
Artificial Intelligence 120 (2000) 81–117

Backtracking algorithms for disjunctions of
temporal constraints✩

Kostas Stergioua,∗, Manolis Koubarakisb,1
a APES Research Group, Department of Computer Science, University of Strathclyde,

Glasgow, G1 1HX, Scotland, UK
b Department of Electronic and Computer Engineering, Technical University of Crete,

University Campus—Kounipidiana, 73100 Chania, Crete, Greece

Received 22 February 1999; received in revised form 1 February 2000

Abstract

We extend the framework of simple temporal problems studied originally by Dechter, Meiri
and Pearl to consider constraints of the formx1 − y1 6 r1 ∨ · · · ∨ xn − yn 6 rn, where
x1, . . . , xn, y1, . . . , yn are variables ranging over the real numbers,r1, . . . , rn are real constants, and
n> 1. This is a wide class of temporal constraints that can be used to model a variety of problems in
temporal reasoning, scheduling, planning, and temporal constraint databases. We have implemented
several progressively more efficient algorithms for the consistency checking problem for this class of
temporal constraints: backtracking, backjumping, three variations of forward checking, and forward
checking with backjumping. We have partially ordered the above algorithms according to the number
of visited search nodes and the number of performed consistency checks. Although our problem is
non-binary, our results agree with the results of Kondrak and van Beek who consider only binary
constraints. We have also studied the performance of the above algorithms experimentally using
randomly generated sets of data and job shop scheduling problems. The experiments with random
instances allowed us to locate the hard region for this class of problems. The results show that hard
problems occur at a critical value of the ratio of disjunctions to variables. 2000 Elsevier Science
B.V. All rights reserved.

Keywords:Temporal reasoning; Constraint satisfaction problems; Search; Scheduling; Spatio-temporal
databases

✩ This work was supported in part by the TMR project Chorochronos funded by ESPRIT IV. Most of the results
presented in this paper were obtained while the authors where with the Department of Computation, UMIST,
Manchester, UK. A preliminary version of this paper was presented at AAAI-98.
∗ Corresponding author. Email: ks@cs.strath.ac.uk.
1 Email: manolis@ced.tuc.gr.

0004-3702/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(00)00019-9

82 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

1. Introduction

Reasoning with temporal constraints has been a hot research topic for the last fifteen
years. The importance of this problem has been demonstrated in many areas of artificial
intelligence and databases, e.g., planning [2], scheduling [11], spatio-temporal databases
[13,44], geographical information systems [24] and medical information systems [69].

The work carried out in this field can be categorized in terms of the classes of temporal
constraints studied. The class of qualitative temporal constraints in theInterval Algebra
andPoint Algebrahas been studied primarily in [1,49,50,70–72]. Nebel and Bürckert [56]
have introduced the ORD-Horn subclass of Interval Algebra and showed that it is a
maximal tractable subclass. Drakengren and Jonsson [21,22] have also studied other
tractable subclasses of the Interval Algebra. Finally, Gerevini and Schubert [31–33] have
studied several algorithms for qualitative temporal constraints and have implemented them
efficiently in their TimeGraph system.

The class of quantitative temporal constraints has been studied originally by Dechter
et al. [18] in the framework ofsimple temporal problems(STPs) where constraints are
of the form x − y 6 c wherex and y are real variables andc is a real constant, and
temporal constraint satisfaction problems(TCSPs) where constraints are disjunctions of
formulasl 6 x − y 6 u involving thesame pairof real variablesx andy (l andu are real
constants). Subsequently several researchers [12,30,40,46,52] continued the study of the
class of simple temporal problems, and some tractable extensions of it. Koubarakis [45]
and Jonsson and Bäckström [38] have studiedHorn linear constraints, a significant
tractable extension of simple temporal problems that allows disjunctions involving an
arbitrary number of linear disequations (e.g., 3x + 5y + 7z 6= 8) but at most onelinear
inequality. Naturally, the applications of this latter class go beyond temporal reasoning.
Schwalb and Dechter [62] studied the performance of local consistency algorithms for
processing TCSPs on hard problems in the transition region. Finally, Staab [65] proposed
a very expressive temporal reasoning framework which can handle sets of disjunctions of
conjunctions of binary constraints between time points.

This paper continues the work on quantitative temporal constraints and makes the
following contributions:

(1) We extend the framework of simple temporal problems studied originally by
Dechter et al. [18] to consider constraints of the formx1 − y1 6 r1 ∨ · · · ∨
xn − yn 6 rn, where x1, . . . , xn, y1, . . . , yn are variables ranging over the real
numbers,r1, . . . , rn are real constants, andn> 1.
The reader should note that we do not restrict the variables in the disjuncts to be
the same pair as Dechter et al. [18] do in the framework of temporal constraint
satisfaction problems. The added generality is useful in many problems including
temporal planning [73], scheduling [11] and indefinite temporal constraint databases
[43,44,47]. We demonstrate this with the examples and the experiments of Section 7.

(2) We have implemented several progressively more efficient algorithms for the
consistency checking problem for this class of temporal constraints (backtracking,
backjumping, three variations of forward checking and forward checking with
backjumping). We have also implemented the minimum remaining values heuristic
in conjunction with the forward checking algorithms.

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 83

(3) Following the methodology of Kondrak and van Beek [42], we have proved the
correctness of all of the above algorithms, and partially ordered them according to
the number of visited search nodes and the number of performed consistency checks.
Although our problem isnot binary, our results agree with the results of [42] for
binary constraint satisfaction problems.

(4) We have studied the performance of the above algorithms experimentally using
randomly generated sets of data and small job shop scheduling problems. Our results
show that the best of our algorithms is one of the versions of forward checking with
backjumping (an algorithm we call FC1-BJ). The same version of forward checking
without backjumping is only slightly less efficient for the class of problems we
considered in our experimental evaluation.

(5) We present a series of experimental results on the location of the region where hard
problems occur. The results show that hard problems occur at a critical value of the
ratio of disjunctions to variables. We also investigate the transition from the region
where almost all problems are consistent to the region where almost no problem
is consistent. Our empirical results show that the hard region does not occur around
the 50% satisfiability point as is the case with other NP-complete problems like SAT
problems [14,29,63] and binary CSPs [60,64]. It occurs at a point where almost all
problems are unsatisfiable.

The organization of this paper is as follows. In Section 2 we present some basic
definitions and describe the problem in detail. Section 3 discusses consistency checking for
non-disjunctive constraints. In Section 4 we introduce necessary terminology and describe
how the problem is solved using our most efficient algorithm, forward checking with
backjumping. In Section 5 we evaluate the performance of the algorithms theoretically.
Section 6 presents the results of our empirical analysis. In Section 7 we discuss possible
applications of our framework and give some results on job shop scheduling problems.
Finally, in Section 8 we conclude and discuss future work.

2. Preliminaries

We consider time to be linear, dense and unbounded.Pointswill be our only time entities.
Points are identified with the real numbers. The set of real numbers will be denoted byR.

Definition 1. A temporal constraintis a disjunction of the formx1 − y1 6 r1 ∨ · · · ∨
xn − yn 6 rn, wherex1, . . . , xn, y1, . . . , yn are variables ranging over the real numbers,
r1, . . . , rn are real constants, andn > 1. The special variablex0 = 0 is also allowed so
that disjuncts of the formx 6 r and−x 6 r are included in the definition. A temporal
constraint with only one disjunct will be callednon-disjunctive. Temporal constraints with
more than one disjuncts will be calleddisjunctive.

Example 2. The following are examples of temporal constraints:

x1− y16 2, x1− y16 5 ∨ x2− y26−2∨ x3− y36 4.

Although our formalism does not allow time intervals, these can be modelled as pairs of
points as the following example demonstrates.

84 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

Example 3. Let I, J be intervals,I−, J− their beginning points andI+, J+ their ending
points. The following constraints express the fact that intervalsI and J have duration
between 5 and 10 minutes and they cannot overlap.

I+ − I− 6 10, I− − I+ 6−5, J+ − J− 6 10, J− − J+ 6−5,

I+ − J− 6 0∨ J+ − I− 6 0.

2.1. Relationship to other temporal reasoning formalisms

The constraint class that we will study is more expressive than the classes of STP
constraints and TCSP constraints of [18]. The last constraint of Example 3 cannot be
captured by the TCSP model but can be modelled naturally in our framework. Here is
another example.

Example 4. Let I andJ be intervals corresponding to operationsOI andOJ .OI andOJ
will be executed on a machine that can handle only one operation at a time and has a set up
time of 2 minutes. LetI−, J− be the beginning points ofI andJ andI+, J+ their ending
points.

The following is a constraint on the scheduling of operationsOI andOJ :

I+ − J− 6−2∨ J+ − I− 6−2.

Such a disjunctive constraint with disjuncts having different pairs of variables cannot be
expressed in the TCSP framework.

However, it is probably unfair to simply say that our framework is more expressive than
TCSP because TCSP constraints are modelled in our framework rather awkwardly as the
following example demonstrates.

Example 5. Consider the TCSP constraintxi − xj ∈ {[a, b], [c, d]} or equivalently:

a 6 xi − xj 6 b ∨ c6 xi − xj 6 d.
This constraint can only be expressed in our framework using a set of four disjunctions:

xi − xj 6 b ∨ xi − xj 6 d,
xi − xj 6 b ∨ xj − xi 6−c,
xj − xi 6−a ∨ xi − xj 6 d,
xj − xi 6−a ∨ xj − xi 6−c.

Our framework can be easily extended in order to handle TCSP constraints effectively. We
only need to extend Definition 1 to allow disjunctions of the following form:

a16 x1− y16 b1∨ · · · ∨ an 6 xn − yn 6 bn.
In this case one might also want to consider allowing disjunctions of the formφ1∨· · ·∨φn
whereφi, i = 1, . . . , n, is a conjunction of constraintsxi − xj 6 c. This will allow one to
reach the expressiveness of the formalism proposed in [65].

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 85

Both of the alternatives sketched above can easily be accommodated by the work
presented in this paper. The algorithms discussed in forthcoming sections need only simple
modifications in order to work with the new classes of constraints.2

2.2. Consistency checking

In the rest of this paper we will study algorithms for deciding whether a set of temporal
constraints is consistent or not. Let us first define consistency.

Definition 6. Let C be a set of temporal constraints in variablesx1, . . . , xn. Thesolution
setof C, denoted bySol(C), is{

(τ1, . . . , τn): (τ1, . . . , τn) ∈Rn and for everyc ∈C, (τ1, . . . , τn) satisfiesc
}
.

Each member ofSol(C) is called asolutionof C. A set of temporal constraints is called
consistentif and only if its solution set is non-empty.

The consistency checking problem for a set ofm temporal constraints inn variables
can be equivalently restated as anm-ary meta-CSP, where disjunctions can be viewed as
variables, and the disjuncts of each disjunction as the possible values of the corresponding
variable. Them-ary constraint between the variables is that all disjuncts that are part of an
assignment to variables must be simultaneously satisfied. We now give a formal definition
of the problem as anm-ary meta-CSP.

Definition 7. A consistency checkingproblem for a set of temporal constraints consists of
the following:
• A set ofm variables{D1, . . . ,Dm} representing disjunctions.
• A set of domains{dom1, . . . ,domm} for variablesD1, . . . ,Dm. The elements of the

domains are inequalities of the formxi − xj 6 r, wherexi, xj are variables ranging
over the real numbers, andr is a real constant.
• An m-ary constraint which states the following. For allk, where 16 k 6m, if

D1 is assigned valued1

...

Dk is assigned valuedk

then inequalitiesd1, . . . , dk are consistent.

Since the problem is expressed as a constraint satisfaction problem, we can solve
it by search. We check the consistency of a given setC of temporal constraints in
two steps. First, we group together all the non-disjunctive constraints and check their
consistency [19]. If the set of non-disjunctive constraints is inconsistent then the original
set of constraints is also inconsistent and we stop. Otherwise, we consider the subset of
disjunctive constraints as well. NowC is consistent if for each disjunction there exists one

2 This point has already been made in [65].

86 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

disjunct that can be added to the subset of non-disjunctive constraints so that the new set
of constraints produced is still consistent.

The second step of consistency checking is performed using a backtracking based search
algorithm. The basic backtracking algorithm issimple or chronological backtracking
(usually denoted by BT) [36]. In this problem, BT successively selects a disjunct from each
disjunction and adds it to the set of non-disjunctive constraints, as long as this set remains
consistent. In case none of the constraints of the current disjunction can be consistently
added to the set of non-disjunctive constraints, the algorithm backtracks to the previous
disjunction, removes the selected constraint from the set of non-disjunctive constraints,
and chooses another one. The algorithm terminates successfully if all the disjunctions have
been considered. If there is no disjunction left to backtrack to, the algorithm fails. There
are many ways to make BT more efficient and we will discuss some of them in the rest of
this paper.

We will now give more details of the two steps briefly sketched in the above paragraphs.

3. Consistency checking for non-disjunctive constraints

Several algorithms that check the consistency of a set of non-disjunctive temporal
constraints have been proposed in the literature. All these algorithms make use of a graph
representation of the constraints.

Definition 8. A constraint graphis a directed graph whose nodes represent variables
and whose arcs represent binary constraints between these variables. IfC is set of non-
disjunctive temporal constraints inn variablesx1, . . . , xn then the constraint graph ofC is

G= (V ,E) whereV = {x1, . . . , xn} andE = {xj r→ xi: xi − xj 6 r is a member ofC}.
We will use the notationGij to refer to the label (weight) of edgei→ j in a constraint
graphG.

Dechter, Meiri and Pearl in [19] introduced the algorithm DPC (i.e.,directionalpath
consistency) for checking the consistency of a set of non-disjunctive temporal constraints.
Chleq presented an incremental version of DPC, called IDPC [12]. DPC and IDPC work
by propagating constraints in the given constraint graph so that the resulting graph is
directional path consistent.

Definition 9 (Dechter et al.[19]). Let C be a set of non-disjunctive temporal constraints
andG its constraint graph completed in the following way. For each pair of nodes(xi, xj),
if there is no edgexi→ xj then a new edge is added labelled with∞ (this edge represents
the tautologically true constraintxj − xi 6∞). Let ≺ be an ordering of the variables
of C (or nodes ofG), and letxi ≺ xj iff i < j . The constraint graphG is directional
path consistentwith respect to≺, if for every triple i, j and k such thati, j < k then
Gij 6Gik +Gkj .

Dechter, Meiri and Pearl prove that DPC always detects an inconsistency in a constraint
graph, if one exists [19]. In fact Dechter et al. [19] and Chleq [12] present their results

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 87

for constraint networksbut this is not a problem since constraint graphs are an equivalent
representation. In our case, consistency checking is performed using an algorithm, called
GRAPH_IDPC, which is the equivalent of Chleq’s IDPC algorithm for distance graphs.
In GRAPH_IDPC, the nodes are ordered according to a predetermined ordering≺. We
assume that the ordering≺ is the ordering in which the variables are numbered.

The input of GRAPH_IDPC is a directional path consistent graphG with n nodes, and
a constraintxm− xl 6 r, with xl ≺ xm, to be added toG. GRAPH_IDPC will add the new
constraint toG and enforce directional path consistency again, exploiting the fact thatG is
already directional path consistent. GRAPH_IDPC will start by examining nodexm and
move towards nodex1. All the nodes that are afterxm in the ordering≺ are ignored, since
the constraints they are involved in cannot be possibly affected by the new constraint.

The worst-case complexity of GRAPH_IDPC is O(nW2) wheren is the number of
nodes, andW is the width of the ordering≺ in the graph that results after GRAPH_IDPC
terminates [19]. The concept of width of an ordering is defined below.

Definition 10 (Freuder[26], Dechter and Pearl[20]). LetG be a constraint graph and≺
an ordering of its nodes. Theparent setof a nodex relative to≺ is the set of nodesy such
that there is an edge betweenx andy (direction does not matter) andy comes beforex in
the ordering≺. Thewidth of a noderelative to ordering≺ is the cardinality of its parent
set. Thewidth of an ordering≺ is the maximum width of nodes along this ordering.

Instead of using GRAPH_IDPC to add constraints to an already directional path
consistent graph, we could use DPC, since the worst-case complexity of GRAPH_IDPC
is the same as DPC. However, the time spent by GRAPH_IDPC to establish directional
path consistency incrementally is significantly less than the time spent by DPC, as shown
experimentally in [12].

4. Search algorithms

Having explained how consistency checking for non-disjunctive constraints is per-
formed, we will now discuss consistency checking for disjunctive constraints.

4.1. Terminology

First, we introduce some necessary terminology. Our terminology is similar to the
terminology of [31,32] where algorithms for disjunctive qualitative temporal constraints
are proposed. The given set of disjunctions will be denoted byD. D(i) andD(i, j) will
represent theith disjunction and thej th disjunct of theith disjunction, respectively. The
set of non-disjunctive constraints will be represented by a labelled directed graph and will
be denoted byG. We call the set of selected disjuncts aninstantiationof D in G. When
a constraint is consistently added toG, we say that it has beeninstantiated, and when a
constraint is retracted fromG that it has beenuninstantiated. Trying to instantiate a disjunct
means adding it toG and checking that the produced set of constraints is consistent.

88 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

The order of instantiationis the ordering in which the disjunctions are examined. We
will assume that this order isstatic (i.e., it is predetermined and does not change during
the execution of the algorithm). In Section 4.5 we will discussdynamicordering of the
disjunctions. Thecurrent disjunctionis the disjunction chosen for instantiation at each
step of the algorithm. Thepast disjunctionsare the disjunctions that have been already
instantiated. IfD(i) is the current disjunction then all the disjunctions that precedeD(i)

in the order of instantiation are the past disjunctions. We say that these disjunctions are
beforeD(i) andD(i) is after them. Thefuture disjunctionsare the disjunctions that have
not yet been instantiated. They are all the disjunctions that are after the current disjunction
in the order of instantiation. Each disjunct can be in one of three possible states at any
time. It can beavailable, current or eliminated. We say that a disjunct is available if it is
neither current nor eliminated. Initially all the disjuncts of all the disjunctions are available.
A disjunct is current if it is part of the currently attempted instantiation ofD. All the
instantiated disjuncts of the past disjunctions are current disjuncts. A disjunct becomes
eliminated when it is tried against the graph and fails to be consistently instantiated. All
the disjuncts of the past disjunctions that have failed consistency checking are eliminated
disjuncts. Adead-endis a situation when all the disjuncts of the current disjunction are
rejected.

4.2. Preprocessing

A general strategy in CSPs is to preprocess the set of constraints prior to search.
The aim of preprocessing is to transform the given CSP into an equivalent CSP that is
easier for a backtracking algorithm to solve. To be precise, preprocessing tries to reduce
the search space that backtracking algorithms explore, and in that way improve their
efficiency [17].

The set of disjunctionsD can be reduced to an equivalent smaller subset by exploiting
the information provided by the constraint graphG. Three simplepruning rulesoriginally
used in [32] in the context of qualitative temporal constraints are applied to each disjunction
in D prior to the execution of the search algorithms. In this way the search space can
sometimes be significantly reduced. The process of applying the pruning rules toD is
calledpreprocessing. The pruning rules are the following:

(1) If a disjunctionD(i) contains a disjunct that is subsumed by a single constraint in
the constraint graphG then disjunctionD(i) can be eliminated fromD.

(2) If a disjunctionD(i) is subsumed by another disjunctionD(j) thenD(i) can be
eliminated fromD.

(3) If a disjunctD(i, j) is inconsistent relative toG then it can be eliminated from
disjunctionD(i).

The first two rules, in a way, correspond to checking forconstraint entailmentin
constraint programming languages. In case a disjunctD(i, j) is subsumed by a single
constraint inG, D(i) can always be consistently instantiated simply by selectingD(i, j).
Therefore,D can be reduced to a subsetD′ =D\D(i). A disjunctionD(i) is subsumed by
another disjunctionD(j) if every disjunct ofD(j) subsumes a disjunct ofD(i). Pruning
rule (3) checks the consistency of the disjuncts using GRAPH_IDPC. If a disjunctD(i, j)
is found to be inconsistent, it can be discarded, resulting in a shorter disjunctionD(i). In

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 89

terms of constraint programming, this rule can be thought of as enforcing arc consistency
for every disjunction with two or more disjuncts with respect to the disjunctions with one
disjunct which form the initial constraint graph.

The worst-case complexity of preprocessing is O(|N ||D|2|d|2nW2) where|N | is the
number of non-disjunctive constraints,|D| is the number of disjunctions,|d| is the
maximum number of disjuncts in a disjunction,n is the number of variables, andW is
the width of graphG. After the preprocessing rules have been applied, the disjunctions
are ordered in ascending order of domain sizes. This can reduce the number of backtracks
required significantly [67].

4.3. Forward checking and forward checking with backjumping

We have implemented several progressively more efficient algorithms for the consis-
tency checking problem for this class of temporal constraints: backtracking (BT), back-
jumping (BJ), three variations of forward checking (which we call FC, FC1 and FC2) and
forward checking with backjumping (FC-BJ). A detailed presentation of some of these al-
gorithms can be found in [66]. For reasons of brevity we only present the three versions of
forward checking and FC-BJ in this paper.

In the context of our problem, FC will attempt to instantiate a disjunct from each
disjunction, starting with the first. First, the current disjunctD(i, j) will be added toG and
propagated using the GRAPH_IDPC algorithm discussed in Section 3. Then, all disjuncts
of the future disjunctions will be checked for consistency. That is, each disjunct will be
added toG and propagated, using again GRAPH_IDPC. If an inconsistency is detected
then the disjunct fails and will be temporarily removed from the disjunction it belongs
to. If during thefiltering of the domains, one of the future disjunctions is annihilated
then the disjuncts that were removed due toD(i, j) will be restored, the attempted
instantiation will be rejected, and the next disjunct of the current disjunctionD(i) will be
tried.

We also study two variations of FC. The first one, FC1, is similar to FC, with the
only difference being that the forward checking process is switched off when the current
disjunction has only one available disjunct. We call such disjunctionsunary. Forward
checking is again turned on after all the unary disjunctions have been instantiated. This
algorithm is inspired from [3] and may save many consistency checks.

The second variation of forward checking, FC2, works in the following way. First, it
forward checks the current instantiation in the same way that FC does. Then, it adds all
the disjuncts in unary future variables to the constraint graph and checks for consistency. If
they are inconsistent, the algorithm continues with the next available disjunct of the current
variable. If no inconsistency is detected, the unary disjunctions are removed from the graph
and the algorithm continues by picking another disjunction. In Sections 5 and 6, we show
theoretically and experimentally how these algorithms compare with FC.

FC-BJ is a hybrid search algorithm that combines the forward move of FC with the
backward move of BJ [59]. In that way, the advantages of both algorithms are exploited. In
case there are no more disjuncts left in the current disjunctionD(i), FC-BJ will backjump
to one of the past disjunctions that are responsible for the dead-end, uninstantiate its
instantiated disjunct and try the next available one. If there are no disjuncts available FC-BJ

90 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

will backtrack chronologically. Naturally, backjumping can be added to any of the versions
of FC that we described. Here is an example that shows how the standard version of FC
augmented with BJ works. Algorithms FC1-BJ and FC2-BJ work in a similar way.

Example 11. Suppose that we want to determine the consistency of the following set of
disjunctions:

D(1) x2− x16 5∨ x3− x46 6,

D(2) x3− x16 4∨ x3− x46 5,

D(3) x5− x46−6∨ x3− x46 4,

D(4) x1− x36 0∨ x3− x46 2,

D(5) x3− x56 2∨ x1− x36−6,

D(6) x1− x26−8∨ x4− x36 1.

FC-BJ will begin by trying to instantiate the first disjunction. DisjunctD(1,1) is
instantiated and is forward checked against all the future disjuncts. The forward checking
causes the elimination ofD(6,1). In the same way,D(2,1) is instantiated and its forward
checking causes the elimination ofD(5,2). D(3,1) andD(4,1) are instantiated without
affecting any future disjunctions. Now, FC-BJ moves on toD(5). The forward checking of
D(5,1) causes the elimination ofD(6,2). This happens because from constraintsD(5,1)
andD(3,1) we get the new constraintx3 − x4 6 −4, which is obviously in conflict
with D(6,2). Since there are no more available disjuncts inD(6), D(5,1) is rejected.
This leavesD(5) with no available disjuncts, sinceD(5,2) has been eliminated due to the
forward checking ofD(2,1). Therefore, FC-BJ has reached a dead-end.

FC-BJ will backjump to the deepest past disjunction that precludes a disjunct ofD(5).
This disjunction can be discovered by reasoning as follows. DisjunctD(5,2) is eliminated
because of the forward checking ofD(2,1). Therefore, we can say that theculprit for
the elimination ofD(5,2) is disjunctionD(2). DisjunctD(5,1) is eliminated because its
forward checking results in the annihilation ofD(6). If D(6) were not annihilated,D(5,1)
would be available. Therefore, the disjunctions responsible for the elimination ofD(5,1)
are the past disjunctions whose instantiations, together withD(5,1), cause the annihilation
of D(6). Disjunct D(6,1) is eliminated because of the forward checking ofD(1,1).
Thus, the culprit for the elimination ofD(6,1) is disjunctionD(1). DisjunctD(6,2) is
eliminated because it is in conflict with a constraint that is derived from constraintsD(5,1)
andD(3,1). Therefore, disjunctionD(3) is responsible for the elimination ofD(6,2). As
we can see, the past disjunctions responsible for the annihilation ofD(6), and thus for the
elimination ofD(5,1), areD(1) andD(3). The deepest of all the past disjunctions that
cause the elimination of the disjuncts ofD(5) is thereforeD(3). This means that FC-BJ
will backjump toD(3). If FC-BJ jumps back toD(3) and uninstantiates it then the forward
checking ofD(5,1) will not cause the elimination ofD(6,2), which means thatD(5,1)
will be consistently instantiated. Finally,D(6,2) will be consistently instantiated, and the
algorithm will terminate.

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 91

4.4. Discovering the causes of inconsistencies

Assuming that a dead-end is encountered atD(i) then for each disjunct ofD(i) there
can be more than one set of past disjunctions that is responsible for its rejection. This is
demonstrated in the following example.

Example 12. Let us assume that the set of instantiated disjuncts at some point in time is:

x3− x16 1,

x3− x26 2,

x2− x46 0,

x1− x46 0

and that the current disjunction contains the disjunctx4−x36−3. When this disjunct will
be added to the set of instantiated disjuncts there will be two sources of inconsistency:

(1) the constraintsx3− x26 2, x2− x46 0 andx4− x36−3,
(2) the constraintsx3− x16 1, x1− x46 0 andx4− x36−3.

In the above example there are two sets of constraints, and therefore two sets of
disjunctions that are responsible for the rejection of the current disjunct. For each
disjunctD(i, j), these sets of past disjunctions are theconflict setsof D(i, j). In our
implementation of backjumping, the algorithm will discoveronly oneof the conflict sets
of D(i, j). This set will be the set that causes the first inconsistency that is encountered
when disjunctD(i, j) is added and propagated in the constraint graph. For instance, in
Example 12 the constraintx4− x3 6−3 is checked by adding it to the graph formed by
the other constraints and propagating it using directional path consistency. The propagation
algorithm GRAPH_IDPC will start with variablex4, it will check the tripletx4, x3, x2 and
will discover the first inconsistency. The conflict set returned to the algorithm will be the
disjunction(s) that has (have) created the constraintsx3− x26 2 andx2− x46 0.

The conflict set discovered by the algorithm will be called theculprit setofD(i, j). The
aim of BJ is to select the deepest possible disjunction to backjump to. Therefore, BJ will
select the deepest disjunction among the disjunctions in the culprit sets of the disjuncts
of D(i). In order to identify the culprit set of a disjunctD(i, j), we have to know which
constraints have produced the current labels on the edges involved in the inconsistency.
If we have that information then we can “roll back” the changes, for each of the edges
involved in the inconsistency, until we reach the instantiated disjuncts of past disjunctions.
These disjunctions will form the culprit set ofD(i, j). The rolling back of the changes
requires that each edge should be connected with the edges it is derived from. This can
be done by usingdependency pointers. If the current label on edgexk → xl is a result
of the addition of the labels on edgesxk → xm andxm→ xl then edgexk → xl should
be associated through dependency pointers with edgesxk→ xm andxm→ xl . Instead of
using two pointers to point to edgesxk→ xm andxm→ xl , we have chosen to use only one
pointer that points to nodexm. Obviously, if we can identify nodexm then we automatically
know that the edges responsible arexk → xm and xm → xl . Using these dependency
pointers we can trace the changes in every edge back to an instantiated disjunct. This

92 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

is done simply by following the dependency pointers backwards. The search for the
inconsistency cause stops when we reach a point where there are no more dependency
pointers to be followed. That is, when all the paths of pointers lead us to edges which are
not the result of propagated disjuncts, but have been directly added to the graph.

4.5. Heuristics

So far, we have assumed a static ordering of the disjunctions for all the algorithms
presented. It is well known, though, that backtracking algorithms for binary CSPs benefit
significantly fromdynamic variable ordering(DVO) techniques [4,17,27]. In this section,
we investigate the applicability of dynamic ordering techniques in ourn-ary temporal
constraint satisfaction problem.

Several heuristics have been developed for the static or dynamic ordering of variables
mainly for binary CSPs [28,67]. The most popular dynamic variable ordering heuristic
is based on thefail-first (FF) principle, proposed by Haralick and Elliot [37]. The
FF principle is the following: “To succeed, try first where you are most likely to fail”.
Applied as a variable ordering heuristic, this suggests that at each step we choose
to instantiate the variable that has the fewest values compatible with the previous
instantiations. Following [4], we will call this heuristic theminimum remaining values
(MRV) heuristic. The best way to implement the MRV heuristic is in conjunction with
a forward checking algorithm. In the context of the problem we are studying, the MRV
heuristic suggests that at each step we select to instantiate the disjunction that has the fewest
available disjuncts. Augmenting any version of forward checking and forward checking
with backjumping with the MRV heuristic is straightforward. Due to the forward checking
that these algorithms do, we can find the future disjunction with the fewest available
disjuncts simply by counting the disjuncts in each future disjunction. The one with the
fewest available disjuncts is selected as the next disjunction to be instantiated.

When the MRV heuristic is used with FC, the algorithm will always instantiate the
disjunction with the smallest domain first, which means that unary disjunctions are
instantiated before all the others. When a unary disjunction is selected, forward checking
may create new unary disjunctions, which in turn will be picked before the others. A non-
unary disjunction will be picked only if there are no unary ones left. FC1 with MRV works
in a slightly different way. At each step of the search all the unary disjunctions are
instantiated, one after the other, without forward checking them, which means that no new
unary disjunctions are created during this process. When all the unary disjunctions have
been instantiated, a disjunct from a non-unary one will be selected and its forward checking
may create new unary disjunctions. FC2 with MRV is similar to FC. Unary disjunctions
are again instantiated before the others and are forward checked. The difference with FC
is that at each step of the search the future unary disjunctions are checked for consistency
to prune the search space earlier.

As we explain in Section 6, when many interesting real-world problems are modelled
in our framework, the disjunctions have small domain sizes (usually 2 disjuncts per
disjunction). For this reason our experiments were carried out on problems with
disjunctions of maximum domain size 3. Due to the small domain size, the MRV heuristic
leaves a large number of disjunctions having the same minimum domain size. So far we

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 93

break “ties” by randomly selecting one of these disjunctions. But it would be very helpful
to devise and use informed heuristics for tie breaking. We have experimented with a tie
breaking heuristic based on information from the disjunction set, as well as with some ad-
hoc heuristics without success. The tie breaking heuristic we investigated selects a disjunct
based on the number of times that the temporal variables in the disjunct appear in other
constraints. In that way, we hope to select a disjunct that is more heavily constrained than
the others. Apart from tie breaking during variable ordering, this heuristic is also doing
value ordering. However, experimental results did not show any benefits from using this
heuristic instead of random selection as Fig. 3 in Section 6 shows. We also experimented
with the anti-heuristic that selects the constraint whose variables appear in the least number
of constraints but with disappointing results. This suggests that the idea behind selecting
the most heavily constrained disjunct may be worth persuing. We should note that, because
of the nature of the problem we are addressing, we are unable to use heuristics for binary
CSPs like theBrelazheuristic [9] and the heuristics of [28] or static heuristics that depend
on topological information from the constraint graph. For instance, the Brelaz heuristic
chooses the variable with the maximum future degree among the variables that have
minimum domain size. In this problem, though, all variables are involved in the same
constraint and therefore all have the same degree.

4.6. Consistency levels of forward checking

Before moving to the theoretical and experimental analysis of our algorithms, it is
instructive to compare our algorithms with the well-known local consistency enforcing
algorithms [16,25,26,51,55].

We start by giving a few definitions. LetC be a set of constraints in variablesx1, . . . , xn.
For anyi such that 16 i 6 n,C(x1, . . . , xi)will denote the set of constraints inC involving
only variablesx1, . . . , xi .

The following definition is from [16].

Definition 13. Let C be a set of constraints in variablesx1, . . . , xn and 16 i 6 n. C
is called i-consistentiff for every i − 1 distinct variablesx1, . . . , xi−1, every valuation
u = {x1← x0

1, . . . , xi−1← x0
i−1} such thatu is a solution ofC(x1, . . . , xi−1) and every

variablexi different fromx1, . . . , xi−1, there exists a real numberx0
i such thatu can be

extended to a valuationu′ = u∪ {xi← x0
i } which is a solution ofC(x1, . . . , xi−1, xi).C is

calledstrongi-consistentif it is j -consistent for everyj, 16 j 6 i. C is calledglobally
consistentiff it is i-consistent for everyi, 16 i 6 n.

At each node of the search tree, each one of our algorithms is adding constraints to a
constraint graph and is making this graph directionally path consistent. Due to the special
form of this graph, directional path consistency is equivalent to global consistency (this
has been shown in [18]). However this equivalence refers to the constraint graph built
incrementally at each node of the search tree, and has nothing to do with local consistency
for the original set of temporal constraints (our algorithms do not attempt to enforce any
level of consistency of that sort).

94 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

Let us now consider what our algorithms are doing, in terms of the above local
consistency notions, to them-ary meta-CSP equivalent to the original problem (m is the
number of disjunctions of the original problem, see Section 2.2). Algorithm FC (and its
variants) is a generalization of forward checking as defined for binary constraints [37]. At
each node of the search tree, FC considers the projections of the singlem-ary constraint
over the past variables, the current variable, and one future variable. Each such projection
defines a “virtual” constraint that involve the past, the current and one future variable.
Whenever FC removes disjuncts from the future disjunctions, it is essentially enforcing
a form of (k + 2)-consistency wherek is the number of past variables. FC1 does the
same when the current variable is not a unary one. If the current variable is unary then
FC1 behaves like chronological backtracking. FC2 enforces a stronger level of consistency
than FC. It first goes through the same process as FC and then it considers the constraint
projection comprising of the past variables, the current variable, and all the future variables
with unary domains. This projection creates a “virtual” constraint that is checked for
consistency. Therefore, ifk is the number of past variables andu is the number of future
variables with unary domains, FC2 enforces a form of(k + u+ 2)-consistency.

Recently, Bessière et al. [8] have discussed possible extensions of forward checking to
non-binary constraints. We should note that our algorithms FC, FC1 and FC2 are not di-
rectly comparable to nFC1–nFC5, the generalizations of forward checking studied in [8],
because we only have a single constraint in our problem. nFC1, which also works on
projections, makes each projection of the current variable and one future variable arc-
consistent but, to do so, it only considers values that are present in valid tuples of the
m-ary constraint. Since we only have a single globalm-ary constraint, the valid tuples
of this constraint are the solutions to the problem, so, strictly speaking, to use nFC1 we
would have to find all the solutions to the problem first. Similar comments can be made for
algorithms nFC2–nFC5.

5. Theoretical results

In this section we analyse theoretically the behaviour of the backtracking algorithms we
have developed. Our analysis is similar to Kondrak and van Beek theoretical evaluation
of the basic backtracking algorithms for binary CSPs [42]. Kondrak and van Beek have
partially ordered these algorithms according to two standard performance measures: the
number of search tree nodes visited and the number of consistency checks performed.

Although our problem isnon-binary, we show in this section that the results of [42] are
also valid in our case. Additionally, we study theoretically the algorithms FC1 and FC2 and
include them in the partial hierarchy. To order the algorithms, some of the analysis is based
on theorems that state the necessary and sufficient conditions for nodes to be visited by
the search algorithms. The proofs are very similar to the corresponding proofs for binary
CSPs [42] so we do not need to repeat all of them here (some can be found in [66]).

The following two theorems summarize the sufficient and necessary conditions for a
node to be visited by BT, BJ, FC, and FC-BJ. We assume that there is a static ordering of the
variables and we are looking for all solutions. All the following results can be extended to
the case where we are looking for the first solution [42]. Furthermore, the results are valid

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 95

when the MRV heuristic is used for dynamic variable ordering, as Kondrak and van Beek
in [42] explain.

Theorem 14.
(a) If the parent of a node is consistent then BT visits the node.
(b) If the parent of a node is consistent with every variable then BJ visits the node.
(c) If a node is consistent and the parent of the node is consistent with every variable

then FC visits the node.
(d) If a node is consistent and the parent of the node is consistent with every set of

variables then FC-BJ visits the node.

Proof. The proofs are the same as in [42]. We should note that the proof for FC-BJ is not
included in [42] but it is very similar to the proof for FC-CBJ.2
Theorem 15.

(a) If a node is visited by BT then its parent is consistent.
(b) If a node is visited by BJ then its parent is consistent.
(c) If a node is visited by FC then it is consistent and its parent is consistent with all

variables.
(d) If a node is visited by FC-BJ then it is consistent and its parent is consistent with all

variables.

Proof. The proofs are very similar to those in [42].2
Based on the above theorems we were able to partially order the algorithms according

to the search tree nodes they visit. We say that an algorithmA dominatesan algorithm
B iff any search node visited byA is also visited byB andA strictly dominatesB iff A
dominatesB and there is at least one problem whereA visits less nodes thanB.

Corollary 16.
(a) BJ strictly dominates BT.
(b) FC strictly dominates BJ.
(c) FC-BJ strictly dominates FC.

Proof. The proofs are straightforward and identical to the proofs in [41].2
Using the theorems we can also prove the correctness (i.e., the soundness and

completeness) of the algorithms in a straightforward way. We can also include the
variations of forward checking in the hierarchy. The following theorems prove that FC
strictly dominates FC1 and it is strictly dominated by FC2.

Theorem 17. FC strictly dominates FC1.

Proof. To prove that FC dominates FC1, consider a node in the search tree visited by al-
gorithm FC1. If the node corresponds to a disjunction with more than one disjuncts left in

96 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

its domain then FC1 and FC will both forward check the current assignment and remove
exactly the same disjuncts from future disjunctions. If the node corresponds to a unary dis-
junction then FC1 will visit the next node without forward checking, and therefore, without
removing any future disjuncts. FC will first forward check the current assignment and then
visit the next node. Therefore, if FC1 removes a disjunct from the domain of a disjunction
then FC will also remove it. In other words, if FC visits a node then FC1 will also visit it.

To prove strictness, consider a problem consisting of the following disjunctive
constraints.

D(1) x1− x26 0,

D(2) x2− x46 0∨ x2− x16−3,

D(3) x4− x36 0∨ x2− x16−2,

D(4) x3− x26−1∨ x2− x16−1,

D(5) x4− x26−1∨ x4− x16−1.

FC1 will instantiateD(1,1) and forward check it. This will leave the future disjunctions
D(2), D(3) andD(4) with single-element domains. FC1 will then instantiate the three
unary disjunctions and discover that there is no solution whenD(5) is checked. Therefore,
FC1 will discover the insolubility after visiting 6 nodes. FC will instantiateD(1,1) and
forward check it in the same way as FC1. Then, it will instantiateD(2,1) and forward
check it. This will remove both disjuncts fromD(5), and thus FC will discover that the
problem is insoluble after visiting only 2 nodes.2
Theorem 18. FC2 strictly dominates FC.

Proof. The first step of FC2 is forward checking. Therefore, FC can never do more pruning
than FC2, which means that FC2 can never visit more nodes than FC.

To prove strictness, consider a problem consisting of the following disjunctive
constraints.

D(1) x1− x26 0,

D(2) x2− x46 0∨ x2− x16−3,

D(3) x4− x36 0∨ x2− x16−2,

D(4) x3− x26−1∨ x2− x16−1,

D(5) x5− x66 0∨ x6− x76 0.

FC2 will instantiateD(1,1) and forward check it. This will leave the future disjunctions
D(2), D(3) and D(4) with single-element domains. FC2 will then check the unary
disjunctions and find that they are inconsistent. Therefore, FC2 will discover the
insolubility in 1 node. FC will make the instantiationsD(1,1), D(2,1) andD(3,1), and
thus visit 3 nodes, before discovering that the problem is insoluble.

It trivially follows that the relationship between FC and FC-BJ carries through to FC1
and FC2. That is, FC1-BJ strictly dominates FC1 and FC2-BJ strictly dominates FC2.2

The ordering of the algorithms according to the number of visited nodes helps us to
partially order them according to the number of performed consistency checks as well.

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 97

BT and BJ perform exactly one consistency check at each node (i.e., they check the
consistency of the current disjunct). This means that BJ never performs more consistency
checks than BT. The fact that FC and FC-BJ perform the same consistency checks at each
node means that FC-BJ never performs more consistency checks than FC. A relationship
between the backward checking algorithms and the forward checking algorithms with
respect to the number of performed consistency checks cannot be established. There are
problems where BT performs more consistency checks than FC and FC-BJ, as well as
problems where the opposite occurs. FC, FC1 and FC2 are also incomparable with respect
to consistency checks.

The theoretical results presented above can be very useful for somebody who wants
to select an algorithm for an application that uses temporal constraints. For example, we
know that FC-BJ will always visit less search tree nodes and performs less consistency
checks than FC, so it makes sense to choose FC-BJ (over FC) in any application domain.
But will FC-BJ offer substantially better performance over FC? In what cases? To find
the answers to such questions, one needs to movefrom theory to practiceand study the
behaviour of the two algorithms experimentally. This is what we do in the next section (for
all the algorithms we have designed and implemented).

Let us also stress here that theoretical results can be misleading if they are not used
carefully and accompanied by experimental analysis. For example, the experiments with
random data of Section 6 and the scheduling problems of Section 7.1 show that, in practice,
FC1 clearly beats FC with respect to consistency checks performed. Therefore, among the
two, FC1 is the algorithm of choice. The theoretical results of this section alone could never
tell us that! The only thing they tell us is that FC1 is strictly dominated by FC with respect
to visited nodes, and is incomparable to it with respect to consistency checks performed.

6. Experimental results

In this section we present results from the empirical evaluation of the search algorithms.
The algorithms were tested using randomly generated sets of data. First, we compared
the algorithms with respect to the number of search tree nodes visited, the number of
consistency checks performed, and the CPU time used. Then, we tried to investigate the
phase transition in the problem we study. It was shown in [10,14,29,60,63,64] that for
many NP-complete problems, hard problems occur around a critical value of a control
parameter. The control parameter in our problem is the ratior of disjunctions to variables.
We have chosen this parameter because of the similarities between the problem we study
and SAT problems. The disjunctions in our problem correspond toclausesin SAT and
the disjuncts correspond toatomic propositions. Each disjunct can be either consistent or
inconsistent, which is similar to an atomic proposition being true or false. In SAT problems
the control parameter used is the ratio of clauses to variables which transferred to this
problem corresponds to the ratio of disjunctions to variables.

6.1. The random generation model

The random problem generation model used is in some ways similar to thefixed
clause length modelfor SAT, as described in [63]. For each set of problems there are

98 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

four parameters: the number of constrained variablesn, the number of disjuncts per
disjunctionk, the number of disjunctionsm, and the maximum integer valueL. Therefore,
each problem is described by the 4-tuple〈k,n,m,L〉. As in the fixed clause length model
for SAT we have keptk fixed. We mainly examined problems withk = 2, since this is the
most interesting class in planning and scheduling applications. Many such problems can be
formulated as sets of disjunctions withk = 2. Problems with two disjuncts per disjunction
are NP-complete, in contrast with 2-SAT problems. We also present results from problems
where all disjunctions have domain size 3.

For disjunction with domain size 2, we do the following. For givenn,m,L, a random
instance is produced by randomly generatingm disjunctions of length 2. Each disjunction,
D(i)≡ x1− y16 r1 ∨ x2− y26 r2, is constructed by randomly generating each disjunct
xj − yj 6 rj in the following way:

(1) Two of then variables are randomly selected with probability 1/n. It is made sure
that the two variables are different.

(2) rj is a randomly selected integer in the interval[0,L]. rj is negated with
probability 0.5.

(3) If the pair of variables inD(i,1) is the same as inD(i,2) then it is made sure that
r1 is not equal tor2 so that the disjuncts are different.

Disjunctions of size 3 were generated in a similar way.

6.2. Comparison of the algorithms

The empirical evaluation presented here helped us to estimate quantitatively the
differences between the algorithms. First, we evaluated the performance of BT, BJ,
FC, FC-BJ, FC+MRV, and FC-BJ+MRV on small randomly generated sets of problems
involving 5 variables. Fig. 1 shows themediannumber of consistency checks performed
by each algorithm. There is no curve representing FC-BJ+MRV because the number
of visited nodes and consistency checks for FC-BJ+MRV are only slightly less than
the corresponding numbers for FC+MRV. Along the horizontal axis is the ratior of

Fig. 1. The median number of consistency checks as a function of the ratio of disjunctions to variables.

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 99

Fig. 2. The median number of visited nodes as a function of the ratio of disjunctions to variables.

disjunctions to variables. The ratio was incremented in steps of 1, starting fromr = 2.
Each data point gives the median number of consistency checks for 100 random instances
of the〈2,5,m,100〉 problem, wherem is the number of disjunctions.

From Fig. 1 it is obvious that FC+MRV and FC-BJ+MRV are by far the best algorithms
and BT is by far the worst. It seems that BJ performs less consistency checks than FC and
FC-BJ. This is caused by the forward checking that FC and FC-BJ do. For small values of
r most of the problems are solved after very few, if any, backtracks. Therefore, for small
problems there are no real gains by the forward checking of FC and FC-BJ. Experiments
with 10 or more variables showed that this is not true for larger problems. We should
note that for values ofr greater than 7, the mean consistency checks performed by BJ
are marginally more than the ones performed by the forward checking algorithms. This is
caused by a few hard instances in which BJ performs poorly.

Fig. 2 shows the median number of nodes visited by FC, FC-BJ, and FC+MRV with
random tie breaking. BT and BJ are omitted because for these algorithms the number of
visited nodes is by far greater than the corresponding number for the forward checking
algorithms. As we explained in Section 5, the number of visited nodes for BT and BJ
is always the same as the number of consistency checks performed. Fig. 2 displays the
effectiveness of dynamic variable ordering. For instance, forr = 8 the median number
of nodes visited by FC+MRV is 17, while for FC and FC-BJ they are 163 and 124,
respectively. The corresponding numbers for BJ and BT are 4088 and 14694.

We then compared the performance of the tie breaking heuristic discussed in Section 4.5
(denoted by FC+MRV+TB) to the performance of FC+MRV with random tie breaking.
Fig. 3 shows the percentage of instances where the tie breaking heuristic performed better
than random tie breaking. We also show the performance of the anti-heuristic (denoted by
FC+MRV+antiTB). As we can see, FC+MRV with the tie breaking heuristic is in general
inferior to FC+MRV with random tie breaking. Even in the cases where more than 50% of
the instances benefited from FC+MRV+TB, the gain was not substantial. The anti-heuristic
is clearly bad which gives an indication that the idea behind FC+MRV+TB may have
potential.

100 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

Fig. 3. The percentage of instances where FC+MRV+TB and FC+MRV+antiTB performed less consistency
checks than FC+MRV. The instances have 10 temporal variables. Each disjunction has 2 disjuncts. On thex-axis
is the ratio of disjunctions to temporal variables.

Fig. 4. Median consistency checks performed by FC, FC1 and FC2. The instances have 10 temporal variables.
Each disjunction has 2 disjuncts. On thex-axis is the ratio of disjunctions to temporal variables.

Then, we compared the three versions of forward checking, FC, FC1, and FC2. The
MRV heuristic was used for variable ordering. In general, FC2 visits less nodes but it
performs more consistency checks at each node, while FC1 visits more nodes, but performs
less consistency checks because for some nodes no forward checking is performed. Figs. 4
and 5 show the performance of FC, FC1, and FC2 on randomly generated instances with
10 and 20 temporal variables. FC2 performs less consistency checks than FC but the gain
is not very significant initially when the ratio of disjunctions to variables is small. As the
ratio of disjunctions to variables grows, FC2 outperforms FC in an increasing percentage
of instances. This is caused by the increasing number of unary disjunctions that help
FC2 to identify dead-ends earlier. FC1 is the best algorithm as it performs considerably
less consistency checks than the other two algorithms. FC1 visits more nodes than the

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 101

Fig. 5. Median consistency checks performed by FC, FC1 and FC2. The instances have 20 temporal variables.
Each disjunction has 2 disjuncts. On thex-axis is the ratio of disjunctions to temporal variables.

other algorithms but the consistency checks that are saved when unary disjunctions are
instantiated more than compensate for that. The differences between algorithms FC-BJ,
FC1-BJ, and FC2-BJ were similar to those of Figs. 4 and 5. Ourbest algorithmoverall was
FC1-BJ+MRV, but it was only slightly better than FC1+MRV.

We have also measured the CPU times used by the algorithms we studied. As expected,
the CPU times are proportional to the number of consistency checks.

6.3. The hard problems

For many NP-complete problems there is a problem parameter such that the hardest
problems tend to be those for which the parameter is in a particular range [10]. In
both 3-SAT problems [14,29,63] and binary CSPs [60,64]under-constrainedproblems
appear to be easy to solve because they generally have many solutions.Over-constrained
problems also appear to be easy because such problems generally have no solutions, and a
sophisticated algorithm is able to quickly identify dead-ends and abandon most or all the
branches in the search tree. The hardest problems generally occur in the region where
there is aphase transitionfrom easy problems with many solutions to easy problems
with no solutions. These problems are very important for the accurate evaluation of the
performance of algorithms. The region in which hard problems occur is called thehard
region.

In order to locate the hard region, we first experimented with problems where all
disjunctions have two disjuncts. We considered sets of disjunctions involving 10, 12, 15,
and 20 variables. The problems created were solved using FC+MRV. The other versions
of forward checking as well as forward checking with backjumping demonstrate a very
similar behaviour to FC+MRV with respect to the location of the hard region. All the other
algorithms were unacceptably slow at solving problems with 10 or more variables. Then,
we experimented with disjunctions of domain size 3 to find out how the number of disjuncts
affects the location of the hard region.

102 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

Fig. 6. The median number of consistency checks for problems with 10, 12, 15 and 20 variables as a function of
the ratio of disjunctions to variables.

Fig. 6 shows the number of consistency checks performed by FC+MRV for problems
with 10, 12, 15 and 20 variables.

In Fig. 6 we can notice the following:
• The curve representing the consistency checks for 10 variables starts to rise sharply

at r = 5, reaches its peak atr = 7, and then slowly falls away.
• The curves representing the consistency checks for 12 and 15 variables follow the

same pattern, with the difference that their peak is reached atr = 6.
• The curve representing the median consistency checks for 20 variables is similar

to the corresponding curve for 10 variables in the sense that it reaches its peak at
r = 7. Notice, though, that the curve for 20 variables is much sharper than the one for
10 variables.

The above observations suggest that the hardest problems occur in the region where
the ratio of disjunctions to variables is between 6 and 7. Fig. 6 also shows that the hard
region becomes narrower as the number of variables is increased. We should note that the
curves representing the median number of visited nodes are similar to the corresponding
curves in Fig. 6. The difference is that the number of consistency checks declines slower
than the number of visited nodes forr > 7. As we shall see later, most of the problems
with r more than 7 have no solutions. In this case, FC+MRV is able to discover dead-ends
soon and thereby avoid visiting redundant nodes. This results in the decline of the median
number of visited nodes. The median number of consistency checks declines relatively
slower because as the number of disjunctions rises, FC+MRV has to do more forward
checking early in the search, and therefore perform more consistency checks.

Fig. 7 shows the median and mean number of consistency checks for problems with
20 variables. The location of the peak of the mean curve is atr = 6, which means that it
does not coincide with the peak of the median curve. As a matter of fact, the mean number
of consistency checks atr = 6 is as much as seven times more than the median number.
This is due to a few exceptionally hard problems that occurred atr = 6. We should mention
that the same results regarding the differences between medians and means were observed
for 10, 12, and 15 variables. Generally, as the number of variables increases, the distance

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 103

Fig. 7. The median and mean number of consistency checks for problems with 20 variables as a function of the
ratio of disjunctions to variables.

Fig. 8. The median and mean CPU time in seconds as a function of the ratio of disjunctions to variables.

between the median and mean curves increases too. This is caused by the few very hard
instances that occur, which as the search space increases, tend to affect the average number
of consistency checks and visited nodes more and more. In Fig. 8 we give the mean and
median CPU time (in seconds) to illustrate the hardness of random problems with as few
as 20 variables.

Figs. 9 and 10 shows the median number of consistency checks and visited nodes for
instances with 5 and 10 variables, each having 3 disjuncts per disjunction. The peak in
the number of checks and nodes has shifted to the right compared to problems with two
disjuncts. Such a shift has also been observed in SAT problems when the number of
literals per clause increases [54], and in binary CSPs when the domain size of the variables
increases [60]. An interesting observation is that problems remain relatively hard, in terms
of consistency checks, even for very high ratios of disjunctions to variables. The same
is also true for problems with two disjuncts. There is, however, a clear transition in the

104 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

Fig. 9. The median number of consistency checks for problems with 5 and 10 variables and 3 disjuncts per
disjunction as a function of the ratio of disjunctions to variables.

Fig. 10. The median number of visited nodes for problems with 5 and 10 variables and 3 disjuncts per disjunction
as a function of the ratio of disjunctions to variables.

number of visited nodes as Fig. 10 shows. The difference in the rate that the number of
nodes declines whenr rises, compared to consistency checks, is made clear when we look
at the numbers forr = 18 andr = 60. At r = 18 we encountered the hardest problems with
both visited nodes and consistency checks reaching their peak, while atr = 60 they have
their lowest values. However, the median number of nodes atr = 60 is 36 times lower than
the corresponding number atr = 18, while the median number of checks is only 9 times
lower.

The slow decline in the number of consistency checks can be explained by the extra
effort in forward checking as the number of disjunctions increases. While the number
of visited nodes starts falling after a point, the number of consistency checks that are
performed at each node stays high because of the greater number of future disjunctions
that have to be checked. As a result, the total number of consistency checks remains high
too. A possible explanation is that forward checking is not very effective in identifying

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 105

dead-ends soon. It takes a large number of forward checks before dead-ends are identified
making insoluble problems hard. This is not very surprising because of the way that
forward checking is performed. As we explained in Section 4, after a disjunct is chosen for
the current disjunction, it is forward checked against the disjuncts of the future disjunctions,
one by one. This ensures that all the future disjuncts are consistent with the current partial
solution. But since we are dealing with a non-binary CSP, this is only the lowest level of
consistency that can be guaranteed. For example, we could enforce consistency among all
the triples of disjuncts involving the current disjunct and two future ones. This would be
very expensive, however. The scheme we are using for forward checking is cheap but does
not achieve the same pruning as more expensive higher level schemes would. It remains
an open question whether the use of more sophisticated variable ordering heuristics can
reduce the number of checks in the insoluble region even further.

6.3.1. The phase transition from soluble to insoluble problems
Fig. 11 shows the proportion of satisfiable problems for 5, 10, 12, 15, and 20 variables

as a function ofr for problems with 2 disjuncts. Each data point represents the number
of consistent instances out of 100 instances. As we can see, at small ratios (r < 4)
almost all problems are satisfiable and at high ratios (r > 7) almost all problems are
unsatisfiable. There is a range ofr values over which the proportion of satisfiable problems
abruptly changes from almost 100% to almost 0%. This transition region from soluble to
insoluble problems becomes narrower as the number of variables increases. For 10, 12 and
15 variables the transition region appears to occur at values ofr between 4 and 7. For
20 variables the proportion of satisfiable problems atr = 5 is 85% and atr = 6 it is 22%.
This suggests that the phase transition from soluble to insoluble problems occurs in this
area.

As we saw previously, the hard region for problems with 2 disjuncts occurs at values
of r between 6 and 7. For 10 variables the hardest problems occur atr = 7. At this
point the proportion of satisfiable problems is 13%. For 12 variables the hardest problems
occur atr = 6 where the proportion of satisfiable problems is 22%. For 15 variables the

Fig. 11. Percent of satisfiable instances for problems with 5, 10, 12, 15, and 20 variables and 2 disjuncts per
disjunction.

106 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

Fig. 12. Percent of satisfiable instances for problems with 5 and 10 variables and 3 disjuncts per disjunction.

proportion of satisfiable problems atr = 6 is 36% and atr = 7 it is 7%. For 20 variables
the hardest problems occur atr = 7 where all the generated problems are unsatisfiable.
It seems therefore, that the hard region does not coincide with the transition from soluble
to insoluble problems. Unlike SAT problems and binary CSPs, problems near the50%-
satisfiabilitypoint are easy. The hardest problems occur in a region where there are very
few, if any, soluble instances. In Fig. 6 we can see that for values ofr greater than
7 problems become easy again. This means that the problems follow the expected pattern:
easy with many solutions, hard, easy with no solutions. The difference with SAT problems
and binary CSPs is that the hard problems occur in the area where there are very few
soluble problems. Fig. 12 shows the phase transition for problems with 3 disjuncts per
disjunction. There is a shift to the right compared to problems with 2 disjuncts, but again
the hard instances are encountered in a region where almost all problems are insoluble.
This may be due to high variance in the number of solutions [64].

Phase transition behaviour in quantitative temporal constraint satisfaction problems
has also been studied by Schwalb and Dechter. In [62], they report results on phase
transition phenomena in random TCSPs, as defined in [18]. Schwalb and Dechter observed
a phase transition in the number of consistent instances when varying the number of
variables in the constraint graph, and also when varying the tightness of the constraints.
In their experiments they used randomly generated TCSPs involving 10–20 variables with
each constraint having three possible labelings. The structure of the general problem we
consider is different to that of a TCSP and thus there can be no meaningful comparison of
our results with the results of [62].

7. Applications

Disjunctive temporal constraints like the ones we studied here can be found in
many scheduling problems [11], temporal planning problems [15,23,34,48,58,73–75], and
temporal databases with indefinite information [43,44,47]. In this section we discuss
relevant work and possible applications of the algorithms presented in earliest sections.

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 107

7.1. Job shop scheduling

A scheduling problem involves the performance of a set of tasks over a specified interval
of time using a collection of available resources. Several CSP models and heuristics have
been investigated as a means of solving scheduling problems [5,11,53,57,61]. Much of this
work has focused on variations of the classic job shop scheduling problem. Ajob shop
scheduling probleminvolves synchronization of the production ofn jobs in a facility with
m machines (or resources), where:

(1) each jobj requires execution of a sequence of operations within a time interval
specified by itsready timerj anddeadlinedj ,

(2) each operationOj,i of job j requires exclusive use of a designated machineMi for
a specified amount of processing timepi .

The objective is to determine a schedule for production that satisfies all temporal and
resource capacity constraints. The basic job shop scheduling problem as defined above can
be extended in various ways. For example, by allowing minimum and maximum bounds in
operation processing times instead of fixed durations, or by adding separation constraints
between consecutive operations. In job shop scheduling problems, the fact that a resource
M is required by two operationsA andB can be expressed by a disjunctive temporal
constraint of the form

A beforeB ∨A afterB.

This constraint states that operationA must be completed before operationB starts or vice
versa.

There are different ways to formulate a job shop scheduling problem as a CSP. A job
shop scheduling problem can be formulated as the problem of finding a consistent set
of start times for each operation of each job. A lot of research has been carried out on
constraint propagation methods, search strategies, and variable/value ordering heuristics
for this formulation of the problem, see [53,57,61] among others.

Alternatively, a job shop scheduling problem can be formulated as the problem of trying
to establish ordering relations between pairs of operations requiring the same resource.
Following this idea, Cheng and Smith introduced thePrecedence Constraint Posting(PCP)
framework [11]. In the PCP model a decision variableOrderingij is defined for each pair
of operations(Oi,Oj) that compete for the same machine. This variable represents the
disjunction

Oi beforeOj ∨Oi afterOj

and can take two possible values:Oi beforeOj orOi afterOj . The job shop scheduling
problem can now be solved by running a backtracking based search method on the
meta-CSPwhose variables are the new decision variables representing disjunctions and
the values are the disjuncts of the disjunctions. In this case, the search proceeds by
incrementally adding new precedence relations into an underlying temporal constraint
graph and propagating each new constraint to verify consistency. If an inconsistency is
encountered, backtracking occurs. The formulation of a job scheduling problem as a meta-

108 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

CSP allows it to be modelled in our framework too. This is demonstrated by the following
example.

Example 19. Let us assume that we have the following 2 job, 2 machine problem. Job 1
consists of operationsO1 andO2. Job 2 consists of operationsO3 andO4. si and ei
represent the starting and ending points of operationOi . ri and di represent the ready
time and deadline of jobi, respectively.X0 is an auxiliary variable representing “time 0”.
We have the following constraints:
• r1 is minute 3,r2 is minute 4,d1 is minute 18 andd2 is minute 20.
• O1 andO3 require machineM1 whileO2 andO4 require machineM2.
• Thevariabledurations of the operations are as follows:O1 is 5 to 7 minutes,O2 is 6

to 10 minutes,O3 is 8 to 10 minutes andO4 is 5 to 8 minutes.
The above natural language statements can be translated into temporal constraints
involving endpoints of operations, ready times and deadlines. For ready times and
deadlines we get the constraints

X0− s16−3, X0− s36−4, e2−X06 18, e4−X06 20.

For the operations of Job 1, we get the constraints

e1− s1 ∈ [5,7], e2− s2 ∈ [6,10], e1− s26 0.

In the same way, for Job 2 we get

e3− s3 ∈ [8,10], e4− s4 ∈ [5,8], e3− s46 0.

The capacity constraint for machines together with the requirements of the operations result
in the following constraints:

e16 s3∨ e36 s1, e26 s4 ∨ e46 s2.
Finally, we end up with the following set of temporal constraints:

X0− s16−3, X0− s36−4, e2−X06 18, e4−X06 20,

e1− s16 7, s1− e16−5, e2− s26 10, s2− e26−6,

e3− s36 10, s3− e36−8, e4− s46 8, s4− e46−5,

e1− s26 0, e3− s46 0,

e1− s36 0∨ e3− s16 0, e2− s46 0∨ e4− s26 0.

A schedule for the operations exists if and only if the above set of constraints is consistent.

Such a formulation of a job shop scheduling problem withn jobs andm machines
results in a temporal CSP with 2nm+2 temporal variables,n(3m+1)+2 non-disjunctive
constraints, and1

2n(n − 1)m disjunctive constraints. Table 1 gives some experimental
results on small job shop scheduling problems formulated in our framework and solved
using our best algorithm, FC1+MRV-BJ. The first instance, the 6× 6 one, is a benchmark
taken from the ORLib, and the rest of the instances were generated by randomly
rearranging and adding jobs and/or machines to the 6× 6 instance. For each combination
of jobs and machines, 20 instances were generated and the median was taken. We are trying

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 109

Table 1
Number of consistency checks performed and nodes visited to find the optimal solution to small job scheduling
problems and prove optimality. In the “F Optimal” columns we give the checks and nodes required to find a
solution when the deadline is equal to the optimal. In the “P Optimality” columns we give the checks and nodes
required to show that no solution exists when the deadline is equal to optimal-1

Instance Variables Non-disjunctive Disjunctive F Optimal P Optimality

constraints constraints Checks Nodes Checks Nodes

6× 6 74 116 90 8924 3932 10358 3184

6× 7 86 134 105 1528 746 948 632

7× 6 86 135 126 36575 30785 273289 30023

7× 7 100 156 147 38300 20081 257651 17182

8× 6 98 154 168 3535964 741580 5934959 483505

8× 8 130 202 224 1231321 632821 1803430 590818

to minimize the makespan (i.e., the distance between the ready time and the deadline). To
do that, we solve a series of decision problems until we reach the optimal makespan.

The instances in Table 1 were relatively easy (solved in a few seconds) except the 8× 6
and 8× 8 instances which took hours. We were not able to solve larger problems in
reasonable time. For example, benchmark 10× 10 instances that are relatively easy for
state of the art scheduling methods could not be solved in reasonable time. This is not
surprising as we are using a generic search algorithm and variable ordering heuristic that
do not take account domain specific information. The generic algorithm we use performs
a large amount of redundant forward checking as we now explain.

Example 20. Let us assume that we have a 10 job, 10 machine problem. Such a problem
involves 202 temporal variables, 312 non-disjunctive constraints, and 450 disjunctive
constraints. The generic forward checking algorithms we described in this paper will try to
solve the problem in the following way: First, the set of non-disjunctive constraints will be
checked for consistency and, assuming it is consistent, the search over the disjunctions
will start. The algorithms will pick a disjunction and forward check it against all the
future disjunctions. Let us assume that the first disjunction in the ordering ise1,1− s2,46
0∨ e2,4 − s1,1 6 0, which means that the first operation of the first job and the fourth
operation of the second share a resource. The first disjunct of this disjunction, which
putsOperation1,1 beforeOperation2,4, will be forward checked against all the remaining
449 disjunctions. Most of these checks will be redundant as the decision to schedule
Operation1,1 before Operation2,4 does not directly prohibit decisions on the ordering
of operations on other resources. Such redundant consistency checks will be performed
throughout the search. Moreover, the heuristic which picks the disjunctions does not use
any information domain specific from the constraint graph of the job shop problem.

Cheng and Smith in [11] solve the job shop scheduling problem in a similar way. In their
approach, first, all the non-disjunctive constraints are grouped together and the minimal
network of the constraint graph is calculated using full path consistency. Then, one of

110 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

the disjunctive constraints is selected and backtracking search starts. Each time a new
constraint (i.e., a disjunct) is added to the network, it is propagated using a path consistency
algorithm and thus the minimal network is obtained again. If an inconsistency is detected,
the algorithm selects the other disjunct. In case of a dead-end, backtracking takes place.
Information about the shortest paths is also exploited to provide efficient dynamic variable
and value ordering heuristics. We believe that a combination of the look-ahead scheme
and the heuristics of [11] or [7] with the forward checking and backjumping algorithms
we have discussed will result in a more efficient search algorithm. The forward checking
process would have to be modified so that redundant consistency checks are avoided. This
could done by exploiting heuristic information to focus forward checking on particular
disjunctions instead of blindly forward checking against all the future disjunctions.

The usefulness of our framework for disjunctive scheduling is not restricted to problems
such as the classic job shop where disjunctions are of the form

ei − sj 6 0∨ ej − si 6 0.

More general constraints about operations that share the same resource can be easily
expressed, as well as temporal constraints between operations in different jobs that do
not share the same resource. For example consider the following disjunctive constraint:
“OperationOi can start on Machine 1 at least 10 minutes after operationOj has finished,
or operationOj can start on Machine 1 at least 8 minutes after operationOi has finished”.
The constraints imposed between the ending and starting times of different operations that
share the same machine may be due to several reasons. For example, overhead for the set
up of the machine, or a brief lapse of the system, or a third operation being scheduled
betweenOi andOj . Beck et al. [6] and Cheng and Smith [11] point out that complex
temporal constraints, like the above, are present in real-world industrial applications, but
have been overlooked or have not been addressed properly by most current scheduling
research.

Let us close this section by stressing that the aim of this section wasnot to present
efficient algorithms for scheduling problems. The algorithms described in this paper solve
a disjunctive temporal reasoning problem which can be used to model a wide variety of
problems, including job shop scheduling, in a straightforward way. In the future, we plan
to study in more detail the extensions sketched above, and investigate whether they are
actually competitive with state of the art scheduling algorithms.

7.2. Planning with temporal constraints

There has been a lot of work on temporal planning. The most sophisticated temporal
planners currently available are SIPE [73–75], O-Plan [15], IxTeT [34,48], Zeno [58] and
parcPlan [23]. At the core of all of these planners there is a temporal reasoner which
handles conjunctions of temporal constraints of the formx − y 6 c. But these are not the
only useful temporal constraints in temporal planning problems. For example, when there
are two actionsA1 andA2 competing for the same resourceR1 then adisjunctiveconstraint
of the form

A1 beforeA2∨A1 afterA2

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 111

needs to be enforced.3 In current temporal planners this is typically handled by creating
two different branches in the search tree and considering each disjunct individually. It
would be interesting to develop a temporal planner with a temporal reasoner capable
of handling disjunctions of temporal constraints at its core. Incremental versions of the
algorithms presented in this paper could then be used for deciding consistency of a given set
of disjunctive temporal constraints. In addition the ideas of [39] (where only non-temporal
planning is considered) could also be applied so that good performance is achieved by the
planner.

Because the ideas presented in this section are very preliminary, we did not have the
opportunity to evaluate them in practice.

7.3. Indefinite temporal constraint databases

Let us now demonstrate with an example why the problem solved in this paper is
useful for query evaluation in the model ofindefinite temporal constraint databases
proposed in [44,47]. The following example is from [47]. Very similar examples appear
in the AI literature (see, for example [69], for methods of evaluating queries over interval
constraint networks).

Example 21. Let us consider a planning database used by a medical laboratory for keeping
track of patient appointments for the year 1996. The set of rationalsQ will be our time line.
The year 1996 is assumed to start at time 0 and every interval[i, i+1) represents a day (for
i ∈ Z andi > 0). Time intervals will be represented by their endpoints. They will always
be assumed to be of the form[B,E) whereB andE are the endpoints.

The following indefinite temporal constraint database illustrates our discussion (Ta-
ble 2).

CONSTRAINT_STORE:
ω1> 0, ω2> 0, ω3> 0, ω4> 0, ω5> 0, ω6> 0,

ω2= ω1+ 1, ω4= ω3+ 1, ω6= ω5+ 2

ω26 91, ω3> 91, ω46 182,

ω3−ω2> 60, ω5−ω4> 20, ω66 213.

Table 2

APPOINTMENT

PATIENT TREATMENT BEGIN END CON

Smith Chemotherapy ω1 ω2 true

Smith Chemotherapy ω3 ω4 true

Smith Radiation ω5 ω6 true

3 More complicated disjunctive constraints are also useful. For example, “A1 should take place at least two
minutes beforeA2 or at least two minutes afterA2”.

112 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

This database consists of the single relation APPOINTMENT. In the model of indefinite
temporal constraint databases relations are as in the standard relational model [68], but
they also allowSkolem constantsas attribute values. Skolem constants are denoted by
ω1,ω2 etc. and represent values that are not known precisely. There is aconstraint store
that represents all the information known about the Skolem constants in the database.

The reader can now see that the above database represents the following information:
(1) There are three scheduled appointments for patient Smith. This is represented by

three tuples in relation APPOINTMENT.
(2) Chemotherapy appointments must be scheduled for a single day. Radiation appoint-

ments must be scheduled for two consecutive days. This information is represented
by constraintsω2= ω1+ 1, ω4= ω3+ 1, andω6= ω5+ 2.

(3) The first chemotherapy appointment for Smith should take place in the first three
months of 1996 (i.e., days 0–91). This information is represented by the constraints
ω1> 0 andω26 91.

(4) The second chemotherapy appointment for Smith should take place in the second
three months of 1996 (i.e., days 92–182). This information is represented by
constraintsω3> 91 andω46 182.

(5) The first chemotherapy appointment for Smith must precede the second by at least
two months (60 days). This information is represented by constraintω3−ω2> 60.

(6) The radiation appointment for Smith should follow the second chemotherapy
appointment by at least 20 days. Also, it should take place before the end of July
(i.e., day 213). This information is represented by constraintsω5 − ω4 > 20 and
ω66 213.

Let us now consider the following query to the above database: “Is it certain that patient
Smith is scheduled for chemotherapy during the first three months of 1996?” In the query
language of [47] this is called aclosed necessity querybecause it contains no output
variables and can be expressed using the modal operator for necessity as follows:

�(∃t1, t2)(APPOINTMENT(Smith,Chemotherapy, t1, t2)∧
t1> 1∧ t1< t2∧ t26 91).

If CS(ω1, . . . ,ω6) is the conjunction of constraints in the constraint store of Example 21
then evaluating the above query amounts toeliminating quantifiersfrom the following first
order formula which mentions only temporal constraints:4

(∀ω1 · · ·ω6)
(
CS(ω1, . . . ,ω6)⊃ (∃t1, t2)
(t1= ω1 ∧ t2= ω2∧ t1> 1∧ t1< t2∧ t26 91)∨
(t1= ω3 ∧ t2= ω4∧ t1> 1∧ t1< t2∧ t26 91)

)
.

Let us first eliminate quantifiers(∃t1, t2) from the above formula. The result will be

(∀ω1 · · ·ω6)
(
CS(ω1, . . . ,ω6)⊃ (ω1> 1∧ω1<ω2∧ω26 91)∨
(ω3> 1∧ω3<ω4∧ω46 91)

)
4 The interested reader can see [47] for details on the equivalence between query evaluation and quantifier

elimination for the model of indefinite constraint databases.

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 113

or equivalently

¬(∃ω1 · · ·ω6)
(
CS(ω1, . . . ,ω6)∧ (ω1< 1∨ω1> ω2 ∨ω2> 91)∧
(ω3< 1∨ω3> ω4∨ω4> 91)

)
.

Now instead of eliminating quantifiers(∃ω1 · · ·ω6) we can use the algorithms of this
paper to decide whether the inner conjunction of disjunctions is consistent. If it is consistent
then the equivalent formula with no quantifiers istrue, otherwise it isfalse. The reader can
verify that in this case we have an inconsistency, so the answer to the query istrue (i.e.,
YES).

The above example is simple and its only purpose is to illustrate our application. In
general a closed necessity query over an indefinite temporal constraint database is of the
form �φ whereφ is an arbitrary first order logic formula with two kinds of predicates:
relation names (e.g.,APPOINTMENT) and temporal predicates (e.g.,<). If we evaluate
such a query using the methods of [47], we will always end up deciding the consistency of
a set of disjunctive temporal constraints at the last step of query evaluation.

The usefulness of our algorithms for indefinite temporal constraint databases should now
be clear. Unfortunately, there is no implementation of the indefinite temporal constraint
database model yet, thus we did not have any experimental data that we could use for
analysing the performance of our algorithms in this application domain.

8. Conclusion and future work

We have developed several backtracking algorithms for a class of disjunctive temporal
constraints. This class of temporal constraints can be used to easily model a wide
range of problems from scheduling, planning, and temporal constraint databases. We
presented theoretical and experimental results concerning the behaviour of the algorithms
we developed. Through our theoretical analysis we were able to partially order the
algorithms using Kondrak and van Beek’s [42] methodology, originally introduced for
binary CSPs. We have shown that this methodology can be successfully transferred to
a non-binary CSP such as the one we have tackled. In our experimental analysis we
compared the algorithms quantitatively and identified the phase transition in this problem
using randomly generated instances. We also discussed three possible applications of
our algorithms and gave experimental results on small job shop scheduling problems.
We believe that our best algorithm, FC1-BJ, is a possible candidate for solving a wide
range of disjunctive scheduling and planning problems, given the right domain specific
heuristics. Our algorithms can be easily adapted to other temporal reasoning frameworks
with disjunctive temporal constraints [65].

For future work we would like to consider the following:
• The implementation of more sophisticated backjumping mechanisms such as CBJ

[59] or dynamic backtracking [35]. Such mechanisms may produce more efficient
algorithms, although, as our experiments show, backjumping offers very little, when
forward checking and dynamic variable ordering is used.
• We intend to further investigate the phase transition behaviour for this class of

problems. This is interesting since our results show that the region of hard problems

114 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

does not coincide with the transition in solubility, as is the norm in almost all NP-
complete problems. The exact reasons behind that are worth investigating using larger
data sets and various combinations of parameters.
• We would like to develop new versions of our algorithms that take into account the

tractability results of [38,45]. In the new versions we could start with a collection
of Horn temporal constraintsthat can be solved in PTIME. A temporal constraint is
called Horn if it is a disjunction of an arbitrary number of disequations of the form
xi − yi 6= ci and at most one inequality of the formxk − yk 6 ck wherexi, yi, xk, yk
are real variables andci, ck are real constants. Then, the disjuncts of a disjunction of
the form

φ ∧ x1− y16 c1∧ · · · ∧ xn − yn 6 cn,
whereφ is a Horn temporal constraint, can be explored in onlyn + 1 steps by a
backtracking algorithm.
• Finally, we would like to further investigate the applicability of our algorithms

in disjunctive scheduling and planning by implementing and evaluating the ideas
sketched in Section 7. An obvious starting point is job shop scheduling where we
have already tested the generic algorithms presented in this paper. As explained in
Section 7, there are many ways to extend our work by using domain specific heuristics
and cutting down the redundant amount of work done by the generic algorithms.

Acknowledgements

We would like to thank all members of the APES Research Group and in particular
Ian Gent, Patrick Prosser, Toby Walsh and Peter van Beek. Also, thanks to Alessandro
Armando, Claudio Castellini and Enrico Giunchiglia. Finally, we are grateful to the refer-
ees of this paper, whose comments and suggestions have led to substantial improvements.

References

[1] J.F. Allen, Towards a general model of action and time, Artificial Intelligence 23 (2) (1984) 123–154.
[2] J.F. Allen, H. Kautz, R. Pelavin (Eds.), Reasoning about Plans, Morgan Kaufmann, San Mateo, CA, 1991.
[3] A. Armando, C. Castellini, E. Giunchiglia, Sat-based procedures for temporal reasoning, in: Proc. European

Conference on Planning (ECP-99), 1999.
[4] F. Bacchus, P. van Run, Dynamic variable ordering in CSPs, in: Proc. 1st International Conference on

Principles and Practice of Constraint Programming (CP-95), Cassis, France, 1995, pp. 258–275.
[5] P. Baptiste, C. Le Pape, A theoretical and experimental comparison of constraint propagation techniques for

disjunctive scheduling, in: Proc. IJCAI-95, Montreal, Quebec, Vol. 1, 1995, pp. 600–606.
[6] C. Beck, A. Davenport, M. Fox, Five pitfalls of empirical scheduling research, in: Proc. 3rd International

Conference on Principles and Practice of Constraint Programming (CP-97), Linz, Austria, 1997, pp. 390–
404.

[7] S. Belhadji, A. Isli, Temporal constraint satisfaction techniques in job shop scheduling problem solving,
CONSTRAINTS 3 (1998) 203–211.

[8] C. Bessière, P. Meseguer, E. Freuder, J. Larrosa, On forward checking for non-binary constraint satisfaction,
in: Proc. 5th International Conference on Principles and Practice of Constraint Programming (CP-99),
Alexandria, VA, 1999, pp. 88–102.

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 115

[9] D. Brelaz, New methods to color the vertices of a graph, J. ACM 22 (4) (1979) 251–256.
[10] P. Cheeseman, B. Kanefsky, W. Taylor, Where the really hard problems are, in: Proc. IJCAI-91, Sydney,

Australia, Vol 1, 1991, pp. 331–337.
[11] C.C. Cheng, S.F. Smith, Generating feasible schedules under complex metric constraints, in: Proc. AAAI-94,

Seattle, WA, 1994.
[12] N. Chleq, Efficient algorithms for networks of quantitative temporal constraints, in: Proc. CONSTRAINTS-

95, Melbourne Beach, FL, 1995, pp. 40–45.
[13] J. Chomicki, P.Z. Revesz, Constraint-based interoperability of spatiotemporal databases, in: Proc. SSD-97,

Lecture Notes in Computer Science, Vol. 1262, Springer, Berlin, 1997, pp. 142–161.
[14] J. Crawford, D. Auton, Experimental results on the crossover point in random 3-SAT, Artificial

Intelligence 81 (1996) 31–57.
[15] K. Currie, A. Tate, O-plan: The open planning architecture, Artificial Intelligence 52 (1) (1991) 49–86.
[16] R. Dechter, From local to global consistency, Artificial Intelligence 55 (1992) 87–107.
[17] R. Dechter, I. Meiri, Experimental evaluation of preprocessing algorithms for constraint satisfaction

problems, Artificial Intelligence 68 (1994) 211–241.
[18] R. Dechter, I. Meiri, J. Pearl, Temporal constraint networks, in: R. Brachman, H. Levesque, R. Reiter (Eds.),

Proc. 1st International Conference on Principles of Knowledge Representation and Reasoning, Toronto,
Ontario, 1989, pp. 83–93.

[19] R. Dechter, I. Meiri, J. Pearl, Temporal constraint networks, Artificial Intelligence (Special Volume on
Knowledge Representation) 49 (1–3) (1991) 61–95.

[20] R. Dechter, J. Pearl, Network-based heuristics for constraint satisfaction problems, Artificial Intelli-
gence 34 (1) (1988) 1–38.

[21] T. Drakengren, P. Jonsson, Towards a complete classification of tractability in Allen’s algebra, in: Proc.
IJCAI-97, Nagoya, Japan, Vol. 2, 1997, pp. 1466–1471.

[22] T. Drakengren, P. Jonsson, Twenty-one large tractable subclasses of Allen’s algebra, Artificial Intelligence 93
(1997) 297–319.

[23] A. El-Kholy, B. Richards, Temporal and resource reasoning: TheparcPlan approach, in: Proc. 12th European
Conference on Artificial Intelligence (ECAI-96), Budapest, Hungary, 1996, pp. 614–618.

[24] A.U. Frank, I. Campari, U. Formentini (Eds.), Theories and Methods of Spatio-Temporal Reasoning in
Geographic Space, Lecture Notes in Computer Science, Vol. 639, Springer, Berlin, 1992.

[25] E. Freuder, Synthesizing constraint expressions, Comm. ACM 21 (11) (1978) 958–966.
[26] E. Freuder, A sufficient condition for backtrack-free search, J. ACM 29 (1982) 24–32.
[27] D. Frost, R. Dechter, In search of the best constraint satisfaction search, in: Proc. AAAI-94, Seattle, WA,

1994, pp. 301–306.
[28] I. Gent, E. MacIntyre, P. Prosser, B. Smith, T. Walsh, An empirical study of dynamic variable ordering

heuristics for the constraint satisfaction problem, in: Proc. 2nd International Conference on Principles and
Practice of Constraint Programming (CP-96), Cambridge, MA, 1996, pp. 179–193.

[29] I.P. Gent, T. Walsh, The satisfiability constraint gap, Artificial Intelligence 81 (1996) 59–80.
[30] A. Gerevini, M. Cristani, On finding a solution in temporal constraint satisfaction problems, in: Proc. IJCAI-

97, Nagoya, Japan, 1997.
[31] A. Gerevini, L. Schubert, Efficient temporal reasoning through timegraphs, in: Proc. IJCAI-93, Chambéry,

France, 1993, pp. 648–654.
[32] A. Gerevini, L. Schubert, Efficient algorithms for qualitative reasoning about time, Artificial Intelligence 74

(1995) 207–248.
[33] A. Gerevini, L. Schubert, S. Schaeffer, Temporal reasoning in timegraph I-II, SIGART Bulletin 4 (3) (1993)

21–25.
[34] M. Ghallab, H. Laruelle, Representation and control in IxTeT, a temporal planner, in: Proc. 2nd International

Conference on AI Planning Systems, Chicago, IL, 1994, pp. 61–67.
[35] M. Ginsberg, Dynamic backtracking, J. Artificial Intelligence Res. 1 (1993) 25–46.
[36] S. Golomb, L. Baumert, Backtrack programming, J. ACM 12 (1965) 516–524.
[37] R. Haralick, G. Elliot, Increasing tree efficiency for constraint satisfaction problems, Artificial Intelli-

gence 14 (1980) 263–314.
[38] P. Jonsson, C. Bäckström, A linear programming approach to temporal reasoning, in: Proc. AAAI-96,

Portland, OR, 1996.

116 K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117

[39] S. Kambhampati, X. Yang, On the role of disjunctive representations and constraint propagation in
refinement planning, in: Proc. 5th International Conference on the Principles of Knowledge Representation
and Reasoning (KR-96), Cambridge, MA, 1996.

[40] H. Kautz, P. Ladkin, Integrating metric and qualitative temporal reasoning, in: Proc. AAAI-91, Anaheim,
CA, 1991, pp. 241–246.

[41] G. Kondrak, A theoretical evaluation of selected backtracking algorithms, Technical Report TR94-10,
University of Alberta, 1994.

[42] G. Kondrak, P. van Beek, A theoretical evaluation of selected backtracking algorithms, Artificial
Intelligence 89 (1997) 365–387.

[43] M. Koubarakis, Complexity results for first-order theories of temporal constraints, in: Proc. 4th International
Conference on the Principles of Knowledge Representation and Reasoning (KR-94), Bonn, Germany,
Morgan Kaufmann, San Francisco, CA, 1994, pp. 379–390.

[44] M. Koubarakis, Database models for infinite and indefinite temporal information, Information Sys-
tems 19 (2) (1994) 141–173.

[45] M. Koubarakis, Tractable disjunctions of linear constraints, in: Proc. 2nd International Conference on
Principles and Practice of Constraint Programming (CP-96), Cambridge, MA, 1996, pp. 297–307.

[46] M. Koubarakis, From local to global consistency in temporal constraint networks, Theoret. Comput. Sci. 173
(1997) 89–112; Invited submission to the special issue dedicated to the 1st International Conference on
Principles and Practice of Constraint Programming (CP-95), U. Montanari, F. Rossi (Eds.).

[47] M. Koubarakis, The complexity of query evaluation in indefinite temporal constraint databases, Theoret.
Comput. Sci. 171 (1997) 25–60; Special Issue on Uncertainty in Databases and Deductive Systems,
L.V.S. Lakshmanan (Ed.).

[48] P. Laborie, M. Ghallab, Planning with sharable resource constraints, in: Proc. IJCAI-95, Montreal, Quebec,
1995, pp. 1643–1649.

[49] P. Ladkin, R. Maddux, On binary constraint problems, J. ACM 41 (3) (1994) 435–469.
[50] P. Ladkin, A. Reinefeld, Effective solution of qualitative interval constraint problems, Artificial Intelli-

gence 57 (1992) 105–124.
[51] A.K. Mackworth, Consistency in networks of relations, Artificial Intelligence 8 (1977) 99–118.
[52] I. Meiri, Combining quantitative and qualitative constraints in temporal reasoning, Artificial Intelligence 87

(1996) 343–384.
[53] S. Minton, M.D. Johnston, A.B. Philips, P. Laird, Minimizing conflicts: A heuristic repair method for

constraint satisfaction and scheduling problems, Artificial Intelligence 58 (1992) 161–205.
[54] D. Mitchell, H. Levesque, Some pitfalls for experimenters with random SAT, Artificial Intelligence 81

(1996) 111–125.
[55] U. Montanari, Networks of constraints: Fundamental properties and applications to picture processing,

Information Sciences 7 (1974) 95–132.
[56] B. Nebel, H.-J. Bürckert, Reasoning about temporal relations: A maximal tractable subclass of Allen’s

interval algebra, J. ACM 42 (1) (1995) 43–66.
[57] W.P.M. Nuijten, Time and resource-constrained scheduling: A constraint satisfaction approach, Ph.D.

Thesis, Department of Mathematics and Computer Science, Eindhoven University of Technology, 1994.
[58] J.S. Penberthy, D. Weld, Temporal planning with continuous change, in: Proc. AAAI-94, Seattle, WA, 1994,

pp. 1010–1015.
[59] P. Prosser, Hybrid algorithms for the constraint satisfaction problem, Comput. Intelligence 9 (3) (1993)

268–299.
[60] P. Prosser, An empirical study of phase transitions in binary constraint satisfaction problems, Artificial

Intelligence 81 (1996) 81–109.
[61] N. Sadeh, K. Sycara, Y. Xiong, Backtracking techniques for the job shop scheduling constraint satisfaction

problem, Artificial Intelligence 76 (1995) 455–480.
[62] E. Schwalb, R. Dechter, Processing disjunctions in temporal constraint networks, Artificial Intelligence 93

(1997) 29–61.
[63] B. Selman, D. Mitchell, H. Levesque, Generating hard satisfiability problems, Artificial Intelligence 81

(1996) 17–29.
[64] B. Smith, M. Dyer, Locating the phase transitions in constraint satisfaction problems, Artificial Intelli-

gence 81 (1996) 155–181.

K. Stergiou, M. Koubarakis / Artificial Intelligence 120 (2000) 81–117 117

[65] S. Staab, On non-binary temporal relations, in: Proc. ECAI-98, Brighton, UK, 1998, pp. 567–571.
[66] K. Stergiou, Backtracking algorithms for checking the consistency of disjunctions of temporal constraints,

Master’s Thesis, Department. of Computation, UMIST, Manchester, UK, 1997.
[67] E. Tsang, Foundations of Constraint Satisfaction, Academic Press, New York, 1993.
[68] J. Ullman, Principles of Data Base and Knowledge Base Systems, Vol. 1, Computer Science Press, Rockville,

MD, 1988.
[69] P. van Beek, Temporal query processing with indefinite information, Artificial Intelligence in Medicine 3

(1991) 325–339.
[70] P. van Beek, Reasoning about qualitative temporal information, Artificial Intelligence 58 (1992) 297–326.
[71] P. van Beek, D. Manchak, The design and experimental analysis of algorithms for temporal reasoning,

J. Artificial Intelligence Res. 4 (1996) 1–18.
[72] M. Vilain, H. Kautz, P. van Beek, Constraint propagation algorithms for temporal reasoning: A revised

report, in: D.S. Weld, J. de Kleer (Eds.), Readings in Qualitative Reasoning about Physical Systems, Morgan
Kaufmann, San Mateo, CA, 1989, pp. 373–381.

[73] D.E. Wilkins, Practical Planning: Extending the Classical AI Planning Paradigm, Morgan Kaufmann, San
Mateo, CA, 1988.

[74] D.E. Wilkins, Can AI planners solve practical problems, Comput. Intelligence 6 (4) (1990) 232–246.
[75] D.E. Wilkins, K. Myers, A common knowledge representation for plan generation and reactive execution,

Technical Report 532R, SRI International, Menlo Park, CA, 1994; Available from http://www.ai.sri.
com/people/wilkins/papers.html. To appear in Journal of Logic and Computation.

