
Time-frequency and advanced frequency estimation techniques for the

investigation of bat echolocation calls

Yannis Kopsinis

Institute for Digital Communications,

School of Engineering and Electronics,

the University of Edinburgh Alexander Graham Bell Bldg,

King’s Buildings,

EH9 3JL,

Edinburgh,

UK,

email: kopsinis@ieee.org

Elias Aboutanios

School of Electrical Engineering and Telecommunications,

The University of New South Wales Sydney,

NSW 2052,

Australia,

email:elias@ieee.org

Dean A. Waters

Institute of Integrative and Comparative Biology,

Faculty of Biological Sciences University of Leeds,

Leeds LS2 9JT,

UK,

email:D.A.Waters@leeds.ac.uk

Steve McLaughlin

Institute for Digital Communications,

Running Title 1



School of Engineering and Electronics,

the University of Edinburgh Alexander Graham Bell Bldg,

King’s Buildings,

EH9 3JL,

Edinburgh,

UK,

email:sml@ee.ed.ac.uka)

(Dated: July 31, 2009)

2



Abstract

In this paper, techniques for time-frequency analysis and investigation

of bat echolocation calls are studied. Particularly, enhanced resolution

techniques are developed and/or used in this specific context for the

first time. When compared to traditional time-frequency representa-

tion methods, the proposed techniques are more capable of showing

previously unseen features in the structure of bat echolocation calls. It

should be emphasised that although the study is focused on bat echolo-

cation recordings, the results are more general and applicable to many

other types of signal.

PACS numbers: 43.60.Hj, 43.80.Ka
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I. INTRODUCTION

Since the first description of the ultrasonic calls made by bats1 and evidence that they

are used for echolocation2, various analytical techniques have been applied in order to char-

acterise and investigate them. While the temporal characteristics of echolocation calls could

be established readily even on simple oscilloscopes, the frequency characteristics proved more

problematic for early technology. The fact that some bats used frequency-modulated signals

going from high to low frequencies was recognised early on3,4, and was subsequently followed

by the discovery of constant frequency calls, such as those used by Rhinolophid bats5,6.

High-speed tape recorders and zero-crossing techniques (e.g.7) allowed basic frequency pa-

rameters such as maximum and minimum frequencies to be determined, and permitted the

classification of echolocation calls into different types8. Analogue techniques, such as the

“Sound Spectrograph”9, which was developed commercially as the Kay Electric Company

sound spectrograph and first released in 1951, were then used to analyse signals in the joint

time-frequency domain (e.g.10 ). Detailed descriptions of call structures, however, had to

wait until technology was developed to acquire signals for digital analysis along with the

development of more computationally efficient techniques. Fourier techniques became more

widely available with the development of the Cooley-Tukey algorithm11 allowing the use of

the computationally more efficient Fast Fourier Transform (FFT). Such techniques could

then be applied to the analysis of bat echolocation calls using digital computers for the

purposes of understanding the structure of the call from the point of view of biosonar12 as

well as the relationship between call structure and foraging task13.

Signal decomposition techniques are applied to bat echolocation calls for a number of

reasons. Firstly, they allow the analysis and interpretation of echolocation call structure

with reference to species identification14, taxonomy15, task16, environment17 and target18.

This is usually done by the visual representation of the signal, either as a power spectrum

a)This work was performed as part of the BIAS consortium under a grant funded by the

EPSRC under their Basic Technology Programme.
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or sonogram via an STFT. Secondly, the parameters extracted from the signal via decom-

position may be used to understand the mechanisms by which bats may determine target

range19, characteristics20, and azimuth and elevation21.

Fourier spectrogram based on the short time Fourier Transform (STFT) is the most

widely used technique for analysing time-varying signals. With respect to the inspection of

echolocation bat calls particularly, apart from limited exceptions (see for example22,23), it is

the technique of choice. However, it is not the best method for time frequency (TF) analysis

for the investigation of the frequency content of biologically produced signals.

The aim of this paper is two-fold. It first serves as a guide for those involved in the

analysis of bat echolocation calls to facilitate the correct interpretation of the frequency

content of such signals. Second, traditional techniques for the analysis of bat echolocation

calls are compared with some less well known methods offering certain advantages. It should

be emphasised that although the study is focused on bat echolocation types of signal, the

results are more general and applicable to other type of signals.

II. DATA COLLECTION METHOD

The echolocation calls analysed and discussed in this paper are field recordings collected

during 2007 and 2008. The recordings of Pipistrellus pipistrellus, Pipistrellus pygmaeus and

Myotis daubentonii took place in the UK, while those of Pipistrellis capensis, Pipistrellus

kuhli and Tadarida aegyptiaca were made in South Africa. In all cases, the bats were recorded

in free flight while foraging with the microphone mounted on a pole with a maximum height

of 3m to better align it with the foraging bat. Calls were obtained from bats flying free

from clutter to remove interfering echoes, and with the heterodyned audio output of the

bat detector switched off to eliminate any low-frequency feedback through the microphone

and consequent low-frequency artifacts. In all cases, a Pettersson D-1000x bat detector

with a solid dielectric microphone was used and the calls were sampled at 750 kHz and

digitised with 16 bit resolution, streamed to a compact flash card in the device and saved in
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the .wav file format standard. These calls were then sorted visually based on the sonograms

generated in Batsound Pro (Pettersson Electronic, Sweden). Species identification was made

with reference to distributions and call information in the literature and in the event of any

ambiguity in identification, or any evidence of clipping, the affected call was not selected for

analysis.

III. SPECTROGRAM

The spectrogram, which is essentially the squared modulus of the short time Fourier

transform (STFT)24,25, is one of the most widespread tools for time-frequency analysis of

time-varying signals.

The STFT of a signal x(t) is given by:

S(h)
x (t, f) =

∫
x(u)h∗(u− t)e−j2πfudu, (1)

where x(u) is the signal analysed and h∗(t) is the complex conjugate of an analysis window

localised around t = 0 and f = 0. The superscript (h) indicates the dependence of the STFT

analysis on the characteristics, especially the length, of the analysis window used. If h(t)

were omitted, or equivalently set to 1 ∀t, then the STFT reduces to the Fourier transform.

Otherwise, h(u − t) suppresses the signal outside an area around the time instance t. In

simple words, allowing the parameter t to take on all the values within the time interval

where the signal is evolving centers the analysis window on t, and permits us to estimate

via the FT the frequency content of the signal in the neighbourhood of t delimited by h(t).

Finally, the spectrogram, SPEC
(h)
x (t, f) = |S(h)

x (t, f)|2, can be loosely interpreted as the

energy distribution of the signal over the time-frequency (TF) plane.

A. Spectrogram time-frequency resolution

According to Eq. (1) if a short analysis window, h(u), is used, then only a short interval

of the signal centered on t enters into the calculation of the STFT and the result of S
(h)
x (t, f)
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FIG. 1. (color online) (a-b) Spectrograms of echolocation calls produced by a P. pipistrellus

bat using 512 and 256 samples long Gaussian analysis windows respectively. (c-d) Spectro-

grams of a R. capensis and a T. aegyptiaca bat call respectively.

is well localised around t. Otherwise, if h(u) is large, then the outcome of the STFT is

influenced by a larger portion of the signal, i.e. a longer time interval around the analysis

time point t, leading to low time resolution in the sense that signal components having

time separation shorter than the analysis window duration will contribute simultaneously

to the estimate of the signal energy at the associated TF plane points, rendering them

indistinguishable.

On the other hand, the bandwidth of the analysis window is responsible for the frequency

resolution achieved. Specifically, the smaller the bandwidth of the analysis window is, the

better the frequency localisation becomes providing improved frequency resolution.

Unfortunately, analysis windows having arbitrarily short length and small bandwidth at

the same time cannot be constructed, due to the Heisenberg uncertainty principle, leading

to a fundamental resolution trade off: Using a window with a short duration gives a high

time resolution at the expense of a compromised frequency resolution, and vice versa.

B. Spectrograms of echolocation bat calls

Fig. 1(a-b) shows the spectrograms26 of echolocation calls belonging to Pipistrellus pip-

istrellus bat. We observe that this is a multiharmonic signal with the fundamental frequency
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component evolving from about 140 KHz to 50 KHz. Moreover, it has a characteristic non-

linear chirp shape consisting of two distinct parts. The first one is a fast time-varying

down-chirp (from 0.5 msec to 2 msec) and the second one, corresponding to the rest of the

signal, has a nearly constant frequency profile. In Fig. 1(a) the STFT uses a Gaussian anal-

ysis window that is 512 samples long, corresponding to about 0.68 msec time duration. This

is a relatively long window that provides high frequency but low time resolution. The result

is a good concentration of the spectrogram energy around the frequencies that correspond

to the constant frequency part of the signal which appears thin compared to the down-chirp

part. In fact, when dealing with fast time-varying signals (or signal sections), the adoption

of long analysis windows can be problematic particularly if the signal changes significantly

during the window duration. Indeed, improvement in the down-chirp frequency concentra-

tion, both in the fundamental component and the harmonics, can be achieved using a 256

samples long analysis window as is shown in Fig. 1(b). Inevitably, the shorter window leads

to poor frequency localisation and consequently to a wide spectrogram around the actual

frequencies of the constant frequency part.

The second echolocation call examined here belongs to a R. capensis bat and is a multi-

harmonic constant frequency signal having characteristic short downchirp tails. Its spectro-

gram, using a 1024 samples long analysis window, is shown in Fig. 1(c). In this case, a long

enough analysis window guarantees enhanced frequency localisation but at the expense of a

compromised time resolution. As a result, the exact time instances that the signal appears

and disappears cannot be accurately determined by the spectrogram. In a similar fashion,

the nonlinear tails slightly diverge from their actual shape.

The ability of STFT to analyse a signal that is corrupted by noise is investigated next

using an echolocation call signal from Tadarida aegyptiaca (illustrated in Fig. 1(d)). The

actual recording used here presents an additional challenge as it contains the echolocation

calls of two bats emitted with a time difference of just 1 msec. The energy concentration

of the specific signal can not be improved by using a different window. This is due to the

slope that the chirps have.
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Based on these examples, we can infer that the spectrogram via the STFT cannot serve

as a generalised analysis tool for all types of bat calls. Moreover, as we saw in the case of the

nonlinear chirp, the results are limited since a particular analysis window is not appropriate

for the entire signal. However, there are signal shapes that lend themselves to an accurate

interpretation of their spectrograms provided a suitable window length is used.

IV. A BROADER CLASS OF QUADRATIC TIME-FREQUENCY

REPRESENTATIONS

The spectrogram, discussed above, and the scalogram belong to the class of energy TF

distributions, with both being given by the square modulus of their respective linear trans-

formations, namely the STFT and CWT. An alternative road to TF representations, which

provides greater flexibility and in many cases better performance, is to directly estimate

the signal energy on the TF plane27,28. A prominent example of this is the Wigner-Ville

distribution (WVD):

WVx(t, f) =

∫
x

(
t +

u

2

)
x∗

(
t− u

2

)
e−j2πfudu. (2)

For the sake of clarity and simplicity, the WVD study is initially based on two artificial

signals shown in Figs. 2(a) and (c). The first one is a combination of a constant frequency

and a linear chirp signal whereas the second one is a nonlinear chirp signal. The WVD

estimate corresponding to Fig. 2(a) is shown in Fig. 2(b). Two immediate observations

can be made. First, the energy around each of the actual signal components, indicated by

ST1, ST2 and ST3, is extremely well concentrated both in time and frequency, significantly

outperforming the spectrogram (or scalogram). Indeed, the WVD offers exact localization of

linear chirps30. Second, there are areas, clustered into three groups IT1, IT2 and IT3, that

falsely show high energy. These are the result of interference terms that the WVD inherently

produces, and are misleading with respect to the readability of the TF representation. It is

pivotal to comprehend the generation mechanism and characteristics of the WVD artifacts,

both for enhancing our ability to correctly interpret the TF representation of an unknown
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FIG. 2. (color online) (a) Test signal comprising two constant frequency harmonics and

a linear chirp. (b) The corresponding WVD. (c-d) Nonlinear chirp test signal and the

corresponding WVD respectively.

signal and for introducing techniques for interference reduction. As an example consider a

signal x that is the sum of two distinct components x1 and x2, having energy concentrations

around the points (t1, f1) and (t2, f2) respectively. Then, it is straightforward to show that

WVx(t, f) = WVx1(t, f) + WVx2(t, f) + 2Re{WVx1x2(t, f)}, where the operator Re indicates

the real part. The first two terms are the signal terms (STs) that accurately depict the

energies of the two signal components on the TF plane, whereas the third term is a cross-

product interference term (IT) that appears as an additional, false, component. The IT is

due to the interaction of the two signal components and is located exactly at the centre of

the line segment connecting the points (t1, f1) and (t2, f2).

When the signal under consideration is more complex, such as in Fig. 2(a), then all of

the signal components interact with one another to produce numerous ITs. Consequently,

the interference term IT1 is the result of the interaction between the CF harmonics ST1 and

ST2, and is found midway between these two signal terms. Similarly, IT2 is the result of
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the interaction between ST3 and ST1. The width of the areas of these ITs is related to the

relative distance between the points of ST3 and ST1. For example, the top-right (top-left)

part of IT2 is due to the interaction of the rightmost (leftmost) part of ST1 with the topmost

part of ST3. Similarly, IT3 is generated from the interactions between ST2 and ST3.

Fig. 2(d) shows the WVD of the nonlinear chirp of 2(c). The localisation of the nonlinear

chirp is worse than that of the linear chirp but is superior to the spectrogram. Also, the

observed ITs are not the result of interactions between signal parts belonging to different

components, but are caused by different parts of the same signal component. For this

reason they are often referred to as inner interferences to differentiate them from the outer

interferences of Fig. 2(b). However, a clear distinction between the two types of interference

terms does not exist since they are both generated by the same mechanism.

In the case of digital signals (which is true here), interferences between the signal com-

ponents lying at the negative and possitive frequencies might appears. For that reason, the

WVD is applied on the analytic signal version of the signal under consideration30.

A. WVD Interference reduction

An important feature of the ITs is their sinusoidal oscillatory structure, evident in the

magnified insets shown in Fig. 2(b),(d). We observe that the direction of the oscillations is

perpendicular to the line connecting the interacting components (e.g., ST1 and ST2 or ST1

and ST3 in Fig. 2(b)). Moreover, the frequency of the oscillations is distance dependent

and the further apart the signal components are, the faster the oscillations become. This

can been seen in the magnified inset in Fig. 2(d). Indeed, we see that the frequency of the

oscillations is changing as the ITs move away from the signal term, with the reason being

that the distance between the signal parts that produce the distant ITs is greater.

The oscillatory nature of ITs can be exploited in order to eliminate them by means of

smoothing. According to this framework the ITs smoothing is realised along the time and the

frequency axis separately using two analysis window functions g(t) and h(t) respectively. The
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resulting TF representation is referred to as smoothed pseudo-WV distribution (SPWVD)

which is given by:

SPWVx(t, f) =

∫
du

∫
dτ

{
h
′
(u)g(τ − t)

x
(
τ +

u

2

)
x∗

(
τ − u

2

)
e−j2πfu

}
,

where h
′
(τ) = h

(
1
2
τ
)
h∗

(−1
2
τ
)
.

The window g(t) can reduce ITs evolving parallel to the time axis. The required length

depends on the oscillation frequency and should cover at least a full oscillation period. In

other words, the further apart two interacting components are the shorter g(t) is allowed to

be. On the other hand, h(t) is capable of reducing ITs evolving parallel to the frequency

axis. In contrast to g(t), the shorter h(t) is, the more intense the smoothing along frequency

axis becomes. The reason is that h(t) does not contribute directly to the overall smoothing

function but via the Fourier transform of h
′
(t).

Unfortunately, apart from ITs elimination, the smoothing operation reduces the concen-

tration of the actual signal components. As a result, there is always a trade-off between the

time-frequency resolution achieved and the amount of ITs that will be eliminated through

smoothing. In any case, the shorter g(t) and the longer h(t), that effectively reduces the

ITs, should be used.

Fig. 3 shows the TF representation of the SPWVD of bat signals analysed in previous

sections. In the case of P. pipistrellus echolocation call (Fig. 3(a)) the SPWVD yields

a well-concentrated TF representation of the nonlinear chirp, especially in the down-chirp

parts where the signal energy is strong enough. At the same time, the low amplitude

signal harmonics are missed. The window functions g(t) and h(t) are Gaussian with lengths

201 and 551 samples respectively. Observe that there are some ITs between the harmonic

components. These could be completely removed by adopting a longer window g(t), say

301 samples long. However, this would lead to reduced concentration of the actual signal

components.
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FIG. 3. (color online) SPWVD TF representations of echolocation calls produced by P.

pipistrellus and T. aegyptiaca bats.

Fig. 3(b) shows the SPWVD distribution of T. aegyptiaca using g(t) and h(t) 491 and

1001 long respectively. We observe that the resulting TF-representation is significantly more

concentrated around the actual frequencies than the spectrogram depicted in Fig. 1(d)).

Moreover, both methods have similar sensitivity to noise but in the case of the SPWVD the

noise is shown in a less compact way, forming cell-like structures. This, in some cases, can

favor better readability.

With respect to the R. capensis echolocation call which spectrogram discussed in Fig.

1(c), the corresponding SPWVD do not offer any advantage so it is not shown.

V. HIGH RESOLUTION SPECTRUM TECHNIQUES

In this section we present an alternative adaptive filterbank approach31 called the min-

imum variance estimator (MVE). The adaptation of a bank of filters to the signalleads to

a significantly higher resolution compared to the STFT, albeit at a higher computational

load.

Assuming that the signal is stationary or almost stationary over a segment of length L

then the MVE aims to estimate the energy contribution that a specific f requency f makes to

that signal. This is done by designing a finite impulse response (FIR) filter of length M that

passes the signal component at f undistorted while attenuating the rest of the frequencies
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as much as possible. Let us denote by hf the coefficients vector of such an FIR filter, then

the output of the convolution of the filter with the L samples long signal segment yields

K = L−M + 1 samples given by

yk(f) = hH
f (ω)xk, for k = 1 . . . K, (3)

where xk = [xk, xk+1, . . . , xk+M−1]
T . The mean power over the K output samples is given

by

P̄ (f) =
1

K

K∑

k=1

|yk(f)|2 = hH
f Rhf (4)

where R = 1
K

∑k
k=1 xkx

H
k is the M ×M sample covariance matrix of the input data. The

design problem can be expressed as the following constrained minimisation:

min
hf

hH
f Rhf , s.t. hH

f s(f) = 1, (5)

with s(f) = [1, ej2πf , ej4πf , . . . , ej2(M−1)πf ]T being the template at the frequency of interest.

It can be shown that the solution to this problem is a filter of the form31:

hf =
R−1s(f)

sH(f)R−1s(f)
. (6)

The MVE filter then strikes the best balance between the attenuation and the main lobe

width32. Using a bank of these filters, with each one tuned to a different frequency on a

specified grid, we can obtain a sampling of the overall frequency content of the signal on

that grid.

The frequency resolution achieved by the MVE is determined by the filter length M . A

longer filter would exhibit a narrower main lobe and higher sidelobe attenuation, yielding

a higher frequency resolution. On the other hand, the reliability of the sample covariance

matrix of the input data and consequently the P̄ (f) estimates is given by the amount of

averaging used (which is set by K). Therefore, for a fixed L, there is an inherent compromise

between the resolution and reliability of the spectral estimate. It should be emphasized that,

in order to ensure the matrix R is invertible, the minimum allowable value of K is M + 1.

Equivalently, this translates to a total data segment L ≥ 2M . Note that since L = M+K+1,

a large M and/or K requires the availability of a long enough signal segment.
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A. Implementation of the MVE and Performance Tradeoffs

Consider the general case where we have available N data samples of a non-stationary

signal, and we seek to estimate its TF spectral distribution. Then, similarly to the STFT,

the signal can be partitioned into a number of segments of length L, over which the signal

can be assumed to be stationary or nearly stationary, and the MVE applied to each of those

signal segments.

As pointed in the previous section, the implementation of the MVE spectrum estimator

presents a number of compromises in setting the various inter-related parameters. At this

point we introduce an extra parameter that facilitates the discussion. Let α specify the

number of samples that L exceeds its minimum allowable value by, that is L = 2M + α.

Equivalently, we have K = M + 1 + α. In order to specify the MVE algorithm, any two

parameters among L, M , K and α need be set. Here we propose fixing the parameters M

and α.

The larger that α is, the smoother the TF representation looks. Thus, α should be large

enough in order for the MVE estimates to be reliable. We have found that a value in the

interval [30, 100] is acceptable. With respect to M , it is desirable to make it as large as

possible in order to achieve high frequency resolution. However, this necessitates a large

L which may violate the stationarity requirement. In fact, L must be kept small enough

for the stationarity assumption to be, at least approximately, maintained. In the case of a

chirp for instance, the faster the rate of change of the chirp frequency, the more severe the

limit on L (and therefore on M) is. In other words, although a longer filter would lead to

improved spectral resolution, the signal non-stationarity would negate this advantage as it

blurs the spectrum itself. Having set M and α, the resulting length of the signal segments

can be computed from L = 2M + α.

When segmenting a data record of N samples into the blocks of length L, the same

approach to the STFT can be used. That is, one can either use non-overlapping blocks or

alternatively allow them to overlap. In the first case, the total number of segments will
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be Nt =
⌊

N
L

⌋
. Thus, Nt determines the time points of the TF plane where the spectral

estimates are computed. In practice, however, the total signal length N is usually not very

large and the readability of the TF representation is enhanced by overlapping the blocks. If

the segments overlap by ∆ samples, the number of blocks Nt becomes

Nt =

⌊
N − L

∆

⌋
. (7)

From this, the value of the overlap, ∆, can then be calculated to give the desired number

of time points Nt. Note that whereas the sampling of the time axis is set by Nt, that of the

frequency axis can be made arbitrarily fine by choosing a denser frequency grid. This is akin

to the zero padding of the DFT and comes at the expense of an increased computational

load.

B. MVE application on actual echolocation calls

A number of examples of MVE-based TF representations are shown in Fig 4. For

comparison purposes, the spectrogram of the first echolocation call studied with MVE is

given in Fig 4(a). This signal consists of 3 distinct components that originated from different

sources. First, present is a call denoted by (A) together with one relatively weak harmonic

belonging to a P. capensis. Second, another bat call is denoted by (B). And finally, the return

of the strong harmonic of call (A) is designated by (C). Moreover, we observe that the down

chirp part of (A) exhibits a frequency null (D) that is not well localised by the spectrogram

in either the time or frequency. Figs. 4(b) and (c) present the outputs of the MVE with

two filters of lengths M equal to 30 and 100 respectively with α = 30 in both cases. Note

that the filter with M = 30 is not long enough to adequately attenuate the interference. As

a result the TF representation looks spiky with many disturbing interference lines between

strong signal components. However, the frequency null is accurately reproduced in its full

extent. Setting M to 100 enhances the frequency resolution and leads to a much clearer

and well concentrated TF representation. Although there are still some artifacts especially

between the two strong components (A) and (B) the accurate interpretation of the frequency

16
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FIG. 4. (color online) Study of MVE on several echolocation calls.

content of the signal is not difficult. Additionally, the echolocation call return (C) is shown

with high detail. However, the visibility of the frequency null is somewhat degraded by the

longer filter used which then spans the duration of the null. Now recall that α determines

the reliability (smoothness) of the TF representation. Using α = 30 guaranties enough

reliability (small variance of the magnitude estimates). However, if a still smoother TF

representation is desired, α can be increased, to say 200 as shown in Fig. 4(d). Increasing

the filter length to M = 400 a much greater frequency resolution can be achieved as is
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evident in Fig. 4(e). The consequences, however, are threefold. First, the ability of the

filter to attenuate interfering frequencies is enhanced leading to a clear distinction between

strong neighboring signal components, e.g. (A) and (B). Also, components that are much

closer together can now be distinguished. An example of this is given in the area marked

by the dotted rectangle which is magnified and displayed in Fig. 4(f). An additional signal

component slightly above component (B) is now visible. In fact, this is a delayed version of

(B) resulting from its reflection by an object. Its delay with respect to (B) is similar to the

delay of the return call (C) from its originating signal (A). This leads us to infer that the

two bats were likely close together and their calls reflected from the same object. A third,

negative consequence of the use of a longer filter is a relative loss of time resolution especially

in the return (C) leading to fairly elongated signal parts in the low amplitude components.

However, this does not have a significant effect on the strong components (such as the

downchirp part of (A)) apart from the frequency null area which seems quite distorted. For

completeness, the MVE TF representations of some of the echolocation calls investigated

before are also given in Figs. 4(g) and (h). The MVE TF distribution of the T. aegyptiaca

echolocation call appears somewhat sharper than those obtained from the spectrogram and

SPWVD. In the R. capensis call case, we see a more concentrated localization of the signal

components at the expense of a relatively poor accuracy in the power evaluation of all the

harmonics but the strongest one. This is a disadvantage of MVE since it is known33 that

the MVE is a biased estimator of the amplitude. However, the high resolution achieved can

be helpful in interpreting and extracting valuable information from the TF representation.

Indeed, the detail revealed by the close up, shown in Fig. 4(i)), of the echolocation call “tail”

(marked by the dotted rectangle in Fig. 4(h)) indicates that a return of the strong harmonic

has been captured in the specific recording. Although this conclusion could be drawn from

the corresponding spectrogram shown in Fig. 4(j), the MVE provides more details, allowing

more accurate statements to be made about the nature and number of reflecting objects.
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VI. SPECTRAL ANALYSIS BASED ON INSTANTANEOUS FREQUENCY

ESTIMATES

Although the notion of Instantaneous Frequency (IF) was introduced decades ago (see

e.g.27) there is still a lot of controversy regarding a proper definition as well as a physical

interpretation for it34–36. Perhaps, the most widely accepted definition of the IF is as the

derivative of the phase of the signal. More specifically, for a signal x(t) = a(t) cos(φ(t)) the

IF in hertz is given by:

IF =
1

2π

dφ

dt
, (8)

where, φ(t) is the phase and a(t) the instantaneous amplitude (IA) of the signal. Now it is

impossible to compute two unknowns, namely the amplitude and phase, from the observed

real signal x(t)37. Thus, there have been numerous attempts to solve this issue and for a

review and comparison of these corresponding methods we refer the interested reader to38–42.

In this study, we adopt the analytic signal approach37 according to which the signal,

x(t), under examination can be written in complex form as:

w(t) = x(t) + iH[x(t)] = x(t) + iy(t), (9)

where H[x(t)] is the Hilbert transform43 of x(t). The specific complex representation w(t)

is analytic in the sense that it contains the full spectral content of x(t) solely in the positive

frequencies. Accordingly, the IA and phase can unambiguously be derived as

a(t) =
√

x2(t) + y2(t) (10)

and

φ(t) = arctan

(
y(t)

x(t)

)
. (11)

In order to efficiently use the IF for the study of echolocation calls we need first to

understand its properties when dealing with different signals. It should be stated that IF

estimation does not offer an alternative technique for constructing a TF representation of a

signal. In other words, there is only a limited number of cases that the IF coincides with
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the actual frequency content of a signal, and in general, the IF at a time t assumes values

that do not correspond to any of the frequencies of the signal components revealed by the

TF representation to constitute the signal at t. Nonetheless, the IF can be a useful tool for

echolocation call study provided that the ability to correctly interpret it is first developed.

A. Interpretation and properties of IF

The behaviour of the IF of a signal depends strongly on whether the signal is mono-

component or multicomponent. By monocomponent we refer to a signal that, at any time

instant, contains only a single frequency. In a broader, more relaxed sense, a signal can

be characterised as monocomponent if it is highly narrow-band locally. With respect to

echolocation calls, a monocomponent signal does not contain harmonics. In contrast, an

echolocation call comprised of a number of harmonics is a multicomponent signal since

it contains at any time instant more than one frequency. Moreover, multiple overlapped

echolocation calls would make up a multicomponent signal regardless of whether they con-

tain harmonics or not. Note, that the characterisation of a signal as multicomponent or

monocomponent applies locally in time and does not refer to full length of the data record.

In other words a signal can be monocomponent or multicomponent at various times as

components of different frequencies appear and/or disappear.

Once the IF and IA of a signal have been computed, they can be combined in order to

form a spectrogram-like plot H(t, f) which, for any time instant t, is the IA, a(t), of the

signal at the frequency f which is active, determined by IF(t), and zero at the rest of the

frequencies. H(t, f) is usually refered to as Hilbert spectrum44.

B. IF of monocomponent and multicomponent signals

When applied to a noiseless monocomponent signal, the IF provides exact estimation of

the frequency content of the signal. This is a very useful property in cases of echolocation

calls that have no, or extremely attenuated, harmonics. Unfortunately, the situation is much
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more complicated in the case of multicomponent signals.

The behaviour of the IF of multicomponent signals is investigated first using the two-

component signal depicted in Fig: 5(a). In particular, subfigures 1 and 2 show these two

components individually while subfigure 3 displays their sum. They are chosen so that the

amplitude of the first component decreases with time whereas that of the second component

increases. The Hilbert spectrum of the signal is shown in Fig. 5(b1), together with the actual

frequency tracks of the two components (indicated by dashed lines). The tracks represent

parallel linear chirps, the lower of which belongs to the first component (shown in 5(a1)).

The resulting IF plot exhibits a spiky form that clearly does not match the actual frequency

content of the signal. That is to be expected since, at any time instant, the rate of change

of the phase (which gives the IF) includes the effects of both instantaneous frequencies and

it is not possible to decouple those two effects (in order to resolve the two tracks) using a

single function estimating the IF. We will now briefly discuss some properties of the IF that

are useful for the types of signals that are of interest to us in this study. Proofs and/or

further details can be found in the following references34,45–48. The following are a number

of properties of the IF that can be observed in Fig. 5(c):

1. The IF is a non-symmetric oscillation exhibiting spikes that point downwards or up-

wards. More specifically, these spikes point towards the component with the larger

amplitude. Therefore, in the first half of the plot, the lower chirp has the larger am-

plitude (see Fig. 5(a1)) and consequently the spikes are directed down. The opposite

is true for the second half of the signal.

2. Smoothing of the IF by applying moving average with a long enough analysis frame T ,

allows improved estimates of the frequency of the component with the larger amplitude

to be obtained. Let the unweighted average49 of the IF resulting from the smoothing

procedure be donoted by IFu. Then

IFu(t) =
1

T

∫ t+T
2

t−T
2

IF (u)du (12)
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FIG. 5. (color online) (a-d) Analysis of multicomponent signals based IF estimates. (e,f)

IF-based analysis of an R. capensis echolocation call

The frequency estimate, IFu(t), is shown in Fig. 5(b2). As expected, it locks on

the first component during the first half of the signal duration (since that component

has the larger amplitude) and then picks up the higher frequency component during

the second half (as it now stronger). This property is quite useful and enables the

estimation of the fundamental frequency of the echolocation bat calls as it usually is

the stronger component of the signal.

3. The strength of the IF oscillations (that is the height of the spikes) depends on the

relative amplitudes of the components. The closer the amplitudes are to each other,

the larger the spikes become. On the other hand, when one component dominates the

other (see for instance the beginning and end sections of the signal), then the spikes

are small.
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Besides the properties of the IF listed above, we mention that the instantaneous amplitude

estimate, eq. (10), matches the envelope of the signal as shown in Fig. 5(b3).

Some additional properties of the IF can also be gleaned from another example, shown

in Fig. 5(c1), of a multicomponent signal consisting of a linear down-chirp with a lower

amplitude harmonic. Unlike the previous example, the amplitudes of both the fundamental

and harmonic are constant in time whereas the difference (or separation) between their

frequencies is time-varying, which is due to the fact that they are harmonics. Now we make

the following observations:

4. The period of the oscillations of the IF depends on the difference between the fre-

quencies of the two components. In fact, the larger this difference is, the faster the

oscillations become.

5. As pointed out in property 4, the amplitude of the oscillations depends on the relative

amplitudes of the components. Additionally, in the current example we see that the

magnitude of the spikes depends also on the difference in the frequencies, becoming

larger as this difference increases.

When more than two signal components come into play, a more complicated IF plot is

generated as shown in Fig. 5(d1). Once again the actual frequencies of the components

are represented by the dashed lines, and their amplitudes are constant and equal to 0.4, 1

and 0.5 respectively starting from the higher to the lower frequency. Most of the properties

discussed above can be adapted to the case of three or more components. Note that the

unweighted average is still valid and can be directly applied as shown in Fig. 5(d2). Indeed,

the middle component is the dominant one here. However, we should emphasise that as

the number of components increases, the dominant component of the signal has to be much

stronger relative to the rest of the components in order for the IFu estimate to be accurate.
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FIG. 6. (color online) IF-based analysis of a P. pipistrellus echolocation call

C. Echolocation Data Study

The first real echolocation call that we study with the IF method is an R. capensis signal.

The spectrogram and MVE TF representations of this signal were presented in Figs. 1(d),

4(h) respectively, and the Hilbert spectrum was given in Fig. 5(e). The best the IF can

achieve is to estimate a single frequency component. The result is a well-concentrated esti-

mate of the highest amplitude component, which is the second lowest frequency component.

In fact, the width of the curve is the result of the oscillations emanating from the presence of

the other harmonics. However, as the amplitudes of the remaining components of the signal

are very low relatively to the dominant one, the resulting estimate is quite accurate. This

is a common scenario in bat echolocation calls. When the unweighted average is applied,

the frequency estimate is forced to lock accurately on the dominant frequency component

as shown by the second lowest component in Fig. 5(f). Moreover, if it were known that the

estimated component is the second harmonic, we can use the unweighted average estimate to

obtain the frequency tracks of other potential harmonics that may or may not be contained

in the signal.

Next, we consider the application of the IF method to the P. pipistrelus echolocation

call studied with previous methods. The resulting Hilbert spectrum is illustrated in Fig.

6(a). We observe that the frequency track is well concentrated in the down-chirp part but

exhibits some very fast oscillation in the region of constant frequency. Again we stress that
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FIG. 7. (color online) IF-based anaysisis of Myotis Daubentoni echolocation call.

the degree of concentration of the IF estimates around a particular frequency is independent

of the time- frequency resolution of the method. Instead, it depends only on the amplitudes

of other signal components present at each time instant. Therefore, we infer from the

observed frequency trajectory that the harmonics are largely attenuated during the down-

chirp part, something that is confirmed by the related spectrogram shown in Fig. 1. This

implies that the down-chirp part of the signal is effectively monocomponent. In the section

of constant frequency, on the other hand, the harmonics are stronger leading to a coarser IF

estimate. Again a more accurate estimate of the highest amplitude signal component can

be computed using the unweighted average (especially as the harmonics are significantly

weaker than the strongest component). This result, together with its potential harmonics,

is depicted in Fig. 6(b).

Apart from harmonics estimation, IF-based analysis can also prove useful in cases that

other TF representation methods do not provide results that are easy to interpret. Take

as an example an echolocation call produced by a Myotis Daubentoni bat shown in Fig.

7(a). These specific bat calls often appear to have a special amplitude modulation. The

spectrogram of this call is displayed in Fig. 7(b), and consists of a slightly nonlinear chirp

that looks somewhat different than usual; It is wider than expected and has energy nulls

along its length. With the aid of the Hilbert spectrum, useful information about both the

spectrogram shape and the amplitude modulation can be drawn. As can be seen in Fig.

7(c) the IF exhibits spikes similar to those appearing when two signal components having
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FIG. 8. (color online) Comparison of different methods when analysing two successive

echolocation calls of a P. pipistrellus feeding-buzz.

closely spaced frequencies are active simultaneously (e.g. Fig. 5(b)). Moreover, due to the

fact that the spikes point downwards, we can conclude that the signal component having the

higher amplitude also has the lower frequency. This combination of two closed in frequency

components is in agreement to the amplitude modulation that the signal exhibits.

VII. GENERAL DISCUSSION

Based on the above study, we can conclude that despite having a performance that

is usually worse than its competitors, the STFT is often a reliable tool for analysis and

investigation of bat echolocation calls especially in cases that the bat signals do not contain

both constant frequency (or nearly constant frequency) and fast down chirp parts. However,

one must always be mindful of the trade-off in the time-frequency resolution, which can make

it hard to accurately determine the actual extent along the time or the frequency axis of the

signal being investigated. Also a clear advantage of the STFT is its low computational cost.

The SPWVD is more flexible in dealing with signals comprising different types of echolo-
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cation calls. With a proper selection of the smoothing windows, better performance than

the STFT can be attained, albeit at a higher computational cost. A deep understanding

of the generation mechanism of the interference terms is essential for two reasons. First,

it assists in the proper tuning of the smoothing filters, and second it allows for a correct

interpretation of the resulting TF representation. It should be noted that if the interference

terms can be recognized, and therefore ignored, less smoothing would be needed in order to

produce much better concentration and time-frequency resolution than the STFT.

To the best of our knowledge, the MVE has never before been applied to the study of bat

echolocation calls. It appears to be a useful technique capable of revealing details “missed”

by other methods. However, MVE time resolution is limited when it is necessary to use

quite long filters (large values of M parameter). This is the case when the studied signal

contains components closely spaced in frequency. Otherwise, somewhat disturbing interfer-

ences appear between the neighboring (in frequency) components. Moreover, it comes at a

significant computational cost that is comparable or even larger than that of the SPWVD.

A final comparison of the above methods is shown in Fig. 8(a-c) concerning two succes-

sive echolocation calls of a P. pipistrellus feeding-buzz. At the buzz stage the echolocation

calls exhibits abrupt frequency changes that limit the flexibility of the analysis window

selection for the STFT. Indeed, the other methods offer more accurate TF representations.

IF analysis and Hilbert spectrum can not replace the TF representation methods. How-

ever, they can often provide extra, useful information and insight into the signal under

consideration. The Hilbert spectrum of the unweighted average of the IF corresponding to

the feeding-buzz is depicted in Fig. 8(d). Based on the results of section VI we would expect

the unweighted average of the IF to coincide with the actual frequency of the harmonic hav-

ing the higher amplitude. However, Fig. 8(d) this not to hold in this specific case since the

IF estimate exhibits an abrupt “jump”. This can be explained by the fact that the higher

amplitude harmonic (the lower frequency one) has a spectral null, which can be noted from

the TF representations 8(a-c). The IF estimate at the point of the frequency null, where the

amplitude of the harmonic fades abruptly, tends to track the higher frequency harmonic.

27



At the time instant of the frequency null, the signal component with the larger amplitude is

no longer the lower frequency harmonic, but the higher frequency one. Thus, the IF-based

analysis is capable of revealing the frequency null and its temporal location.

VIII. CONCLUSION

In this paper, advanced frequency-content estimation techniques were exposed and ap-

plied in the context of biological signal analysis. It was shown that the proposed techniques

are capable of showing previously unseen features in bat echolocation call structure.
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