Automatic Fuzzy Rules Generation for the Deadline Calculation of a Seller Agent

Kostas Kolomvatsos and Stathes Hadjiefthymiades

Pervasive Computing Research Group (http://p-comp.di.uoa.gr), Department of Informatics and Telecommunications University of Athens, Greece

ISADS 2009

Athens - Greece

Outline

- Introduction
- Market entities
- Buyer-Seller Interaction
- Seller Behavior
- Fuzzy Approach
- Results

Introduction

Intelligent Agents

- Autonomous Software Components
- Represent users
- Learn from their owners
- Information Markets
 - Virtual places where entities negotiate for the exchange of information goods

Market Member Roles

- Buyers
- Sellers
- Middle entities (matchmakers, brokers, market entities)
- ➔ Intelligent Agents may represent each of these entities

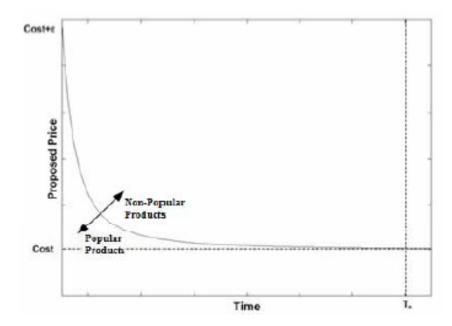
Buyer-Seller Interaction

- Can be modeled as a finite horizon Bargaining Game (BG)
- No knowledge about the characteristics of the opponent (i.e., the other side) is available
- The buyer aims to buy the product at the lowest possible price while the seller aims to sell the product at the highest possible price
- The buyer has a specific valuation for the product
- The seller has a specific production cost
- The two players have specific deadlines to conclude the transaction

Seller Behavior (1/3)

The seller stays in the game for a specific number of roundsProfit

- A Utility Function is used
- Profit = price production/retrieval cost
- The greater the price is the greater the profit becomes
- Pricing Policy
 - It is based on: the cost (c), an amount of profit (ε), the proposal's sequence number (x) and the popularity measure (q):


$$p^{s}(x) = \frac{\varepsilon}{x^{q+1}} + c, \quad x = 1, 2, \dots$$

 The popularity measure is calculated through the Zipf Law

Seller Behavior (2/3)

Pricing Policy (continued)

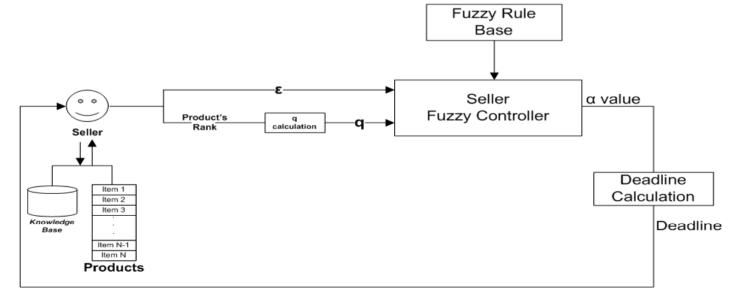
- Popular products are delivered to interested parties many times
- The products are classified according to their popularity
- The seller concludes rapidly the game for popular products
- The seller does not sell the product below its cost

Seller Behavior (3/3)

- Deadline calculation
 - Based on its pricing function a deadline value could be defined if:

$$\lim_{x \to \infty} \left[\frac{-\varepsilon \cdot (q+1)}{x^{q+2}} \right] = 0$$

therefore


 $x^{q+2} \approx \alpha \cdot \varepsilon \cdot (q+1) \rightarrow T_s \approx (\alpha \cdot \varepsilon \cdot (q+1))^{\overline{q+2}}$

- Variable a is the patience factor of the seller
 - is based on the policy of the seller
 - indicates the patience of the seller
 - The greater the factor is the more time the seller spends in the game
 - indicates until when the game is meaningful for the seller

Fuzzy Logic Controller

It deals with:

- The product rank (q)
- The desired profit (ε)
- Output: an appropriate value for the a parameter

Fuzzy Rule Base

- It is the most important part of the FL controller
- It describes the seller knowledge base
- It contains If Then rules
- Rules involve popularity measure q and profit ε
- Rules utilize parameters' membership functions
- Rules result the appropriate value for parameter a

Rules Generation

- The definition of specific fuzzy rules is a complex task
- We need an automatic method
- Automatic generation using data defined by experts and clustering techniques
 - Subtractive Clustering
 - Fuzzy C-Means Clustering

Training Data

- Describe the policy of the seller concerning its deadline
- We use 90 datasets
- Each row contains data for q, ε and α
- Every cluster represents a rule

Results

- The automatic FL rules generation provides an efficient and fast way for the rule base definition
- Our model provides more fine grained deadline values
- Clustering techniques improve the behavior of the seller

Profit (ε)	Popularity Ranking measure q	T _s for α = 50 (without FL)	Fuzzy approach using specific FL rules		Subtractive clustering technique		Fuzzy C-Means technique	
			α value	T _s	α value	T _s	α value	T _s
1	0.2	6	588	20	999	25	430	17
1	1	5	89.4	6	168	7	152	7
10	0.2	18	588	56	511	53	396	47
10	1	10	89.4	12	116	13	118	13
50	0.2	38	588	117	109	54	246	79
50	1	17	15.8	12	1	5	1	5
100	0.2	52	275	113	117	77	58.2	56
100	1	22	15.8	15	1	6	1	6

Thank you!

http://p-comp.di.uoa.gr