, chosen so as to minimize the
misadjustment at the end of the training data block, would result in a poor MSE
(compared to LS) for 50, 100 or even 150 training samples.

Fig. 4. Mean-squared tap-estimation error (MSE) curves resulting from CE
(training with data (10)) and LS (random training sequence) for channels of
length (a)L = 5 and (b)L = 7. The LMS and optimal (� =N) curves are also
included.

where is the noise variance. For random data, tends to
as the number, , of observations grows sufficiently

large. In this case, (30) becomes .
Hence, the MSE (i.e., variance) for each tap estimated by the
LS method with random data is

(31)

To compute the MSE resulting from the CE method using the
data in (10), one may use (8), recalling that and
using the fact that the center estimates
are uncorrelated with each other due to the noise being white.
Thus

(32)

Moreover, since each center is estimated by averaging the (un-
correlated) observations associated with it, we can write
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Using the latter in (32) yields the first equation shown at the
bottom of the page; hence, we have (33), shown at the bottom
of the page. Note that these can also be derived via (30) by com-
puting the diagonal entries of the matrix , with the aid of
(28), for the training data of the form of (11).

When is an integer multiple of , i.e., and
(or when is sufficiently large so that can be ne-

glected), (33) becomes

(34)

(35)

Notice that the tap MSE that would result from CE is, in general,
different for different taps, depending on the modulus squared
of the corresponding symbol in the basic sequence. In the more
practical case where all are equal (cf. (9)), all taps are esti-
mated with the same accuracy. In the rest of the paper, we will
only consider training sequences consisting of a symbol , and
its negative. From the last equation, it follows that the use of
cyclically repeating training data vectors, as in (9) and (11),
although sufficient to visit all selected clusters times,
yields estimation performance roughly times
lower than that achievable with randomly chosen training data.
This suggests that symbols of the highest possible modulus must
be used in the training sequence. Then the factor will,
in general, be less than one. For example, for 4-PAM input,
where should be chosen as 3 or 3,
in which case will equal . With 16-QAM, where

should be one of
, corresponding again to .16 The MSE

of the LS method can, however, be reduced further if a random
sequence consisting only of the symbols and is employed.
Then (31) takes the form and the
factor in parentheses in (35) becomes . To be more precise,
it can be shown that is an asymptote, as ,
of . Nevertheless, it must be noted that the
loss in performance with respect to LS is little, for the range of

16In practice, of course, one would choose x to be a symbol of the highest
possible modulus while at the same time not exceeding the transmission power
constraints.

Fig. 5. Ratio var(ĥ )=var(ĥ ) as a function of L (solid line). CE is using
a periodically repeated short (lengthL) training sequence, whereas random data
are employed by the LS method. The number of observations is a multiple of
L. The asymptote (L� 1)=4 is also shown (dashed line).

CIR lengths and the number of training symbols used in prac-
tice with MLSE equalizers, as this is also verified by Fig. 4(a)
and (b), especially in the range of less than 50 training symbols.

Fig. 5 summarizes the results of the above analysis. Observe
that CE performs as well as LS with random data when .
In this case, (8) becomes: . That
is, each tap contribution is computed as the average of all
four centers , with a sign change in one of
them. When the number of observations is a multiple of
the number of centers, i.e., , this results in the same
MSE, for the corresponding channel tap, as the LS method
would result with random data:

. Another way to see
this is by observing that, in this case, the training data used in
the CE method are perfectly random [4], in the sense that the
corresponding sample autocorrelation matrix is diagonal,

, when is a multiple of 4. This is because, for
, the matrix (10) is orthogonal,17 . Hence,

(15) becomes , yielding the tap contributions as
averages of the estimates of the centers or their negatives.

17This conclusion can also be drawn by inspection of (16).

(33)
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When , as it can be seen from (8), each tap contribution
is also computed as the average of centers that are estimated
directly from the training observations. However, only two
of the three centers are employed for each contribution. This
explains why the CE method performs in this case worse than
for .

VI. MODIFIED CE (MCE) APPROACH

It is clear from the above discussion that the orthogonality of
the data matrix is crucial for the CE method to attain the per-
formance offered by LS with random data. However, it can be
easily verified that only for the matrix in (10) is
orthogonal.18 Orthogonality of (the columns of) the data ma-
trix can be achieved for other channel lengths as well if it is
allowed to be tall, that is, if more than distinct cluster centers
are estimated directly from the training data. Thus, a training
sequence, consisting of the symbols and - , is needed that
will “visit” more than clusters and generate a (corresponding)
data matrix19 with orthogonal columns. Then, whenever the
number of observations is equal to a multiple of the number
of directly estimated cluster centers, the autocorrelation matrix
will be diagonal: . As shown in [4], diagonality
of results in optimal LS CIR estimation performance for a
given number of training samples and CIR taps. Exact diago-
nality of for a finite number of observations can be achieved,
e.g., by using training sequences derived from -sequences of
appropriate order [4]. A method for constructing such a training
sequence is as follows: Given a (binary) -sequence of order

, i.e., , circularly shift it so that it begins
with 1’s (or 1’s). Then insert a 1 (respectively, 1) at
its beginning. This is done in order to include the -tuple of all
1’s (respectively, 1’s).20 Finally, multiply the sequence with .
The resulting sequence is of length and its periodic repe-
tition can be used as a training sequence. An example for
is the sequence of length

Note that this is the same sequence used in the CE
method for the case of . However, here it is em-
ployed for . Another example, for , is
given by the following sequence of length :

.21

It follows from the properties of -sequences [10], [18] that
the use of such a training sequence will “visit” half of the cluster

18Of course, one could think of otherL�Lmatrices of�1 that are orthogonal
for other (even) values ofL as well. However, the matrix of the form of (10) (or a
permuted version thereof) is the only choice if only the L-tuples corresponding
to the rows of the matrix are to appear in the training sequence (no discarded
observations).

19Note that, although some matrices and vectors in this section are of a higher
dimension than their counterparts in previous sections, the same notation will
be employed here for the sake of continuity.

20The result is a so-called de Bruijn sequence [10].
21The presence of a DC level in these sequences (as well as in those used in

CE), whenever undesirable, can be addressed with the aid of appropriate mod-
ulation techniques (see, e.g., [9, Ch. 6 and 11]).

centers associated with combinations of and , i.e.,
with the remaining being simply their negatives. For ex-
ample, the periodic repetition of the above sequence for
will cyclically generate the following four 3-tuples:

Thus, averaging the observations associated with the -tuples
appearing in such a training sequence will result, in effect, in
direct estimates of the centers of all clusters that correspond
to -tuples.

Note that a center can use for its estimation the negatives
of the observations corresponding to the center . Thus, in the
above example, one can use the observations corresponding to,
e.g., the input -vector (3rd tuple above) to estimate
the center instead of , by simply changing
the signs of these observations. Hence, without loss of generality
and for the purposes of deriving the new algorithm, we will use
as training -tuples not those generated directly by the above
sequence but those -tuples of whose first entry is .
These result simply via a sign change and can be arranged, in a
specific order, at the rows of a data matrix, which, for
the example of , is given by

(36)

with again denoting the corresponding matrix for the
case.

Observe that the columns of above are orthogonal; in
general

(37)

Let denote the vector of center estimates for the
clusters associated with the rows of , computed by averaging
the corresponding observations. It then follows from the relation

that the corresponding CIR estimate will be given by

(38)

and the vector of tap contribution estimates

(39)

The center estimation scheme, which is based on the computa-
tion of the tap contributions via (39), namely as averages of the
estimates of the centers of the clusters (or their negatives)
generated by the above training sequence, will be henceforth
referred to as MCE. The corresponding CIR estimate, given by

(38), will be denoted by . Note that (39) extends the way
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Fig. 6. Total mean-squared tap-estimation error (MSE) curves resulting from
MCE and LS, trained with BPSK m-sequence derived sequences, for channels
of length L = 7: (a) Theoretical (� = 1); (b) experimental (SNR = 20 dB).
The dotted curve in (a) corresponds to the optimal total variance (L� =N).

tap contributions are estimated in CE for to other values
of .

To evaluate the MSE performance of MCE as compared to
that of LS, let us, as before, write the number of observations
as , with . Noting that the

center estimates in are uncorrelated with each other and
of them have used one more sample for their computation

than the rest, the following expression for the variance of each
tap estimate is obtained:

(40)

The corresponding total variance
is plotted in Fig. 6(a) for BPSK input signaling

and , along with that of the LS estimate,
computed as in [4]. As expected from (40), MCE attains LS
performance when the number of observations is an integer
multiple of the number of directly estimated centers, , i.e.,
when . Similar to the LS performance is also achieved
for a sufficiently large , in which case can be considered

negligible. For comparison purposes, Fig. 6(a) also shows the
minimum total MSE, namely . Observe that the MSE
resulting from both the LS and the MCE method coincides with
the optimum one for values of that are multiples of ,
since these cases correspond to perfectly random data [4]. The
corresponding experimental results for [randomly generated as
in Fig. 4(b)] CIRs of length 7 and SNR 20 dB are depicted
in Fig. 6(b) and are seen to be in good agreement with the
theoretical ones.

It thus turns out that, for is LS-optimal.
This can also be seen by noting that the autocorrelation matrix

, defined as in (26) with built as in (24), equals

in view of (37). For this becomes . More-
over, the corresponding matrix (cf. (19)) is then given by

Thus, the LS solution is (cf. (29)

(41)

A. Efficient Implementation of MCE

Consider (39), which, for the example of (36), takes the form

It is apparent from the above expressions that some of the addi-
tions performed for calculating a tap contribution estimate are
also needed to calculate subsequent estimates. This suggests that
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Fig. 7. Graphical representation of the recursive computation of � ’s for
the example of L = 3.

a careful grouping of the required additions may considerably
reduce the operations count. Thus, for the above example, we
have

We can now observe that ’s can be calculated in a recursive
manner, and this is represented graphically via the hierarchical
tree structure of Fig. 7. Based on (39) and the structure of the
matrix as exemplified by (36), one can easily see that, for
the general case of an -taps channel, the above procedure can
be stated as follows:

For

Note that ’s and ’s need not be available for all at the same
time. Once and have been computed,
and are not needed anymore. This reduces considerably
the memory requirements of the above procedure.

VII. COMPUTATIONAL COMPLEXITY CONSIDERATIONS

We have shown that the CE method is LS optimal when a pe-
riodic repetition of properly selected input vectors is used for
training. When used with random data, the LS method exhibits

an improved performance over CE. The improvement factor was
computed to . This performance gain, however, is obtained
at a substantially higher computational cost.

We shall now compare the computational requirements of the
two methods in the context of MLSE equalization.22 In the case
of real data, CE requires additions and
divisions in order to compute the tap contributions

. Taking into account the symmetry of the input
alphabet and the fact that and are
known, it follows that, for the computation of the rest of the tap
contributions, multiplications are required (cf. (4)).

additions are then needed in order to compute
the center estimates. The computational requirements for
complex input data are similarly derived. In that case, and if real
operations are considered, the operations counts given above for
the computation of the ’s, , have to be
doubled. Moreover, for the -QAM scheme,
multiplications and addi-
tions are required to compute the rest of the tap contributions
and the cluster centers. Observe that, when BPSK (QPSK) data
are used, the rest of the tap contributions need no operations for
their calculation, since they can simply result via sign changes
(resp. rotations). It must be emphasized that the number of mul-
tiplications/divisions required by CE is independent of the size
of the training data set.

The normal procedure followed in the LS method is to first
compute the vector (cf. (27)) and then multiply it with the in-
verse of the matrix to determine an estimate for the CIR.23

For the training data employed here, some simplifications to
this procedure are possible and will be adopted here in order to
make the fairest possible comparison. Noting that the training
sequence consists of a symbol and its negative, we can write
the matrix in (24) in the form , where is again
defined as in (24) but with replaced by the corresponding
matrix, , of ’s. Then the autocorrelation matrix can be ex-
pressed as , whereby it is seen to be
real. The CIR vector will therefore be written as

Hence, if one computes the vector of tap contributions
instead, the required computations are im-

plied by the relation

(42)

In the real case, the vector requires ad-
ditions and multiplications for its computation. Its multi-
plication with the matrix requires another

22Note that in the LS-based MLSE equalizer, although the CIR vector ĥhh is
first estimated, it is the quantities xĥ that will ultimately be needed in
computing the convolutions (centers) (ĥhh ) xxx .

23This paper is only concerned with batch estimation; hence, no reference is
made to fast recursive LS (FLS) algorithms [11]. Besides, as shown in [16], CE
is far more computationally efficient even than LMS, with respect to the total
number of operations required per training session.
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TABLE I
COMPUTATIONAL REQUIREMENTS OF CE AND LS METHODS (REAL DATA)

additions and multiplications. Once the tap con-
tributions in (42) have been calculated, the remaining compu-
tation for the estimation of the rest of the tap contributions and
subsequently the cluster centers is identical to that for the CE
method. The computational requirements for the complex case
are derived in an analogous manner. A summary of the opera-
tions counts of the two methods for a channel of length , a real
symmetric input constellation of size , and a sample set of
size is provided in Table I. The complexity for the complex
case can be found by just doubling these counts (this is because
all multiplications/divisions performed in the two methods are
between a real and a complex number). Only the operations in-
volved in calculating the tap contributions for a symbol are
included in Table I; the rest of the computation in the context of
MLSE equalization is the same in both methods. Observe that
the counts given for the LS method in the above table, as well as
in those to follow, do not include the computations required to
compute and invert ( can be assumed to have been pre-
computed [4]24). Nonetheless, as it can be seen from the above
results, even with no matrix computation and inversion taken
into account, the computational burden for the LS method, cor-
responding to the estimation of the tap contribution vector ,
raises to , for , as compared to only for the
CE approach. For example, in the realistic case of 5 taps
and 30 observations, with real input data, the LS method
requires 175 multiplications and 165 additions, whereas only 11
multiplications/divisions and 34 additions are needed in the CE
method. The computational advantage of the CE method over
LS is apparent, particularly in the required multiplications/divi-
sions.

To complete the comparison of the two methods, it must also
be emphasized that, in practical wireless communications sce-
narios, where channels are rather short (for example, is of the
order of 5 in GSM), the performance degradation factor ,
pointed out above, can hardly be of any significant effect. Fur-
thermore, as it was shown in Section V, there is no such degra-
dation for channels of length 4. This holds also true (with a neg-
ligible increase in computational complexity) for the cases of

(see Section VI) and (see Appendix).
Regarding MCE, the need to estimate cluster centers di-

rectly instead of only seems to diminish the computational ad-
vantage of the center estimation method over classical LS. How-
ever, if the efficient implementation described above is adopted,
an operations count that is still lower than that of direct LS can
be attained. Let us count the operations required, for the real
case, in the MCE procedure, outlined in Section VI. Step 0 in-
volves the estimation of the centers. For each of the first
centers additions and one division are required, whereas the
rest of them need additions and one division each. Hence,
Step 0 is completed with

24The computational savings resulting from having pre-computed the L�N
matrix� XXX instead are only of the order ofL , which is negligible for large
N .

TABLE II
COMPUTATIONAL REQUIREMENTS OF MCE AND LS METHODS (REAL DATA)

TABLE III
COMPUTATIONAL REQUIREMENTS OF MCE AND LS METHODS (REAL DATA)

additions and divisions. In Step 1,
additions are required for computing the ’s.

The computation of the ’s will require
additions. We need one more addition

and one division for each of the last tap contributions.
The first tap contribution needs one division only (Step 2).
The operations counts required for the calculation of the ’s
are summarized in Table II for both the MCE and LS methods.
Again, these have to be doubled in the complex case. As seen
in the above table, MCE is considerably more efficient than LS.
It must be noted that, similarly to CE, the number of multipli-
cations/divisions required in MCE is independent of the size of
the training data set. To make the computational advantages of
MCE over LS more apparent, the operations counts of the two
methods for several concrete values of and are given in
Table III. For the operations counts of the LS method, it has
been taken into account that equals a scalar times the iden-
tity matrix whenever is a multiple of .

VIII. CONCLUSION

The relationship of the CE technique, used in the clustering-
based MLSE equalizer of [16] and [17], with the LS method
was studied, both in the context of channel identification and
cluster center estimation for MLSE equalization. It was proved
that, when using a properly constructed short (periodically re-
peated) training sequence, the two methods lead to the same
solution. The LS method, when trained with random data, was
shown to outperform CE. To address this problem, a modified
CE method, called MCE, was proposed that attains LS perfor-
mance when perfectly random data are employed. We demon-
strated that LS performance is attained by CE/MCE at a com-
putational cost substantially lower than that of classical LS esti-
mation. The results of this paper bring out the importance of CE
as a methodology that combines high performance, simplicity,
and low computational cost, as required in a practical equaliza-
tion task. Moreover, an alternative, algebraic viewpoint on the
CE technique is provided, while at the same time leading to a
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new interpretation of the LS method in terms of averaging for
cluster center estimation.

APPENDIX

CASE OF TAPS

When , an approach different from that presented in
Section III must be taken since the centers suggested therein,
namely and , do not carry
sufficient information for the estimation of two tap contribu-
tions. Said in different words, the 2-tuples and
are not linearly independent. A way out of this is to estimate
instead the centers and . Then the tap contribu-
tions are computed as and

. A training sequence for estimating these
two centers might be constructed as the periodic repetition of

. Note that the 2-tuple will also appear in that
sequence. Since this is the negative of the tuple , the cor-
responding observation can be used for the estimation of the
center once its sign has been changed. Note that the two
centers are not “visited” equally often when using the above se-
quence. Within the received samples, with assumed to be
a multiple of 3, samples correspond to the tuple and
the rest to . The resulting MSE is thus given by

which is only slightly higher than that of the LS method with
random data. One can do better than that by simply using
a training sequence that will visit the two clusters the same
number of times. Such a sequence can be constructed by
periodically repeating .25 Although longer than
the above, this sequence generates each of the two tuples,

and times, where is a multiple of 4. The
corresponding MSE is then easily verified to be the optimum
one, as follows:
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