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Development of EMD-based denoising

methods inspired by Wavelet thresholding
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Abstract

One of the tasks for which EMD is potentially useful is non-parametric signal denoising, an area for

which wavelet thresholding has been the dominant techniquefor many years. In this paper, the wavelet

thresholding principle is used in the decomposition modes resulting from applying EMD to a signal.

We show, that although a direct application of this principle is not feasible in the EMD case, it can be

appropriately adapted by exploiting the special characteristics of the EMD decomposition modes. In the

same manner, inspired by the translation invariant waveletthresholding, a similar technique adapted to

EMD is developed leading to enhanced denoising performance.

Index Terms

Signal denoising, Empirical Mode Decomposition, Wavelet thresholding

EDICS: DSP-WAVL

I. INTRODUCTION

The Empirical mode decomposition (EMD) method [3] is an algorithm for the analysis of multicompo-

nent signals [4] that breaks them down into a number of amplitude and frequency modulated (AM/FM)
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zero mean signals, termed intrinsic mode functions (IMFs).In contrast to conventional decomposition

methods such as wavelets, which perform the analysis by projecting the signal under consideration onto a

number of predefined basis vectors, EMD expresses the signalas an expansion of basis functions which

are signal-dependent, and are estimated via an iterative procedure called sifting.

Although many attempts have been made to improve the understanding of the way EMD operates or

to enhance its performance (see for example [5], [6], [7], [8], [9]), EMD still lacks a sound mathematical

theory and is essentially described by an algorithm. However, partly due to the fact that it is easily and

directly applicable and partly because it often results in interesting and useful decomposition outcomes,

it has found a vast number of diverse applications such us biomedical [10], [11], watermarking [12] and

audio processing [13] to name a few.

Apart from the specific applications of EMD listed above, a more generalised task in which EMD can

prove useful is signal denoising. In this paper, inspired bystandard wavelet thresholding and translation

invariant thresholding, a number of EMD-based denoising techniques are developed1 and tested in

different signal scenarios and white Gaussian noise. It is shown, that although the main principles between

wavelet and EMD thresholding are the same, in the case of EMD,the thresholding operation has to be

properly adapted in order to be consistent with the special characteristics of the signal modes resulting

from EMD.

The remainder of the paper is organised as follows: Section II provides a brief description of EMD

and the notation required in the rest of the paper is also introduced. In section III the major concepts

of wavelet thresholding as well as conventional EMD denoising are described. Section IV explores the

possibility of adapting the wavelet thresholding principles in thresholding the decomposition modes of

EMD directly. Consequently, three novel EMD-based hard andsoft thresholding strategies are presented.

The performance evaluation of the novel denoising techniques is illustrated in section V and the final

conclusions are drawn in section VI.

II. EMD: A BRIEF DESCRIPTION AND NOTATION

Empirical mode decomposition (EMD) [3] adaptively decomposes a multicomponent signal [4]x(t)

into a numberL, of the so called, Intrinsic Mode Functions (IMFs),h(i)(t), 1 ≤ i ≤ L,

x(t) =

L
∑

i=1

h(i)(t) + d(t). (1)

1Matlab scripts for all the novel denoising in methods developed in this paper can be downloaded from:

http://www.see.ed.ac.uk/∼ykopsini/emd/emd.html
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whered(t) is a remainder which is a non zero-mean slowly varying function with only few extrema.

Each one of the IMFs, say theith oneh(i)(t), is estimated with the aid of an iterative process, called

sifting, applied to the residual multicomponent signal

x(i)(t) =



















x(t) , i = 1

x(t) − ∑i−1
j=1 h(j)(t) , i ≥ 2

(2)

The sifting process used in this study is the standard one [3]. According to this, during the(n + 1)th

sifting iteration, the temporary IMF estimateh(i)
n (t) is getting improved according to the following steps2:

1) Find the local maxima and minima ofh
(i)
n (t).

2) Interpolate, using natural cubic splines, along the points of h
(i)
n (t) estimated in the first step in

order to form an upper and a lower envelope.

3) Compute the mean of the two envelopes.

4) Obtain the refined estimateh(i)
n+1(t) of the IMF by subtracting the mean found in the previous step

from the current IMF estimateh(i)
n (t).

5) Proceed from step 1 again unless a stopping criterion has been fulfilled.

The sifting process is effectively an empirical but powerful technique for the estimation of the mean

m(i)(t) of the residual multicomponent signalx(i)(t) locally a quantity that we termtotal local mean3.

Although the notion of the total local mean is somewhat vague, especially for multicomponent signals,

in the EMD context it means that its subtraction fromx(i)(t) will lead to a signal, which is actually the

corresponding IMF, i.e.h(i)(t) = x(i)(t) − m(i)(t), that is going to have the following properties:

1) Zero mean.

2) All the maxima and all the minima ofh(i)(t) will be positive and negative respectively.

Often, but not always, the IMFs resemble sinusoids which areboth amplitude and frequency modulated

(AM/FM).

By construction, the number of, sayN(i), extrema ofh(i)(t) positioned at time instancesr(i) =

[r
(i)
1 , r

(i)
2 , . . . , r

(i)
N(i)] and the corresponding IMF pointsh(i)(r

(i)
j ), j = 1, . . . , N(i) will alternate

between maxima and minima, i.e., positive and negative values. As a result, in any pair of extrema,

r
(i)
j = [h(i)(r

(i)
j ), h(i)(r

(i)
j+1)], corresponds to a single zero-crossingz

(i)
j . Depending on the IMF shape,

2For the first iteration,x(i)(t) is used as temporary IMF estimateh1(t).

3The termlocal meanwhould be more appropriate but we avoided here because it is usually used to describe the mean of

the two envelopes of the second step of the sifting iteration.
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the number of zero-crossings can be either4 N(i) or N(i) − 1. Moreover, each IMF, lets say the one of

orderi, have fewer extrema than all the lower order IMFs,j = 1, . . . , i− 1, leading to fewer and fewer

oscillations as the IMF order increases. In other words, each IMF occupies lower frequencies locally in

the time-frequency domain than its preceding ones.

Fig. 1. Empirical mode decomposition of the noisy signal shown in (a)

Fig. 1 depicts as an example the EMD of the well studied piecewise-regular signal [14] (Fig. 1a)

corrupted by white Gaussian noise corresponding to 5dB signal to noise power ratio (SNR). EMD results

in 10 IMFs and the final remainder, which are depicted in Fig. 1b-l.

III. S IGNAL DENOISING

Digital signal denoising can be described as follows: Having a sampled noisy signalx(t) given by

x(t) = x̄(t) + σn(t), t = 1, 2, . . . , N (3)

where, x̄(t) is the noiseless signal andn(t) are independent random variables Gaussian distributed

N (0, 1), produce an estimatẽx(t) of signal x̄(t). Noise varianceσ can be known or unknown and the

denoising methods can be categorised as parametric or non-parametric depending on whether a predefined

parametric model of̄x(t) has been adopted or not. In this paper, the focus is on the non-parametric

4The end points of the signal are counted as extrema.
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framework where the best known candidates are denoising techniques based on wavelet decomposition

[14], [15], [16]. Moreover, the novelty of this paper lies inthe introduction of new non-parametric

thresholding techniques applied to the decomposition modes resulting from EMD instead of the wavelet

components. As will be seen, thresholding in EMD, is not a straightforward application of the concepts

used in wavelet thresholding.

A. Wavelet based denoising

Employing a chosen orthonormal wavelet basis, an orthogonal N ×N matrix W is appropriately built

[17] which in turn leads to the discrete wavelet transform (DWT)

c = Wx

where,x = [x(1), x(2), . . . , x(N)] andc = [c1, c2, . . . , cN ] contains the resultant wavelet coefficients.

Due to the orthogonality of matrixW , any wavelet coefficientci follows a normal distribution with

varianceσ and mean the corresponding coefficient valuec̄i of the DWT of the noiseless signal̄x(t).

Provided that the signal under consideration is sparse in the wavelet domain, which is usually the case,

then the DWT is expected to distribute the total energy ofx̄(t) in only a few wavelet components lending

themselves to high amplitudes. As a result, the amplitude ofmost of the wavelet components is attributed

to noise only. The fundamental reasoning of wavelet thresholding is to set to zero all the components

which are lower than a threshold related to the noise level, i.e., T = σC, whereC is a constant, and

then reconstruct the denoised signalx̃(t) utilising the high amplitude components only. There are two

major thresholding operators: hard and soft thresholding defined by:

ρT (y) =







y, |y| > T

0, |y| ≤ T,
(4)

and

ρT (y) =







sgn(y)(|y| − T ), |y| > T

0, |y| ≤ T,
(5)

respectively.

Using any one of the thresholding operators above, the estimated denoised signal is given by

x̃ = W
T
c̃ (6)

where, c̃ = [ρT (c1), ρT (c2), . . . , ρT (cN )] and W
T denotes transposition of matrixW . Apart from

the standard wavelet thresholding described above, a number of modifications are investigated in our
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simulation results section including translation invariant thresholding [14], and Bayesian-based wavelet

thresholding [18], [15].

With respect to the threshold selection, the universal thresholdT = σ
√

2 ln N is a popular candidate.

Such a threshold guarantees with high probability that all of the components attributed to noise will have

lower amplitudes. In this paper, multiples of the above threshold are used and the standard deviation of

the noise is estimated using a robust estimator based on the components median [14]:

σ̂ =
median(|ci| : i = 1, . . . , N)

0.6745
(7)

The specific standard deviation estimator leads to accurateestimates even if there are components

attributed to signal. Finally, it is usually beneficial to apply thresholding after a primary resolution level

leaving the coarse scales corresponding to low frequenciesunthresholded. This parameter will be also

taken into account in our study.
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Fig. 2. Examples of Wavelet-based denoising when SNR=5dB. The top-left numbers are the SNR values after denoising.

Fig. 2a-c shows the noise-free estimates of the signal of Fig. 1a corrupted by noise using, from top

to bottom, wavelet hard thresholding with universal threshold, translation invariant wavelet thresholding

with universal threshold and Bayesian-based wavelet thresholding. The numbers on the top left of the

figures indicate the SNRs after the denoising procedure whenthe SNR is 5dB before denoising. Note

that this performance corresponds to a single arbitrary noise realisation. Detailed, ensemble averaged

performance results of the thresholding techniques above will be presented in section V.
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B. Conventional EMD denoising

The first attempt at using EMD as a denoising tool emerged fromthe need to know whether a

specific IMF contains useful information or primarily noise. Thus, significance IMF test procedures

were simultaneously developed both by Flandrin et. al. [5],[19] and Wu et. al. [20], [21] based on the

statistical analysis of modes resulted from the decomposition of signals solely consisting of fractional

Gaussian noise and white Gaussian noise respectively. The reasoning underlying the significance test

procedure above is fairly simple but strong. If the energy ofthe IMFs resulting from the decomposition

of a noise-only signal with certain characteristics is known, then in actual cases of signals comprising

both information and noise following the specific characteristics, a significant discrepancy between the

energy of a noise-only IMF and the corresponding noisy-signal IMF indicates the presence of useful

information. In a denoising scenario this translates to partially reconstructing the signal using only the

IMFs which contain useful information and discarding the IMFs that carry primarily noise, i.e., the IMFs

that share similar amounts of energy with the noise-only case.

In practice the noise-only signal is never available in order to apply EMD and estimate the IMF

energies, so the usefulness of the above technique relies onwhether or not the energies of the noise-only

IMFs can be estimated directly based on the actual noisy-signal. The latter is usually the case due to

a striking feature of EMD. Apart from the first noise-only IMF, the power spectra of the other IMFs

exhibit self similar characteristics akin to those which appear in any dyadic filter structure. As a result,

the IMF energies,Ek, should linearly decrease in a semi-log diagram of, e.g.,log2 Ek with respect to

k for k ≥ 2. It also turns out that the first IMF carries the highest amounts of energy. In this paper the

focus is on signals with white Gaussian noise. Then, the noise-only IMF energies can be approximated

[19] according to equation:

Êk =
E2

1

β
ρ−k, k = 2, 3, 4, . . . (8)

where,E2
1 is the energy of the first IMF andβ, ρ are parameters which, for a specific EMD implemen-

tation, depend mainly on the number of sifting iterations used. These parameters can be estimated in

one step based on a large number of independent noise realisations and their corresponding IMFs [19].

Fig. 3 shows the curves that link the estimated energies of the IMFs k = 1, . . . , 10, based on model (8),

where the parametersβ andρ correspond to EMDs using from 1 up to 15 sifting iterations. We observe

that as the number of sifting iterations increases, the corresponding curves approach each other. This

is in agreement with the analytically derived frequency responses of the equivalent filtering operations

that correspond to EMDs with different number of sifting iterations in a two sinusoids signal case [6].
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Fig. 3. Curves that link the estimated energies of the IMFs which correspond to EMDs using from 1 up to 15 sifting iterations.

The thick red line indicated as “Flandrin et al” correspondsto theβ andρ parameters proposed in [19].

Flandrin et al [19] specifically proposed for the parametersβ and ρ parameters the values 0.719 and

2.01 respectively, that correspond to the curve drawn with thick red line. We see that these parameters

correspond to a curve which is representative by being closeto an average of the “trend” that the rest of

the energy curves exhibit. Hereafter, the IMF energy curve that corresponds to the later specification of

β andρ will be called fixed in order to coincide with the sifting dependent IMF energy curves.

Fig. 4. (a) Theoretical noise-only model and actual IMF energies with respect to IMF number. (b) The resulted denoised signal

when, for the reconstruction, the IMFs number 6 to number 11 are used only.

Fig. 4 depicts the conventional denoising procedure and results when it is applied on the test signal of
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Fig. 1a. On top, with solid line we see the semilog diagram (energies with respect to IMF number) of

the corresponding IMFs (Fig. 1b-l) and the dashed line showsthe results of the noise only model of (8).

We observe, after the fifth IMF the energies significantly diverge from the theoretical model indicating

the presence of significant amounts of no-noise signal. The partial signal reconstruction including only

IMF number 6 to 11 results in the denoised signal shown in Fig.4.

IV. IMF THRESHOLDING-BASED DENOISING

In this paper an alternative denoising procedure inspired by wavelet thresholding is proposed. Some

preliminary results have already appeared very recently in[22], [23], [24] where the wavelet thresholding

idea is directly applied to the EMD case. However, as will be seen later, EMD-thresholding can exceed the

performance achieved by wavelet thresholding only by adapting the thresholding function to the special

nature of IMFs.

EMD can be interpreted as a subband like filtering procedure resulting in essentially uncorrelated

IMFs. Although the equivalent filter-bank structure is by nomeans pre-determined and fixed as in wavelet

decomposition, one can in principle perform thresholding in each IMF in order to locally exclude low

energy IMF parts which are expected to be significantly corrupted by noise. A direct application of

wavelet thresholding in the EMD case translates to:

h̃(i)(t) =







h(i)(t), |h(i)(t)| > Ti

0, |h(i)(t)| ≤ Ti,
(9)

for hard thresholding, and to

h̃(i)(t) =







sgn(h(i)(t))(|h(i)(t)| − Ti), |h(i)(t)| > Ti

0, |h(i)(t)| ≤ Ti,
(10)

for soft thresholding where, in both thresholding cases,h̃(i)(t) indicates theith thresholded IMF. The

reason for adopting different thresholdsTi per modei will become clearer in the sequel.

A generalised reconstruction of the denoised signal is given by

x̂(t) =

M2
∑

k=M1

h̃(i)(t) +

L
∑

k=M2+1

h(i)(t) (11)

where, the introduction of parametersM1 and M2 gives us flexibility on the exclusion of the noisy

low order IMFs and on the optional thresholding of the high order ones which in white Gaussian noise

conditions contain little noise energy.
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There are two major differences, which are interconnected,between wavelet and direct EMD thresh-

olding (EMD-DT) shown above. First, in contrast to wavelet denoising where thresholding is applied

to the wavelet components, in the EMD case, thresholding is applied to theN samples of each IMF

which are basically the signal portion contained in each adaptive subband. An equivalent procedure in

the wavelet method would be to perform thresholding on the reconstructed signals after performing the

synthesis function on each scale separately. Secondly, as aconsequence of the first difference, the IMF

samples are not Gaussian distributed with variance equal tothe noise variance as the wavelet components

are irrespective of scale. In fact, the noise contained in each IMF is coloured5 having different energy

in each mode. In that sense, EMD denoising is most closely related to wavelet denoising of signals

corrupted by coloured noise where the thresholds have to be scale dependent. In our study of thresholds,

multiples of the IMF dependent universal threshold, i.e.,Tk = C
√

Ek2 ln N , whereC is a constant are

used. Moreover, the IMF energies can be computed directly based on the variance estimate of the first

IMF using (8).

A. Thresholding adapted to EMD characteristics

The direct application of wavelet like thresholding, either hard or soft, to the decomposition modes

is in principle incorrect and can have catastrophic consequences for the continuity of the reconstructed

signal6. This is because the IMFs resemble an AM/FM modulated sinusoid with zero mean. As a result,

it is guaranteed that, even in a noiseless case, in any interval z
(i)
j = [z

(i)
j z

(i)
j+1], the absolute amplitude

of the ith IMF, i = 1, 2, . . . , N , will drop below any non-zero threshold in the proximity of the zero-

crossingsz(i)
j and z

(i)
j+1. In other words, based on the absolute amplitude of isolatedIMF samples it is

impossible to infer for any one of them if they correspond to noise or to useful signal. However, it is

possible to guess if the intervalz
(i)
j is noise-dominant or signal-dominant based on the single extrema

h(i)(r
(i)
j ) that correspond to this interval. If the signal is absent, the absolute value of this extrema will

lie below the threshold. Alternatively, in the presence of strong signal, the extrema value can be expected

to exceed the threshold. Moreover, since in each IMF the noise and the signal share the same bandwidth,

the signal dominance at the extrema time instance is highly likely to be extended to all the IMF samples

5There is strong evidence that at least in the noise-only casethe distribution of the IMF samples is still Gaussian [21].

6The denoising procedure used in [11] differs from direct thresholding since the parts of the IMFs that contain useful signal

are detected with the aid of a fractal dimension filter and consequently some of the inherent disadvantages of direct EMD

thresholding can be avoided to some extent. However, this method is only efficient in denoising transient signals.
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belonging to the specific zero-crossing interval. As a result the newly developed EMD hard thresholding,

hereafter referred to as EMD interval thresholding (EMD-IT) translates to:

h̃(i)(z
(i)
j ) =







h(i)(z
(i)
j ), |h(i)(r

(i)
j )| > Ti

0, |h(i)(r
(i)
j )| ≤ Ti,

(12)

for j = 1, 2, . . . , N
(i)
z , where,h(i)(z

(i)
j ) indicates the samples from instantz

(i)
j to z

(i)
j+1 of the ith IMF.

After careful consideration, it can be seen that the above procedure resembles wavelet thresholding

more than direct EMD thresholding, because wavelet thresholding is applied to the wavelet coefficients. In

fact, each coefficient is responsible for the values of a sequence of samples of the subsignal corresponding

to the specific scale reconstruction which increases with scale and it is determined by the wavelet size

of support. Similarly, the number of IMF samples which are altered or not in the EMD-IT depends on

the IMF order and increases as the order increases.
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Fig. 5. Difference between Direct and Interval thresholding and the corresponding denoised signals.

Fig. 5a shows the difference between the direct and the interval EMD thresholding. As an example,

the sixth IMF of the signal shown in Fig. 1 has been used. The thick light-colored line corresponds to the
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actual IMF and the solid and dotted lines are associated withinterval thresholding and direct thresholding

respectively. The horizontal lines indicate the plus and minus of the universal thresholding.A detail of

the thresholding function applied on the IMF segment between the two vertical dashed lines in Fig.

5a is also depicted in Fig. 5b1-b3. More specifically, in Fig.5b2 and b3 we see the parts of the IMF

segment which are non zero after thresholding. Clearly, EMD-DT introduces discontinuities which can

be effectively reduced by the use of EMD-IT. Fig. 5c and d showthe denoising effect when the two

EMD-based thresholding methods are applied on the same noise realisation of the piecewise-regular

signal used in Fig. 2. We observe that EMD-IT results in higher SNR than EMD-DT. In both cases,

the universal threshold is adopted which, it should be noted, is not optimum; neither for EMD nor for

wavelet thresholding as will become apparent in the simulations section.

In a similar manner to the hard interval thresholding case, the extremum between each zero-crossing

interval [z(i)
j z

(i)
j+1] will be the processing element of reference for the case of soft iterval thresholding as

well. Practically, the result of wavelet soft thresholdingon, e.g. positive wavelet components that exceed

the threshold is that the latter get reduced by an amount equal to the threshold. With respect to iterative

soft thresholding all the IMF samples that correspond to zero-crossing interval with extremum exceeding

the threshold have to be reduced in a smooth way in order for the extremum to get reduced exactly by

an amount equal to the threshold. Mathematically, the described soft thresholding operation yelds:

h̃(i)(z
(i)
j ) =







h(i)(z
(i)
j )

|h(i)(r(i)
j )|−Ti

h(i)(r(i)
j )|

, |h(i)(r
(i)
j )| > Ti

0, |h(i)(r
(i)
j )| ≤ Ti,

(13)

B. Iterative EMD interval-thresholding

Inspired by translation invariant wavelet thresholding, where a number of denoised versions of the

signal under consideration are obtained iteratively in order to enhance the tolerance against noise by

averaging them, we make an attempt to develop EMD-based denoising techniques which exploit a similar

principle. Once again, the direct application of translation invariant denoising to the EMD case will not

work. This arises from the fact that the wavelet components of the circularly shifted versions of the

signal correspond to atoms centered on different signal instances. In the case of the data-driven EMD

decomposition, the major processing components, which arethe extrema, are signal dependent leading

to fixed relative extrema positions with respect to the signal when the latter is shifted. As a result, the

EMD of shifted versions of the noisy signal corresponds to identical7 IMFs sifted by the same amount.

7The IMFs can potentially be slightly different at the boundaries but only due to edge effects associated with the spline

interpolation procedure.
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Consequently, noise averaging cannot be achieved in this way.

The different denoised versions of the noisy signal in the case of EMD can only be constructed from

different IMF versions after being thresholded. Inevitably, this is possible only by decomposing different

noisy versions of the signal under consideration itself. Sothe problem at hand translates to the following

question: In which way, having a signal buried in noise, can you produce different noisy versions of the

actual noise-free signal. The answer stems from within the EMD concept exploiting the characteristics

of the first IMF. We know that in white Gaussian noise conditions, the first IMF is mainly noise, and

more specifically comprises the larger amount of noise compared to the rest of the IMFs. By altering in

a random way the positions of the samples of the first IMF and then adding the resulting noise signal to

the sum of the rest of the IMFs we can obtain a different noisy-version of the original signal. In fact, in

the case where the first IMF consists of noise only, then the total noise variance of the newly generated

noisy-signal is the same as the original one.

The above EMD denoising technique, hereafter refered to as Iterative EMD interval-thresholding (EMD-

IIT) is summarised in the following steps:

1) Perform an EMD expansion of the original noisy signalx.

2) Perform a partial reconstruction using the lastL − 1 IMFs only, xp(t) =
∑L

i=2 h(i)(t).

3) Randomly alter the sample positions of the first IMF,h
(1)
a (t) = ALTER(h(1)(t)).

4) Construct a different noisy version of the original signal, xa(t) = xp(t) + h
(1)
a (t).

5) Perform EMD on the new altered noisy signalxa(t).

6) Perform the EMD-IT denoising (Eq. 12 or 13) on the IMFs ofxa(t) to obtain a denoised version

x̃1(t) of x.

7) IterateK − 1 times between steps 3-6 , whereK is the number of averaging iterations in order to

obtaink denoised versions ofx, i.e., x̃1, x̃2, . . . , x̃K .

8) Average the resulted denoised signalsx̃(t) = 1
K

∑K
k=1 x̃k(t).

The altering function can take several forms leading to a number of modified EMD-IIT denoising

schemes. In this paper we consider four different approaches:

• Random circulation: The samples of the first IMF are circularly shifted randomly.

• Random permutation: The samples of the first IMF randomly change positions.

Fig. 6a-b shows two different noisy versions of the piecewise-regular signal obtained by the method

described in the current section when the hard EMD-IT thresholding is used. In both cases, random

permutation was used as a signal altering function. The denoised signals that result from 4 and 20



14

-20

0

20

40

Noised version of the Piece-Regular signal

Noised version of the Piece-Regular signal

EMD denoising with Iterative Interval Thresholding (4 Iterations)

EMD denoising with Iterative Interval Thresholding (20 Iterations)

SNR w.r. to the number of Iterations

(a)

(b)

(c)

(d)

(e)

-20

0

20

40

0 5 10 15 20
17

18

19

0 1000 2000 3000 4000
-20

0

20

40
18.0902

-20

0

20

40
17.1649

Fig. 6. Two noisy versions of the piecewise-regular signal (a, b) and result of the EMD-based iterative interaval thresholding

method using 4 (c) and 20 (d) iterations. (e) shows the achieved SNR w.r. to the number of iterations.

iterationsK, of EMD-IIT together with the achieved SNRs are illustratedin Fig. 6c and 6d respectively.

The noisy signal used was that described in Fig. 5. Apparently, the proposed iterative procedure has

enhanced the denoising capabilities of EMD. For completeness, Fig. 6e shows the increment in SNR of

the denoised signal with respect to the number of iterations.

C. Clear Iterative EMD interval-thresholding

When the noise is relatively low, enhanced performance compared to EMD-IIT denoising can be

achieved with a variant called clear iterative interval-thresholding (EMD-CIIT). The need for such a

modification comes from the fact that the first IMF, especially when the signal SNR is high, is likely to

contain some signal portions as well. If this is the case, then by randomly altering its sample positions,

the information signal carried on the first IMF will spread out contaminating the rest of the signal along
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its length. In such an unfortunate situation, the denoisingperformance will decline. In order to bypass this

disadvantage of EMD-IIT it is not the first IMF that is altereddirectly but the first IMF after having all

the parts of the useful information signal that it contains removed. The “‘extraction” of the information

signal from the first IMF can be realized with any thresholding method, either EMD-based or wavelet-

based. It is important to note that any useful signal resulting from the thresholding operation of the first

IMF has to be summed with the partial reconstruction of the last L−1 IMFs. More specifically, the steps

2 and 3 of EMD-IIT have to be replaced with the following 4 steps:

1) Perform an EMD expansion of the original noisy signalx.

2) Perform a thresholding operation to the first IMF ofx(t) to obtain a denoised versioñh(1)(t) of

h(1)(t).

3) Compute the actual noise signal that existed inh(1)(t), h
(1)
n (t)=h(1)(t) − h̃(1)(t)

4) Perform a partial reconstruction using the lastL − 1 IMFs plus the information signal contained

in the first IMF, xp(t) =
∑L

i=2 h(i)(t) + h̃(1)(t).

5) Randomly alter the sample positions of the noise-only part of the first IMF,h(1)
a (t) = ALTER(h

(1)
n (t)).
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Fig. 7. Denoised signals obtained with the aid of EMD-CIIT after 4 and 20 iterations (a,b). (c) shows the achieved SNR w.r.

to the number of iterations.

The effectiveness of the subtraction from the first IMF of anyexisting information signal is shown

in Fig. 7. For the first IMF denoising (see step 2 above), Bayesian wavelet thresholding was used. In
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fact, in all the cases we have tested, the EMD interval thresholding performed similarly or worse than

the Bayesian wavelet denoising when it came to the denoisingof the first IMF. As a result, hereafter,

whenever the EMD-CIIT is used, the adoption of the Bayesian method for the extraction of the useful

signal from the first IMF is implied unless the use of a different method is explicitly mentioned. Fig. 7a-c

illustrates the same quantities as illustrated in previousresult figure and corresponds to the same noise

realization with the Fig. 6c-e. The denoised signals that result from 4 and 20 iterationsK of the EMD-

CIIT together with the achieved SNRs are illustrated in Fig.7c and 7d respectively. The noisy signal

used was the same as in Fig. 5. The proposed iterative procedure has enhanced the denoising capabilities

of EMD. In both cases, random permutation was used as a signalaltering function. For completeness,

Fig. 7e shows the increment in SNR of the denoised signal withrespect to the number of iterations.

V. SIMULATION RESULTS

Apart from the piecewise-regular signal three more representative test signals shown in Fig. 8a-c have

been used for validation of the proposed denoising techniques. Moreover, the best of the methods have

been applied two real signals, a call signal from a bat belonging to the speciesPipistrellus Pygmaeus8

shown in Fig. 8d and a speech signal segment illustrated in Fig. 8e.

To start with, the effect on the denoising performance of either adopting fixed or sifting dependent

IMF energy curves with respect to the number of sifting iterations is studied in Fig. 9. More specifically,

the adopted performance measure is the SNR after denoising when the SNR before denoising is either

0dB (Fig. 9a,c) or 15dB (Fig. 9b,d) and the signals used are the Piece-wise regular and the Doppler

signal (Fig. 8a) both sampled with sampling frequency that result in 2048 samples. The results shown

correspond to ensemble average of 50 independent noise generalizations. The dashed curves correspond

to the EMD-IT method and the solid curves to EMD-CIIT and the crosses and the squares correspond

to fixed and sifting dependent IMF energy curves respectively. A number of conclusions can be drawn.

First, when the signal is regular such as the Doppler one, thelarger the number of sifting iterations then

the better the performance is. In contrast, when the signal has irregularities, e.g., the Piece-regular signal

case, the best performance (especially in the iterative EMD-CIIT method) is achieved with a relatively low

number of sifting iterations. These results have been evaluated with other regular and irregular signals.

In general, a balanced trade off between number of sifting and performance is realized with about 8

8This bat-call was provided by Dr Dean Waters of the University of Leeds

(http://www.fbs.leeds.ac.uk/staff/profile.php?tag=Waters)
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energy curves.
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sifting iterations. Second, it is apparent that the siftingdependent IMF curves do not offer significant

advantages over the fixed one since the performance difference never exceeds 0.2 dB. In addition, the

sifting dependent curves can even lead to slight performance deterioration in the case of EMD-CIIT

when the signal has both intense irregularities and a small number of sifting iterations are used. This

happens because in this case it is very likely that large information signal portions (in the places where

the irregularities exist) get extracted in the first IMF compromising the iterative thresholding operation.

For the rest of the simulation examples, each one of the artificial test signals is sampled and tested

with four different sampling frequencies to generate four versions per signal having 1024, 2048, 4096

and 8192 samples. As before, the results shown correspond toensemble average of 50 independent noise

generalizations and in all EMD-based denoising methods thenumber of sifting iterations was fixed and

equal to 8. The adoption of a fixed number of sifting iterations may result in modes which do not comply

with the IMF characteristics. More specifically, it is possible to find two or even more maxima (or minima)

between neighboring zero-crossings. In such cases, the thresholding is naturally performed based on the

largest (smallest) value of the maxima (minima) lying between consecutive zero-crossings. Moreover, the

adopted performance measure is the SNR after denoising which corresponds to SNR values of 0, 5, 10

and 15 dB before denoising. The performance results for all different methods shown correspond to hard

thresholding. The conclusions drawn from the hard thresholding denoising are in general valid for the

soft thresholding variants and a discussion on the later type of thresholding can be found at the end of

the section.
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Fig. 10. Performance evaluation of the Doppler signal usingwavelet and EMD-based denoising methods.

Next, a thorough denoising performance evaluation of the developed and wavelet-based methods is

realised using the Doppler signal (Fig. 8a) and then the performance of the best of the techniques when
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applied on the rest of the signals is examined. Fig. 10a-c depicts the performance comparison between

wavelet techniques, existing and newly developed EMD-based techniques and variants of denoising

methods based on the iterative interval thresholding principle respectively. In each graph, the performance

curves correspond to SNR after denoising versus number of signal samples and they are grouped in 4

sets associated with 15dB SNR before denoising (dashed-dotted curves), 10dB SNR (dotted curves), 5dB

SNR (solid curves) and 0dB SNR (dashed curves). The results of the wavelet-based techniques are shown

in Fig. 10a. We observe that the best performance is achievedwith the translation invariant thresholding

algorithm (Hard-TI) with the Bayesian technique to follow.It is clear that the performance discrepancy

between Hard-TI and Bayesian increases as the initial signal SNR increases. This trend and performance

order is in general common to the rest of signals tested. Withrespect to existing and newly developed

EMD-based methods (Fig. 10b) worse performance is exhibited by the conventional denoising approach

(EMD-conv). The interval thresholding (EMD-IT) leads to a 1dB improvement over direct thresholding

(EMD-DT) and the incorporation of clear iterative intervalthresholding with permutation altering (EMD-

CIIT (p)) offers about 2 dB of extra gain. Finally, the performance of several iterative interval (EMD-IIT)

and clear iterative interval thresholding (EMD-CIIT) variants is shown in Fig. 10c with the number of

iterations being fixed to 20. It would appear that the different methods perform in a similar way, with the

EMD-CIIT denoising performing the best especially in the case of high SNR (10dB and 15dB) and low

number of samples (1024 and 2048). Moreover, the random permutation methods slightly outperform the

random circulation ones.

The effect of the altering method can be further investigated with the aid of Fig. 11 where the

performance of the IIT and CIIT methods when applied to the 2048 samples Doppler signal is displayed

with respect to the number of iterations. We observe that in all the cases the random circulation altering

method exhibits a much faster performance improvement withrespect the number of iterations compared

to random permutation. However, random permutation outperforms the random circulation after about 9

or 18 iterations in the cases of IIT or CIIT respectively. This result appears unexpected at first glance.

The first IMF is roughly concentrated in the upper half band ofthe spectrum and consequently one

would expect that the averaging procedure would perform best when the altered IMFs occupy the same

frequencies with the original IMF. However, this is only true for the circulation altering function. In

contrast, the permutation altering inevitably leads to theredistribution of the IMF energy over the whole

band. As a result, when random permutation is adopted, the denoising problem can be considered more

demanding in the sense that the noise contained in the different noisy versions of the signal under

consideration is no longer white. We feel that a possible explanation for the improved performance that
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the permutation-based denoising exhibits over the circulation-based approach, would be the effect that

the perturbation has on the information signal which is contained in the first IMF. In general, the energy

of the signal portions existing in the first IMF will be concentrated in time. This is true since the reason

that the part of a signal is in the first IMF is its high frequency and/or high energy. This requirement is

likely to be fulfilled at time intervals rather than time instances. As a result, the perturbation function will

effectively spread the energy of the information signal along the full time axis reducing its destructive

effect. Indeed, the improvements achieved with the perturbation altering method are more profound in

the EMD-IIT case where the first IMF is not cleared from the information signal residual.

0 2 4 6 8 10 12 14 16 18 20

13

14

15

26

25

~~ ~~

EMD-IIT (c)

EMD-CIIT (c)

EMD-IIT (p)

EMD-CIIT (p)

SNR=15 dB

SNR=0 dB

Fig. 11. Study of effect of the first IMF altering method.

Based on the results above, the techniques which are going tobe used for a comparative performance

study discussed next are the EMD-IIT and EMD-CIIT both usingrandom permutation altering represent-

ing the EMD-based methods and the Hard-TI and Bayesian representing the wavelet-based methods.

Fig. 12a-c shows the corresponding performance curves related to the Doppler, the piecewise-regular

and the blocks signals. It can be observed that the EMD-basedmethods outperform the Bayesian method

for all the combinations of signal number of samples and signal SNR used. Moreover, the translation

invariant hard thresholding method exhibits a significant performance improvement in the cases that the

noise is relatively low (15dB SNR) outperforming both the Bayesian and the EMD-based methods.

Moreover, we see that in general the improvement of the EMD-based methods with respect to the

increment of the sampling frequency is higher than the improvement of the Hard-TI method. As a

result, even in 15dB SNR the performance of the EMD denoisingtechniques tends to reach the high
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Fig. 12. Performance evaluation of EMD and wavelet-based denoising methods applied on the Doppler, piecewise-regularand

blocks signals.

performance levels of Hard-TI. A counter example to this is the bumps signal (Fig. 8c) where Hard-TI
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Fig. 13. Performance evaluation of EMD and wavelet-based denoising methods applied to the bumps signal.

outperforms the rest of the methods in all the SNRs tested with the exception of the 8192 samples case

where the EMD-CIIT method performs the best as seen in Fig. 13. Another measure which characterises

the performance of the denoising methods is the variance of the SNR estimates, resulting from many

realizations, which is shown in Table I for all the artificialsignals tested with 2048 samples and for two



22

SNR values (0dB and 15dB). The EMD-CIIT method exhibits quite a low variance, in a manner similar to

the Bayesian method in contrast to the Hard-TI which resultsin higher variances and sometimes double

that of the other methods. This is considered as an advantageof the EMD-CIIT based methods9.

Method
Doppler Piece-Regular Blocks Bumps

0 dB 15 dB 0 dB 15 dB 0 dB 15 dB 0 dB 15 dB

EMD-CIIT (p) 0.3888 0.2319 0.2437 0.1694 0.2107 0.0953 0.1798 0.1184

Hard-TI 0.8173 0.4909 0.4396 0.2510 0.2821 0.1732 0.1887 0.0946

Bayesian 0.4358 0.2532 0.3199 0.1787 0.1722 0.1334 0.1511 0.1012

TABLE I

VARIANCE OF THE SNRS OF THE DENOISED SIGNALS.

Methods
SNR/Variance

-2 dB 0 dB 2 dB 5 dB 10 dB 15 dB

EMD-CIIT (c) 8.443/0.066 10.009/0.055 11.649/0.05 14.145/0.05 18.235/0.021 21.413/0.022

EMD-CIIT (p) 8.449/0.066 10.018/0.056 11.659/0.05 14.156/0.05 18.271/0.02 21.527/0.023

Hard-TI 7.311/0.053 9.747/0.055 11.651/0.06 14.354/0.062 20.307/0.043 23.664/0.034

S
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Methods
SNR/Variance

-2 dB 0 dB 2 dB 5 dB 10 dB 15 dB

EMD-CIIT (c) 9.504/0.061 10.704/0.046 11.932/0.033 13.718/0.021 17.061/0.02 20.730/0.017

EMD-CIIT (p) 9.504/0.061 10.705/0.046 11.934/0.033 13.725/0.021 17.088/0.02 20.764/0.017

Hard-TI 8.316/0.058 9.842/0.036 11.283/0.028 13.285/0.027 16.523/0.017 20.263/0.014

TABLE II

SNRPERFORMANCE AND VARIANCE OFEMD AND WAVELET-BASED DENOISING METHODS APPLIED ON BAT AND SPEECH

SIGNAL.

The SNR of the denoised bat and the speech signal of Fig. 8d-e together with the corresponding

variances are shown in Table II. With respect to the bat-callsignal, the EMD-based methods outperform

Hard-TI only for low SNR values. In the case of the speech segment signal EMD denoising leads to

gains between 1 to 0.5 dB compared to the Hard-TI method irrespectively of the noise level. Note that

the sampling frequency of these signals is fixed in advance.

9EMD-IIT methods result in somewhat higher variances.
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In all of the above simulations, the SNR values shown correspond to optimized values for the several

parameters that each method use such as the primary resolution level for the wavelet based denoising

techniques and parametersM1, M2 of equation (11) for the EMD based denoising. With respect toM1,

an appropriate choice stems from the lower order IMF which contains significant portions of useful signal

as it is computed by conventional EMD denoising [19] . If for example according to the conventional

EMD approach the denoised signal has to be formed as the reconstruction of the IMFs of orderJ and

higher (for exampleJ = 6 in Fig. 4), then it has been empirically found that a very goodchoice ofM1

is given by

M1 = max(1, J − 2) (14)

On the other hand, a good choice ofM2 is L−2. In other words, the last two IMFs do not get thresholded.

However,M2 can be practically set to zero without significant effect on the performance. Finally, for

the methods that thresholding is applied to, the best among the 11 thresholds was adopted for each

one of the different SNR/sampling frequency simulation setups. The 11 thresholds were calculated by

multiplication of the universal threshold with the constants 0.4 up to 1.4 with steps of 0.1; It appears that

in the vast majority of simulation examples and all the different simulation setups, the best threshold for

the EMD-based methods was found to be between 0.6 to 0.8 timesthe universal threshold with a small

performance discrepancy for any threshold between the above values. The picture is similar in the case

of translation invariant thresholding with the differencethat the optimum threshold values were between

0.8 and 0.9 times the universal threshold. Based on the specific signals tested we did not observe any

noticeable increase in the sensitivity on the accuracy of the threshold selection of the EMD denoised

techniques over the wavelet-based methods
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Fig. 14. Performance evaluation of EMD-base and wavelet-based soft thresholding techniques.

In Fig. 14 the performance of the EMD-CIIT method when it incorporates soft thresholding is compared
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with the performance of the ordinary and the translation invariant wavelet based soft thresholding methods

when applied to the piecewise-regular and the Doppler signal. The simulations are repeated for two

different sampling frequencies leading to 1024 (dashed curves) and 4096 (solid curves) samples. Firstly,

we observe that in the case of soft thresholding the soft-TI exhibits inferior performance compared to

standard soft thresholding. Second, the EMD methods outperform the wavelet thresholding ones for all

of the tested SNRs. However, the trend observed in the hard thresholding case, namely that some of

the wavelet based methods reach and even outperform the EMD methods is still present. When soft

thresholding is used, the optimum thresholds are smaller than in the case of hard thresholding. More

specifically, the EMD-CIIT methods have to use thresholds close to 0.3-0.4 times the universal threshold

while the wavelet methods perform best with thresholds close to 0.5-0.6 times the universal threshold.

Moreover, parameterM2 plays a more important role when soft thresholding is adopted. This is a result

of the way that soft thresholding operates and the fact that the optimized thresholds are quite small,

the thresholding of the high order (low frequency) IMFs can possibly lead to a power reduction of

useful signal portions. As a result it is wise to set parameter M2 to much higher values than in the hard

thresholding case, e.g. to setM2 to 5 or even higher. In the SNR results of Fig. 14 parameterM2 was

not optimized but was fixed at 5.

VI. CONCLUSIONS

In this paper, the principles of hard and soft wavelet thresholding including translation invariant

denoising were appropriately modified in order to develop denoising methods suited for thresholding

EMD modes. The novel techniques presented exhibit an enhanced performance compared to wavelet

denoising in the cases where the signal SNR is low and/or the sampling frequency is high. These

preliminary results suggest further efforts for improvement of EMD-based denoising when denoising

of signals with moderate to high SNR would be appropriate.
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