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Abstract

One of the tasks for which EMD is potentially useful is norrgraetric signal denoising, an area for
which wavelet thresholding has been the dominant techrfigueany years. In this paper, the wavelet
thresholding principle is used in the decomposition modesilting from applying EMD to a signal.
We show, that although a direct application of this prineifd not feasible in the EMD case, it can be
appropriately adapted by exploiting the special charaties of the EMD decomposition modes. In the
same manner, inspired by the translation invariant waubaketsholding, a similar technique adapted to

EMD is developed leading to enhanced denoising performance

Index Terms

Signal denoising, Empirical Mode Decomposition, Wavelegesholding

EDICS: DSP-WAVL

. INTRODUCTION

The Empirical mode decomposition (EMD) method [3] is an &ty for the analysis of multicompo-

nent signals [4] that breaks them down into a number of angditand frequency modulated (AM/FM)
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zero mean signals, termed intrinsic mode functions (IMFs)contrast to conventional decomposition
methods such as wavelets, which perform the analysis bgging the signal under consideration onto a
number of predefined basis vectors, EMD expresses the signah expansion of basis functions which
are signal-dependent, and are estimated via an iteratneegure called sifting.

Although many attempts have been made to improve the umahelisig of the way EMD operates or
to enhance its performance (see for example [5], [6], [7], [@), EMD still lacks a sound mathematical
theory and is essentially described by an algorithm. Howepeertly due to the fact that it is easily and
directly applicable and partly because it often resultsnteriesting and useful decomposition outcomes,
it has found a vast number of diverse applications such umdyiical [10], [11], watermarking [12] and
audio processing [13] to name a few.

Apart from the specific applications of EMD listed above, arengeneralised task in which EMD can
prove useful is signal denoising. In this paper, inspiredstandard wavelet thresholding and translation
invariant thresholding, a number of EMD-based denoisinchnéues are developkdind tested in
different signal scenarios and white Gaussian noise. hasve, that although the main principles between
wavelet and EMD thresholding are the same, in the case of Eki®thresholding operation has to be
properly adapted in order to be consistent with the spetiatacteristics of the signal modes resulting
from EMD.

The remainder of the paper is organised as follows: Sectigmovides a brief description of EMD
and the notation required in the rest of the paper is als@duired. In section Il the major concepts
of wavelet thresholding as well as conventional EMD demgjsire described. Section IV explores the
possibility of adapting the wavelet thresholding prineplin thresholding the decomposition modes of
EMD directly. Consequently, three novel EMD-based hard softi thresholding strategies are presented.
The performance evaluation of the novel denoising techesga illustrated in section V and the final

conclusions are drawn in section VI.

Il. EMD: A BRIEF DESCRIPTION AND NOTATION

Empirical mode decomposition (EMD) [3] adaptively decorsg® a multicomponent signal [4]¢)

into a numberL, of the so called, Intrinsic Mode Functions (IMF)?(¢), 1 <i < L,

L
p(t) =Y hO(t) +d(t). (1)
=1

IMatlab scripts for all the novel denoising in methods depetb in this paper can be downloaded from:

http://www.see.ed.ac.uklykopsini/emd/emd.html



whered(t) is a remainder which is a non zero-mean slowly varying fuarctivith only few extrema.
Each one of the IMFs, say thi¢h one R0 (t), is estimated with the aid of an iterative process, called
sifting, applied to the residual multicomponent signal
x(t) yi=1
z9(t) = ey
() = X5 hO() =2

The sifting process used in this study is the standard oneA&jording to this, during thén + 1)th
sifting iteration, the temporary IMF estimalﬁéi) (t) is getting improved according to the following stéps

1) Find the local maxima and minima of” (t).

2) Interpolate, using natural cubic splines, along the tgoof hﬁf)(t) estimated in the first step in

order to form an upper and a lower envelope.

3) Compute the mean of the two envelopes.

4) Obtain the refined estimatéfil(t) of the IMF by subtracting the mean found in the previous step

from the current IMF estimaté.’ (t).

5) Proceed from step 1 again unless a stopping criterion das fulfilled.

The sifting process is effectively an empirical but powktkchnique for the estimation of the mean
m(t) of the residual multicomponent signal’ (¢) locally a quantity that we terntotal local meas.
Although the notion of the total local mean is somewhat vagspecially for multicomponent signals,
in the EMD context it means that its subtraction fraf¥ (¢) will lead to a signal, which is actually the
corresponding IMF, i.eb(® (t) = 2 (t) — m()(¢t), that is going to have the following properties:

1) Zero mean.

2) All the maxima and all the minima df(¥)(¢) will be positive and negative respectively.

Often, but not always, the IMFs resemble sinusoids whichbath amplitude and frequency modulated
(AM/EM).

By construction, the number of, say (i), extrema ofh()(t) positioned at time instances”) =
(RS 2. r%)(i)] and the corresponding IMF poinfs(i)(rj(.i)), j =1, ..., N(i) will alternate
between maxima and minima, i.e., positive and negativeeglés a result, in any pair of extrema,

rg-i) = [ (r](-i)), h) (rj(.i)rl)], corresponds to a single zero-crosshﬁi. Depending on the IMF shape,

2For the first iterationgz(¥) (¢) is used as temporary IMF estimalig(t).
3The termlocal meanwhould be more appropriate but we avoided here because #uially used to describe the mean of

the two envelopes of the second step of the sifting iteration



the number of zero-crossings can be eith®i(i) or N (i) — 1. Moreover, each IMF, lets say the one of
orderi, have fewer extrema than all the lower order IMFs; 1,..., i — 1, leading to fewer and fewer
oscillations as the IMF order increases. In other wordsh é&f= occupies lower frequencies locally in

the time-frequency domain than its preceding ones.

signal in noise
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Fig. 1. Empirical mode decomposition of the noisy signalvaian (a)

Fig. 1 depicts as an example the EMD of the well studied pigsmwegular signal [14] (Fig. 1a)
corrupted by white Gaussian noise corresponding to 5dBastgmoise power ratio (SNR). EMD results

in 10 IMFs and the final remainder, which are depicted in Flgl.1

[Il. SIGNAL DENOISING
Digital signal denoising can be described as follows: Hgwansampled noisy signal(t) given by
xz(t) =z(t)+on(t), t=1,2,..., N (3)

where, z(t) is the noiseless signal and(t) are independent random variables Gaussian distributed
N(0,1), produce an estimaté(¢) of signalz(¢). Noise variancer can be known or unknown and the
denoising methods can be categorised as parametric oraramptric depending on whether a predefined

parametric model ofc(¢) has been adopted or not. In this paper, the focus is on thepammetric

“The end points of the signal are counted as extrema.



framework where the best known candidates are denoisifmigees based on wavelet decomposition
[14], [15], [16]. Moreover, the novelty of this paper lies the introduction of new non-parametric
thresholding techniques applied to the decomposition moeesulting from EMD instead of the wavelet
components. As will be seen, thresholding in EMD, is not aightforward application of the concepts

used in wavelet thresholding.

A. Wavelet based denoising

Employing a chosen orthonormal wavelet basis, an orthdgina N matrix W' is appropriately built

[17] which in turn leads to the discrete wavelet transform{D
c=Wgx

where,x = [z(1), z(2),..., z(N)] ande = [¢1, co,..., cy] contains the resultant wavelet coefficients.
Due to the orthogonality of matri¥¥’, any wavelet coefficient; follows a normal distribution with
variances and mean the corresponding coefficient vatyeof the DWT of the noiseless signal(t).
Provided that the signal under consideration is sparseeénvidivelet domain, which is usually the case,
then the DWT is expected to distribute the total energy@§ in only a few wavelet components lending
themselves to high amplitudes. As a result, the amplitudeast of the wavelet components is attributed
to noise only. The fundamental reasoning of wavelet thriglshg is to set to zero all the components
which are lower than a threshold related to the noise lewvel,T = oC, whereC is a constant, and
then reconstruct the denoised sigadt) utilising the high amplitude components only. There are two

major thresholding operators: hard and soft thresholdifindd by:

y, lyl>T
pr(y) = (4)
0, |yl <T,
and
sgny)(lyl —=T), [yl>T
pr(y) = 5)
0, ly| <T,

respectively.

Using any one of the thresholding operators above, the atdtindenoised signal is given by
z=wTe (6)

where,é = [pr(c1), pr(cs), ..., pr(cy)] and W1 denotes transposition of matri/. Apart from

the standard wavelet thresholding described above, a nuofb@odifications are investigated in our



simulation results section including translation invatighresholding [14], and Bayesian-based wavelet
thresholding [18], [15].

With respect to the threshold selection, the universalstiotel 7 = o+/21n N is a popular candidate.
Such a threshold guarantees with high probability thatfathe components attributed to noise will have
lower amplitudes. In this paper, multiples of the aboveshwdd are used and the standard deviation of
the noise is estimated using a robust estimator based orothpanents median [14]:

mediari|c;| : i=1,...,N)
0.6745

The specific standard deviation estimator leads to accugstinates even if there are components

()

o=

attributed to signal. Finally, it is usually beneficial toplypthresholding after a primary resolution level
leaving the coarse scales corresponding to low frequengigdwesholded. This parameter will be also

taken into account in our study.
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Fig. 2. Examples of Wavelet-based denoising when SNR=5dR. tdp-left numbers are the SNR values after denoising.

Fig. 2a-c shows the noise-free estimates of the signal af Fagcorrupted by noise using, from top
to bottom, wavelet hard thresholding with universal thghtranslation invariant wavelet thresholding
with universal threshold and Bayesian-based wavelet tlotding. The numbers on the top left of the
figures indicate the SNRs after the denoising procedure wiherSNR is 5dB before denoising. Note
that this performance corresponds to a single arbitrargenogalisation. Detailed, ensemble averaged

performance results of the thresholding techniques abdNde& presented in section V.



B. Conventional EMD denoaising

The first attempt at using EMD as a denoising tool emerged ftbenneed to know whether a
specific IMF contains useful information or primarily nois€hus, significance IMF test procedures
were simultaneously developed both by Flandrin et. al. [B)] and Wu et. al. [20], [21] based on the
statistical analysis of modes resulted from the decomiposiif signals solely consisting of fractional
Gaussian noise and white Gaussian noise respectively. §soming underlying the significance test
procedure above is fairly simple but strong. If the energyhef IMFs resulting from the decomposition
of a noise-only signal with certain characteristics is knpwhen in actual cases of signals comprising
both information and noise following the specific charastas, a significant discrepancy between the
energy of a noise-only IMF and the corresponding noisyaigMF indicates the presence of useful
information. In a denoising scenario this translates tdigdr reconstructing the signal using only the
IMFs which contain useful information and discarding theFdthat carry primarily noise, i.e., the IMFs
that share similar amounts of energy with the noise-onlecas

In practice the noise-only signal is never available in ortte apply EMD and estimate the IMF
energies, so the usefulness of the above technique reliadether or not the energies of the noise-only
IMFs can be estimated directly based on the actual noigyatig he latter is usually the case due to
a striking feature of EMD. Apart from the first noise-only IM#e power spectra of the other IMFs
exhibit self similar characteristics akin to those whiclpegr in any dyadic filter structure. As a result,
the IMF energiesEy, should linearly decrease in a semi-log diagram of, écg, Ej. with respect to
k for k > 2. It also turns out that the first IMF carries the highest anm®wf energy. In this paper the
focus is on signals with white Gaussian noise. Then, theenoidy IMF energies can be approximated

[19] according to equation:
R E2
By = _51

where, E? is the energy of the first IMF and, p are parameters which, for a specific EMD implemen-

p k=2 3 4,... (8)

tation, depend mainly on the number of sifting iterationedisThese parameters can be estimated in
one step based on a large number of independent noise tiealssand their corresponding IMFs [19].
Fig. 3 shows the curves that link the estimated energieseofNiFs k. = 1,...,10, based on model (8),
where the parametersandp correspond to EMDs using from 1 up to 15 sifting iteratione Bbserve
that as the number of sifting iterations increases, theesponding curves approach each other. This
is in agreement with the analytically derived frequencypmses of the equivalent filtering operations

that correspond to EMDs with different number of siftingréons in a two sinusoids signal case [6].
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Fig. 3. Curves that link the estimated energies of the IMF&whkorrespond to EMDs using from 1 up to 15 sifting iterasion

The thick red line indicated as “Flandrin et al” correspomalthe 5 and p parameters proposed in [19].

Flandrin et al [19] specifically proposed for the parametérand p parameters the values 0.719 and
2.01 respectively, that correspond to the curve drawn wiitktred line. We see that these parameters
correspond to a curve which is representative by being dlmsa average of the “trend” that the rest of
the energy curves exhibit. Hereafter, the IMF energy cuhat torresponds to the later specification of

£ and p will be called fixed in order to coincide with the sifting depkent IMF energy curves.
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Fig. 4. (a) Theoretical noise-only model and actual IMF gieer with respect to IMF number. (b) The resulted denoisgdasi

when, for the reconstruction, the IMFs number 6 to number réluaed only.

Fig. 4 depicts the conventional denoising procedure andtsehen it is applied on the test signal of



Fig. 1a. On top, with solid line we see the semilog diagramefgies with respect to IMF number) of
the corresponding IMFs (Fig. 1b-I) and the dashed line shbesesults of the noise only model of (8).
We observe, after the fifth IMF the energies significantlyedje from the theoretical model indicating
the presence of significant amounts of no-noise signal. Ergap signal reconstruction including only

IMF number 6 to 11 results in the denoised signal shown in #ig.

IV. IMF THRESHOLDING-BASED DENOISING

In this paper an alternative denoising procedure inspireavlvelet thresholding is proposed. Some
preliminary results have already appeared very recentl22h [23], [24] where the wavelet thresholding
idea is directly applied to the EMD case. However, as will berslater, EMD-thresholding can exceed the
performance achieved by wavelet thresholding only by adgphe thresholding function to the special
nature of IMFs.

EMD can be interpreted as a subband like filtering procedasailting in essentially uncorrelated
IMFs. Although the equivalent filter-bank structure is bymeans pre-determined and fixed as in wavelet
decomposition, one can in principle perform thresholdingach IMF in order to locally exclude low
energy IMF parts which are expected to be significantly qued by noise. A direct application of

wavelet thresholding in the EMD case translates to:

L RO (), |RD (@) > T;
RO (1) = ), | | () ©)
0, RO (t)] < T,
for hard thresholding, and to
L sgrnhD () (|hD (4)| — T3), (KD @t)| > T}
Ry — | SoOONROO] =T, 11O() 10
0, (hO (1) < T,

for soft thresholding where, in both thresholding caged,t) indicates theith thresholded IMF. The
reason for adopting different threshold@s per mode:; will become clearer in the sequel.

A generalised reconstruction of the denoised signal isrgiwe

M, L
pt)y=>_ h0m+ > w9 (11)
k’:Ml kJ:M2+1

where, the introduction of parameteid; and M, gives us flexibility on the exclusion of the noisy
low order IMFs and on the optional thresholding of the higbesrones which in white Gaussian noise

conditions contain little noise energy.
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There are two major differences, which are interconnedietlyeen wavelet and direct EMD thresh-
olding (EMD-DT) shown above. First, in contrast to waveleindising where thresholding is applied
to the wavelet components, in the EMD case, thresholdingpied to the N samples of each IMF
which are basically the signal portion contained in eachptida subband. An equivalent procedure in
the wavelet method would be to perform thresholding on tlenstructed signals after performing the
synthesis function on each scale separately. Secondlycassequence of the first difference, the IMF
samples are not Gaussian distributed with variance equbEtaoise variance as the wavelet components
are irrespective of scale. In fact, the noise contained ohd®IF is coloured having different energy
in each mode. In that sense, EMD denoising is most closebta@lto wavelet denoising of signals
corrupted by coloured noise where the thresholds have tedle dependent. In our study of thresholds,
multiples of the IMF dependent universal threshold, i%&.~ C'/E,2In N, whereC is a constant are
used. Moreover, the IMF energies can be computed direcggdan the variance estimate of the first
IMF using (8).

A. Thresholding adapted to EMD characteristics

The direct application of wavelet like thresholding, eitterd or soft, to the decomposition modes
is in principle incorrect and can have catastrophic conseges for the continuity of the reconstructed
signaf. This is because the IMFs resemble an AM/FM modulated sidusith zero mean. As a result,
it is guaranteed that, even in a noiseless case, in any aiteﬁ} = [z](.i) zj(.ﬂzl], the absolute amplitude
of thesth IMF, s =1, 2,..., N, will drop below any non-zero threshold in the proximity tietzero-

crossing&](.i) and 2\

1IN other words, based on the absolute amplitude of isolde samples it is

impossible to infer for any one of them if they correspond tisa or to useful signal. However, it is
possible to guess if the intervag.i) is noise-dominant or signal-dominant based on the singiema
h(®) (r](.i)) that correspond to this interval. If the signal is abser#, dhsolute value of this extrema will
lie below the threshold. Alternatively, in the presencetobrsg signal, the extrema value can be expected
to exceed the threshold. Moreover, since in each IMF theeramigl the signal share the same bandwidth,

the signal dominance at the extrema time instance is higkdyylto be extended to all the IMF samples

There is strong evidence that at least in the noise-only taselistribution of the IMF samples is still Gaussian [21].
%The denoising procedure used in [11] differs from direcesimolding since the parts of the IMFs that contain usefulaig
are detected with the aid of a fractal dimension filter andseqguently some of the inherent disadvantages of direct EMD

thresholding can be avoided to some extent. However, thtbades only efficient in denoising transient signals.
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belonging to the specific zero-crossing interval. As a ttethal newly developed EMD hard thresholding,
hereafter referred to as EMD interval thresholding (EMD-tfanslates to:
(D), RO @] > T

0, [RIG

RO (=) = 12)

for j =1, 2,...,N% where,h(? (zy)) indicates the samples from instazﬁ) to 23(21 of the ith IMF.
After careful consideration, it can be seen that the aboeeguture resembles wavelet thresholding

more than direct EMD thresholding, because wavelet thidsiwis applied to the wavelet coefficients. In

fact, each coefficient is responsible for the values of asege of samples of the subsignal corresponding

to the specific scale reconstruction which increases witthesand it is determined by the wavelet size

of support. Similarly, the number of IMF samples which arer@d or not in the EMD-IT depends on

the IMF order and increases as the order increases.

IMF before and after thresholding
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Fig. 5. Difference between Direct and Interval threshajdamd the corresponding denoised signals.

Fig. 5a shows the difference between the direct and thevadt&MD thresholding. As an example,

the sixth IMF of the signal shown in Fig. 1 has been used. Tl fight-colored line corresponds to the
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actual IMF and the solid and dotted lines are associatedintignval thresholding and direct thresholding
respectively. The horizontal lines indicate the plus andusiof the universal thresholding.A detail of
the thresholding function applied on the IMF segment betwine two vertical dashed lines in Fig.
5a is also depicted in Fig. 5b1-b3. More specifically, in FBg2 and b3 we see the parts of the IMF
segment which are non zero after thresholding. Clearly, HMDintroduces discontinuities which can
be effectively reduced by the use of EMD-IT. Fig. 5¢ and d shbes denoising effect when the two
EMD-based thresholding methods are applied on the same med@isation of the piecewise-regular
signal used in Fig. 2. We observe that EMD-IT results in higBdlR than EMD-DT. In both cases,
the universal threshold is adopted which, it should be natedot optimum; neither for EMD nor for

wavelet thresholding as will become apparent in the sirfaratsection.

In a similar manner to the hard interval thresholding case,extremum between each zero-crossing
interval [zj(-i) z](.’ll] will be the processing element of reference for the case fofiteoval thresholding as
well. Practically, the result of wavelet soft thresholdimig, e.g. positive wavelet components that exceed
the threshold is that the latter get reduced by an amountl ¢gjilae threshold. With respect to iterative
soft thresholding all the IMF samples that correspond to-oeossing interval with extremum exceeding
the threshold have to be reduced in a smooth way in order foestremum to get reduced exactly by

an amount equal to the threshold. Mathematically, the desetrsoft thresholding operation yelds:

(i) (o D\ RO )| =T: @) () :
0, h@ ()] < T,

B. Iterative EMD interval-thresholding

Inspired by translation invariant wavelet thresholdindyene a number of denoised versions of the
signal under consideration are obtained iteratively ineortb enhance the tolerance against noise by
averaging them, we make an attempt to develop EMD-basedsiegdechniques which exploit a similar
principle. Once again, the direct application of translkatinvariant denoising to the EMD case will not
work. This arises from the fact that the wavelet componeftthe circularly shifted versions of the
signal correspond to atoms centered on different signahmees. In the case of the data-driven EMD
decomposition, the major processing components, whichtherextrema, are signal dependent leading
to fixed relative extrema positions with respect to the digrfzen the latter is shifted. As a result, the

EMD of shifted versions of the noisy signal corresponds &ntital IMFs sifted by the same amount.

"The IMFs can potentially be slightly different at the bourids but only due to edge effects associated with the spline

interpolation procedure.
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Consequently, noise averaging cannot be achieved in this wa

The different denoised versions of the noisy signal in theeaaf EMD can only be constructed from
different IMF versions after being thresholded. Ineviyalhis is possible only by decomposing different
noisy versions of the signal under consideration itselftt&oproblem at hand translates to the following
question: In which way, having a signal buried in noise, can produce different noisy versions of the
actual noise-free signal. The answer stems from within thEDEconcept exploiting the characteristics
of the first IMF. We know that in white Gaussian noise conditiothe first IMF is mainly noise, and
more specifically comprises the larger amount of noise coetpto the rest of the IMFs. By altering in
a random way the positions of the samples of the first IMF aed #dding the resulting noise signal to
the sum of the rest of the IMFs we can obtain a different nemngsion of the original signal. In fact, in
the case where the first IMF consists of noise only, then tted twmise variance of the newly generated
noisy-signal is the same as the original one.

The above EMD denoising technique, hereafter refered tteestive EMD interval-thresholding (EMD-

IIT) is summarised in the following steps:

1) Perform an EMD expansion of the original noisy signal
2) Perform a partial reconstruction using the last 1 IMFs only, z,(t) = ZZ.LZZ R (t).
3) Randomly alter the sample positions of the first IME, (t) = ALTER(h( (¢)).
4) Construct a different noisy version of the original signa,(t) = x,(t) + hfll)(t).
5) Perform EMD on the new altered noisy signal(t).
6) Perform the EMD-IT denoising (Eq. 12 or 13) on the IMFsagft) to obtain a denoised version
Z1(t) of x.
7) lterate K — 1 times between steps 3-6 , whekeis the number of averaging iterations in order to
obtain k denoised versions of, i.e., 71, T9,...,Tk.
8) Average the resulted denoised signa(s) = - SO ER(t).
The altering function can take several forms leading to a bemof modified EMD-IIT denoising
schemes. In this paper we consider four different appraache
« Random circulation: The samples of the first IMF are cirdylahifted randomly.
« Random permutation: The samples of the first IMF randomlyngkapositions.
Fig. 6a-b shows two different noisy versions of the piecewigular signal obtained by the method
described in the current section when the hard EMD-IT trokhg is used. In both cases, random

permutation was used as a signal altering function. The idedasignals that result from 4 and 20
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Fig. 6. Two noisy versions of the piecewise-regular sigmaalb) and result of the EMD-based iterative interaval thoktihg
method using 4 (c) and 20 (d) iterations. (e) shows the aedi&NR w.r. to the number of iterations.

iterations K, of EMD-IIT together with the achieved SNRs are illustratedrig. 6¢ and 6d respectively.
The noisy signal used was that described in Fig. 5. Apparetite proposed iterative procedure has
enhanced the denoising capabilities of EMD. For completgnkEig. 6e shows the increment in SNR of

the denoised signal with respect to the number of iterations

C. Clear Iterative EMD interval-thresholding

When the noise is relatively low, enhanced performance esetpto EMD-IIT denoising can be
achieved with a variant called clear iterative intervak#holding (EMD-CIIT). The need for such a
modification comes from the fact that the first IMF, espegialhen the signal SNR is high, is likely to
contain some signal portions as well. If this is the casen thye randomly altering its sample positions,

the information signal carried on the first IMF will spreadt @ontaminating the rest of the signal along
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its length. In such an unfortunate situation, the denoipidormance will decline. In order to bypass this
disadvantage of EMD-IIT it is not the first IMF that is alterddectly but the first IMF after having all
the parts of the useful information signal that it contaiesioved. The “extraction” of the information
signal from the first IMF can be realized with any threshajdimethod, either EMD-based or wavelet-
based. It is important to note that any useful signal resgilifrom the thresholding operation of the first
IMF has to be summed with the partial reconstruction of tls¢ Ia— 1 IMFs. More specifically, the steps
2 and 3 of EMD-IIT have to be replaced with the following 4 step
1) Perform an EMD expansion of the original noisy signal
2) Perform a thresholding operation to the first IMF ) to obtain a denoised versidri®) (t) of
R (t).
3) Compute the actual noise signal that existed((¢), A\ (£)=hM () — RO (t)
4) Perform a partial reconstruction using the last 1 IMFs plus the information signal contained
in the first IMF, z,(t) = S°%, h® (1) + AV (t).
5) Randomly alter the sample positions of the noise-onlygfathe first IMF,h((ll)(t) = ALTER(h,(f)(t)).

EMD CIIT (4 Iterations)

[17.5353'

(2)

EMD CIIT (20 Iterations)
18.4334' ‘ ‘ ‘ ‘

40t ]
20t :

ot |
20 ‘ : ‘ ‘

0 1000 2000 3000 4000

(b)
19 SNR w.r. to the number of Iterations
18 /
777/\//7
7 5 10 15 20

(©)

Fig. 7. Denoised signals obtained with the aid of EMD-ClITeaf4 and 20 iterations (a,b). (c) shows the achieved SNR w.r.

to the number of iterations.

The effectiveness of the subtraction from the first IMF of aysting information signal is shown

in Fig. 7. For the first IMF denoising (see step 2 above), Bayewavelet thresholding was used. In
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fact, in all the cases we have tested, the EMD interval tholeléig performed similarly or worse than
the Bayesian wavelet denoising when it came to the denoisirige first IMF. As a result, hereafter,
whenever the EMD-CIIT is used, the adoption of the Bayesiathiod for the extraction of the useful
signal from the first IMF is implied unless the use of a différenethod is explicitly mentioned. Fig. 7a-c
illustrates the same quantities as illustrated in previ@ssilt figure and corresponds to the same noise
realization with the Fig. 6c-e. The denoised signals thatiltefrom 4 and 20 iteration&” of the EMD-
CIIT together with the achieved SNRs are illustrated in Fig.and 7d respectively. The noisy signal
used was the same as in Fig. 5. The proposed iterative precbds enhanced the denoising capabilities
of EMD. In both cases, random permutation was used as a sidtesing function. For completeness,

Fig. 7e shows the increment in SNR of the denoised signal reitpect to the number of iterations.

V. SIMULATION RESULTS

Apart from the piecewise-regular signal three more reprtive test signals shown in Fig. 8a-c have
been used for validation of the proposed denoising teckasigMoreover, the best of the methods have
been applied two real signals, a call signal from a bat bétantp the specie®ipistrellus Pygmaeds
shown in Fig. 8d and a speech signal segment illustratedgngsd.

To start with, the effect on the denoising performance dfiezitadopting fixed or sifting dependent
IMF energy curves with respect to the number of sifting itierss is studied in Fig. 9. More specifically,
the adopted performance measure is the SNR after denoigdieg tihe SNR before denoising is either
0dB (Fig. 9a,c) or 15dB (Fig. 9b,d) and the signals used agePiece-wise regular and the Doppler
signal (Fig. 8a) both sampled with sampling frequency tlesult in 2048 samples. The results shown
correspond to ensemble average of 50 independent noiseatjeattons. The dashed curves correspond
to the EMD-IT method and the solid curves to EMD-CIIT and tlesses and the squares correspond
to fixed and sifting dependent IMF energy curves respegtivelnumber of conclusions can be drawn.
First, when the signal is regular such as the Doppler onelatiger the number of sifting iterations then
the better the performance is. In contrast, when the sigmalfnegularities, e.g., the Piece-regular signal
case, the best performance (especially in the iterative EBID method) is achieved with a relatively low
number of sifting iterations. These results have been at@tuwith other regular and irregular signals.

In general, a balanced trade off between number of sifting) @@rformance is realized with about 8

8This bat-call was provided by Dr Dean Waters of the Univgrsit of Leeds

(http://www.fbs.leeds.ac.uk/staff/profile.php?tagteva)
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Doppler Signal

(a)
Blocks Signal

(b)
Bumps Signal

© **

Bat-call Signal
\ \ \

\
(d)
Speech Signal
\ \

\
(e)

Fig. 8. Some of the signals used for validation of the dengisnethods.
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Fig. 9. SNR after denoising with respect to the number ofngjfiterations in the cases of fixed or sifting dependent IMF

energy curves.
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sifting iterations. Second, it is apparent that the siftdependent IMF curves do not offer significant
advantages over the fixed one since the performance differaaver exceeds 0.2 dB. In addition, the
sifting dependent curves can even lead to slight performateterioration in the case of EMD-CIT
when the signal has both intense irregularities and a smatiber of sifting iterations are used. This
happens because in this case it is very likely that largermméion signal portions (in the places where
the irregularities exist) get extracted in the first IMF copmising the iterative thresholding operation.
For the rest of the simulation examples, each one of the@atifiest signals is sampled and tested
with four different sampling frequencies to generate foarsions per signal having 1024, 2048, 4096
and 8192 samples. As before, the results shown correspagrtsEmble average of 50 independent noise
generalizations and in all EMD-based denoising methodsitheber of sifting iterations was fixed and
equal to 8. The adoption of a fixed number of sifting iteragiomay result in modes which do not comply
with the IMF characteristics. More specifically, it is pddesito find two or even more maxima (or minima)
between neighboring zero-crossings. In such cases, thshibiding is naturally performed based on the
largest (smallest) value of the maxima (minima) lying betsweonsecutive zero-crossings. Moreover, the
adopted performance measure is the SNR after denoisinghvaoicesponds to SNR values of 0, 5, 10
and 15 dB before denoising. The performance results foritféirdnt methods shown correspond to hard
thresholding. The conclusions drawn from the hard threhgldenoising are in general valid for the
soft thresholding variants and a discussion on the latez tfpthresholding can be found at the end of

the section.
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Fig. 10. Performance evaluation of the Doppler signal usiagelet and EMD-based denoising methods.

Next, a thorough denoising performance evaluation of theeldped and wavelet-based methods is

realised using the Doppler signal (Fig. 8a) and then theopmidnce of the best of the techniques when
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applied on the rest of the signals is examined. Fig. 10a-ictiefhe performance comparison between
wavelet techniques, existing and newly developed EMD-hasehniques and variants of denoising
methods based on the iterative interval thresholding jpiecespectively. In each graph, the performance
curves correspond to SNR after denoising versus numbergaiksamples and they are grouped in 4
sets associated with 15dB SNR before denoising (dashededaarves), 10dB SNR (dotted curves), 5dB
SNR (solid curves) and 0dB SNR (dashed curves). The redulteavavelet-based techniques are shown
in Fig. 10a. We observe that the best performance is achigitedthe translation invariant thresholding
algorithm (Hard-TI) with the Bayesian technique to follolvis clear that the performance discrepancy
between Hard-Tl and Bayesian increases as the initial B®NR increases. This trend and performance
order is in general common to the rest of signals tested. Véigipect to existing and newly developed
EMD-based methods (Fig. 10b) worse performance is exkillitethe conventional denoising approach
(EMD-conv). The interval thresholding (EMD-IT) leads to dBLimprovement over direct thresholding
(EMD-DT) and the incorporation of clear iterative interdatesholding with permutation altering (EMD-
CIIT (p)) offers about 2 dB of extra gain. Finally, the perftance of several iterative interval (EMD-IIT)
and clear iterative interval thresholding (EMD-CIIT) vaamts is shown in Fig. 10c with the number of
iterations being fixed to 20. It would appear that the diffén@ethods perform in a similar way, with the
EMD-CIIT denoising performing the best especially in theseaf high SNR (10dB and 15dB) and low
number of samples (1024 and 2048). Moreover, the randomyiation methods slightly outperform the
random circulation ones.

The effect of the altering method can be further investidatéth the aid of Fig. 11 where the
performance of the IIT and CIIT methods when applied to thé&€8amples Doppler signal is displayed
with respect to the number of iterations. We observe thatlitha cases the random circulation altering
method exhibits a much faster performance improvement riggpect the number of iterations compared
to random permutation. However, random permutation ofgp®ms the random circulation after about 9
or 18 iterations in the cases of IIT or CIT respectively. §ihésult appears unexpected at first glance.
The first IMF is roughly concentrated in the upper half banditef spectrum and consequently one
would expect that the averaging procedure would perfornt Wwaen the altered IMFs occupy the same
frequencies with the original IMF. However, this is only érdor the circulation altering function. In
contrast, the permutation altering inevitably leads tor#distribution of the IMF energy over the whole
band. As a result, when random permutation is adopted, theisiag problem can be considered more
demanding in the sense that the noise contained in the aliffemoisy versions of the signal under

consideration is no longer white. We feel that a possibldamgiion for the improved performance that
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the permutation-based denoising exhibits over the citituldbased approach, would be the effect that
the perturbation has on the information signal which is ao&d in the first IMF. In general, the energy
of the signal portions existing in the first IMF will be condeated in time. This is true since the reason
that the part of a signal is in the first IMF is its high frequgrand/or high energy. This requirement is
likely to be fulfilled at time intervals rather than time iaates. As a result, the perturbation function will
effectively spread the energy of the information signahglahe full time axis reducing its destructive
effect. Indeed, the improvements achieved with the peatioh altering method are more profound in

the EMD-IIT case where the first IMF is not cleared from theomfiation signal residual.

b
T T

EMD-IIT (c)
EMD-CIIT (c)

| — — — EMD-IIT (p) ||
| — — — EMD-CIIT (p) | |

14 16 18 20

Fig. 11. Study of effect of the first IMF altering method.

Based on the results above, the techniques which are goibg tsed for a comparative performance
study discussed next are the EMD-IIT and EMD-CIIT both ugisgdom permutation altering represent-
ing the EMD-based methods and the Hard-Tl and Bayesiangeptieg the wavelet-based methods.

Fig. 12a-c shows the corresponding performance curvetedeta the Doppler, the piecewise-regular
and the blocks signals. It can be observed that the EMD-bastidods outperform the Bayesian method
for all the combinations of signal number of samples anddai@NR used. Moreover, the translation
invariant hard thresholding method exhibits a significagrfgrmance improvement in the cases that the
noise is relatively low (15dB SNR) outperforming both theyBsian and the EMD-based methods.
Moreover, we see that in general the improvement of the EMBed methods with respect to the
increment of the sampling frequency is higher than the iwmg@nmeent of the Hard-TI method. As a
result, even in 15dB SNR the performance of the EMD denoisanipniques tends to reach the high
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performance levels of Hard-TI. A counter example to thishis bumps signal (Fig. 8c) where Hard-TI
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Performance evaluation of EMD and wavelet-basewidang methods applied to the bumps signal.

outperforms the rest of the methods in all the SNRs testeld thi exception of the 8192 samples case

where the EMD-CIIT method performs the best as seen in FigAh8ther measure which characterises

the performance of the denoising methods is the variancbe®fSNR estimates, resulting from many

realizations, which is shown in Table | for all the artificEignals tested with 2048 samples and for two



22

SNR values (0dB and 15dB). The EMD-CIIT method exhibits gaitow variance, in a manner similar to
the Bayesian method in contrast to the Hard-TI which resaoltsigher variances and sometimes double

that of the other methods. This is considered as an advaofape EMD-CIIT based methods

Method Doppler Piece-Regular Blocks Bumps
0dB 15dB 0dB 15dB 0dB 15dB 0dB 15dB
EMD-CIIT (p)| 0.3888 0.2319 0.2437 0.1694 0.2107 0.0953 0.1798 0.1184
Hard-TI 0.8173 0.4909 0.4396 0.2510 0.2821 0.1732 0.1887 0.0946
Bayesian 0.4358 0.2532 0.3199 0.1787 0.1722 0.1334 0.1511 0.1012
TABLE |
VARIANCE OF THE SNRS OF THE DENOISED SIGNALS
SNR/Variance
= | Methods 2.dB 0dB 2dB 5dB 10 dB 5 dB
2 |[EMD-CIIT (c)| 8.443/0.066 | 10.009/0.055 | 11.649/0.05 14.145/0.05 18.235/0.021 | 21.413/0.022
= [EMD-CIIT (p)| 8.449/0.066 | 10.018/0.056 | 11.659/0.05 14.156/0.05 18.271/0.02 | 21.527/0.023
Hard-TI 7.311/0.053 | 9.747/0.055 11.651/0.06 | 14.354/0.062 | 20.307/0.043 | 23.664/0.034
Methods SNR/Variance
< -2 dB 0dB 2 dB 5dB 10 dB 15dB
é EMD-CIIT (c)| 9.504/0.061 | 10.704/0.046 | 11.932/0.033 | 13.718/0.021 17.061/0.02 | 20.730/0.017
v [EMD-CIIT (p)| 9.504/0.061 | 10.705/0.046 | 11.934/0.033 | 13.725/0.021 17.088/0.02 | 20.764/0.017
Hard-TI 8.316/0.058 | 9.842/0.036 | 11.283/0.028 | 13.285/0.027 | 16.523/0.017 | 20.263/0.014

TABLE Il

SNRPERFORMANCE AND VARIANCE OFEMD AND WAVELET-BASED DENOISING METHODS APPLIED ON BAT AND SPEECH

SIGNAL.

The SNR of the denoised bat and the speech signal of Fig. &dether with the corresponding

variances are shown in Table Il. With respect to the batgighal, the EMD-based methods outperform

Hard-TI only for low SNR values. In the case of the speech ssgmignal EMD denoising leads to

gains between 1 to 0.5 dB compared to the Hard-TI methodpieeively of the noise level. Note that

the sampling frequency of these signals is fixed in advance.

°EMD-IIT methods result in somewhat higher variances.
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In all of the above simulations, the SNR values shown comego optimized values for the several
parameters that each method use such as the primary resoleviel for the wavelet based denoising
technigues and parameteYs,, M, of equation (11) for the EMD based denoising. With respedtfq
an appropriate choice stems from the lower order IMF whiaht@ios significant portions of useful signal
as it is computed by conventional EMD denoising [19] . If foraeple according to the conventional
EMD approach the denoised signal has to be formed as thegtgotion of the IMFs of order and
higher (for example/ = 6 in Fig. 4), then it has been empirically found that a very gobdice of M,
is given by

M; = max(1,J —2) (14)

On the other hand, a good choice/df, is L —2. In other words, the last two IMFs do not get thresholded.
However, M, can be practically set to zero without significant effect be performance. Finally, for

the methods that thresholding is applied to, the best ambagli thresholds was adopted for each
one of the different SNR/sampling frequency simulatiorupst The 11 thresholds were calculated by
multiplication of the universal threshold with the congta0.4 up to 1.4 with steps of 0.1; It appears that
in the vast majority of simulation examples and all the déf& simulation setups, the best threshold for
the EMD-based methods was found to be between 0.6 to 0.8 timeesniversal threshold with a small

performance discrepancy for any threshold between theeabales. The picture is similar in the case
of translation invariant thresholding with the differeribat the optimum threshold values were between
0.8 and 0.9 times the universal threshold. Based on the fapsignals tested we did not observe any
noticeable increase in the sensitivity on the accuracy efthitreshold selection of the EMD denoised

technigues over the wavelet-based methods
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Fig. 14. Performance evaluation of EMD-base and wavelsétaoft thresholding techniques.

In Fig. 14 the performance of the EMD-CIIT method when it immrates soft thresholding is compared
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with the performance of the ordinary and the translatiomiiant wavelet based soft thresholding methods
when applied to the piecewise-regular and the Doppler kightze simulations are repeated for two
different sampling frequencies leading to 1024 (dashedesx)rand 4096 (solid curves) samples. Firstly,
we observe that in the case of soft thresholding the softXhibéts inferior performance compared to
standard soft thresholding. Second, the EMD methods dotperthe wavelet thresholding ones for all
of the tested SNRs. However, the trend observed in the haeshblding case, namely that some of
the wavelet based methods reach and even outperform the EBtbods is still present. When soft
thresholding is used, the optimum thresholds are smalkem th the case of hard thresholding. More
specifically, the EMD-CIIT methods have to use thresholdselto 0.3-0.4 times the universal threshold
while the wavelet methods perform best with thresholdseclos0.5-0.6 times the universal threshold.
Moreover, parametet/, plays a more important role when soft thresholding is adbpiéis is a result
of the way that soft thresholding operates and the fact thetdptimized thresholds are quite small,
the thresholding of the high order (low frequency) IMFs carsgibly lead to a power reduction of
useful signal portions. As a result it is wise to set paraméfe to much higher values than in the hard
thresholding case, e.g. to sk&f; to 5 or even higher. In the SNR results of Fig. 14 paraméferwas

not optimized but was fixed at 5.

VI. CONCLUSIONS

In this paper, the principles of hard and soft wavelet thoédihg including translation invariant
denoising were appropriately modified in order to developaiging methods suited for thresholding
EMD modes. The novel techniques presented exhibit an eedaperformance compared to wavelet
denoising in the cases where the signal SNR is low and/or séimepkng frequency is high. These
preliminary results suggest further efforts for improverinef EMD-based denoising when denoising

of signals with moderate to high SNR would be appropriate.
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