
Ontop of Geospatial Databases

Konstantina Bereta and Manolis Koubarakis

National and Kapodistrian University of Athens
{Konstantina.Bereta,koubarak}@di.uoa.gr

Abstract. We propose an OBDA approach for accessing geospatial data
stored in relational databases, using the OGC standard GeoSPARQL and
R2RML or OBDA mappings. We introduce extensions to an existing
SPARQL-to-SQL translation method to support GeoSPARQL features.
We describe the implementation of our approach in the system ontop-
spatial, an extension of the OBDA system Ontop for creating virtual
geospatial RDF graphs on top of geospatial relational databases. We
present an experimental evaluation of our system using and extending a
state-of-the-art benchmark. To measure the performance of our system,
we compare it to a state-of-the-art geospatial RDF store and confirm its
efficiency.

1 Introduction

Currently, there is emerging interest of scientific communities from various do-
mains that produce and process geospatial data (e.g., earth scientists) to publish
data as linked data and combine it with other data sources. Responding to this
trend, the Semantic Web community has been very active in the geospatial
domain, proposing data models, query languages, and systems for the represen-
tation and management of geospatial data. Notably, this research has led to the
development of extensions of RDF and SPARQL, such as stRDF/stSPARQL
and GeoSPARQL, that handle geospatial data. Similarly, research on geospatial
relational databases has been going on for a long time and has resulted in the
implementation of several efficient geospatial DBMS.

Despite the extensive research performed in the fields of relational databases
and the Semantic Web on the development of solutions for handling geospa-
tial data efficiently, to the best of our knowledge, there is no OBDA system
that enables the creation of virtual, geospatial RDF graphs on top of geospatial
databases. This would be very useful for scientists that produce and process
geospatial data, as they mainly store this data in relational geospatial databases
(e.g., PostGIS) or in other geospatial data formats that are easily imported into
such databases (e.g., shapefiles). With the existing solutions in place, these sci-
entists are forced to materialize their data as RDF in order to publish it as linked
data and/or use it in combination with other data sources. Sometimes this is
not practical and discourages users from using Semantic Web technologies. This
issue applies to the OBDA paradigm in general, but it has more impact in the

geospatial domain due to the reasons we have just described. We address these
issues by extending the OBDA paradigm with geospatial support.

The contributions of this paper are the following:

– We introduce extensions to an existing SPARQL-to-SQL translation method
in order to perform GeoSPARQL-to-SQL translation.

– We describe the implementation of our approach in the system Ontop-
spatial, which is the first OBDA system for GeoSPARQL.

– We present an experimental evaluation of our system extending the bench-
mark Geographica [7], comparing the performance of ontop-spatial with the
state-of-the-art geospatial RDF store Strabon [8]. The results show that, in
most cases, ontop-spatial outperforms Strabon.

Ontop-spatial is available as free and open source software at the follow-
ing link: https://github.com/ConstantB/ontop-spatial. It was developed
for the Statoil use case of the EU FP7 project Optique1, and then it was also
used in the urban accountant, land management, and crisis mapping services of
the EU FP7 project MELODIES2, as well as in the maritime domain [4].

The organization of the rest of the paper is as follows. In Section 2 we present
related work and background. In Section 3 we explain the GeoSPARQL-to-SQL
translation. In Section 4 we present the system Ontop-spatial and we mention
the real-world use cases in which it has been used. In Section 5 we present the
experimental evaluation of our system. In Section 6 we conclude the presentation
of our approach discussing its advantages and limitations, as well as its possible
extensions.

2 Related work and background

The first area of work related to our own is research on extensions of the data
model RDF and the query language SPARQL with geospatial features.

The data model stRDF and the query language stSPARQL are extensions
of RDF and SPARQL 1.1 respectively, developed for the representation and
querying of spatial [8] and temporal data (i.e., the valid time of triples [3]).
Another framework that has been developed for the representation and querying
of geospatial data on the Semantic Web is GeoSPARQL [2], which is an OGC
standard. GeoSPARQL and stSPARQL were developed independently, but they
have a lot of features in common, the most important of which are that they
both adopt the OGC standards WKT and GML for representing geometries, and
that they both support spatial analysis functions as extension functions. Their
main differences derive from the fact that stSPARQL extends SPARQL 1.1, so it
inherits and extends important features of SPARQL 1.1, providing support for
spatial updates and spatial aggregates. Also, GeoSPARQL does not offer valid
time support. Both stSPARQL and GeoSPARQL have extended SPARQL 1.1

1 http://optique-project.eu/
2 http://www.melodiesproject.eu/

with the topological functions defined in the OGC standard “OpenGIS Simple
Feature Access for SQL” [1], and they also support the Egenhofer [6] and the
RCC-8 [13] topological relation families as SPARQL 1.1 extension functions.

Since in the rest of the paper we will refer to the notation and concepts
defined or followed by stSPARQL and GeoSPARQL, we briefly present them
below for the convenience of the reader.

Spatial literal. A spatial literal represents the serialization of a geometry. In
stSPARQL, it is a literal of type strdf:geometry or its subtypes strdf:WKT

or strdf:GML, as defined in [8]. Similarly, in GeoSPARQL it is a literal of type
geo:wktLiteral or geo:gmlLiteral.

Spatial term. A spatial term is either a spatial literal or a variable that can
be bound to a spatial literal.

Spatial filter. A spatial filter is a Boolean binary function SF (t1, t2), where
t1, t2 are spatial terms and SF is one of the Boolean functions of the Geom-
etry extension of GeoSPARQL, namely geof:sfEquals, geof:sfDisjoint,

geof:stIntersects, geof:sfTouches, geof:sfCrosses, geof:sfWithin,

geof:sfContains, geof:sfOverlaps, and the respective Egenhofer and
RCC8 relation functions. These functions are defined in the Requirements 22,
23 and 24 of the GeoSPARQL standard.

Spatial selection. A spatial selection in GeoSPARQL/stSPARQL is a SE-
LECT query with a FILTER which is a Boolean binary function with arguments
a variable and a constant.

Spatial join. A spatial join in these languages is a query with a FILTER which
is a Boolean binary function whose all arguments are variables. The definition
of the spatial join in SPARQL corresponds to the definition of the spatial join
in the geospatial extensions of the relational model. In the rest of this paper,
spatial joins will often be denoted as onsf , where sf is a spatial filter.

In the context of this paper, we will only consider GeoSPARQL (and, as a
result, the geospatial part of stSPARQL). GeoSPARQL consists of the following
six components:

– The Core component, which defines high level RDFS/OWL classes for spatial
objects.

– The Topology vocabulary extension, which defines RDF properties for assert-
ing and querying topological relations between spatial objects.

– The Geometry extension, which defines RDFS data types for serializing ge-
ometry data, geometry-related RDF properties, and non-topological spatial
query functions for geometry objects.

– The Geometry Topology extension, which defines topological query functions.
– The RDFS entailment extension, which includes the RDF and RDFS rea-

soning requirements.
– The Query Rewrite extension, which defines rules for transforming qualitative

spatial queries into equivalent quantitative queries.

The work surveyed above on extending RDF and SPARQL with geospatial
functionality also gave rise to the implementation of geospatial RDF stores such

as Parliament, uSeekM and Virtuoso, that implement a subset of GeoSPARQL,
and Strabon [8] that implements both GeoSPARQL and stSPARQL.

There have also been systems that enable the translation of geospatial data
from their native formats to RDF. GeoTriples [9] is a tool for the conversion of
geospatial data from a variety of source formats (shapefiles, relational databases,
XML files, etc.) to RDF using GeoSPARQL and stSPARQL vocabularies and
R2RML mappings.

Another category of systems that are related to our work is SPARQL-to-SQL
systems such as Ontop [14, 5], Ultrawrap [15], D2RQ3 and Morph [12]. These
systems offer no geospatial functionality.

3 GeoSPARQL-to-SQL translation

In the work described in [14, 5], the authors present techniques for SPARQL-to-
SQL translation using R2RML mappings. In this paper we extend their approach
to support the GeoSPARQL-to-SQL translation using R2RML mappings. In this
section we briefly describe how we translate the spatial extensions introduced in
GeoSPARQL to Datalog and then in turn to the respective spatial extensions of
SQL. A more detailed presentation of our extensions to the work described in
[14, 5] is omitted due to space and will appear in a longer version of this paper.

The work of [14, 5] in the context of OBDA system Ontop follows the same
semantics as [11] for the translation of SPARQL to Datalog. Definition 20 in [14,
5] describes the valuation of filter expressions, considering only numeric binary
operators in filters. We present below how to extend this definition by considering
spatial filters as defined in GeoSPARQL.

Definition 1 Evaluation of Spatial Filter Expressions.
Let SF be a GeoSPARQL spatial filter, let v, u be variables, Lgs the set of

literals of the datatypes geo:wktlLiteral and geo:gmlLiteral and c ∈ Lgs.
The valuation of SF on a substitution θ returns one of three values >,⊥ and ε
as shown below.

(SF (v, c))θ =

> if v ∈ dom(θ) and SF (vθ, c) = true

ε if v /∈ dom(θ) or vθ = null

⊥ otherwise

(SF (v, u))θ =

> if v, u ∈ dom(θ) and SF (vθ, uθ) = true

ε if v or u /∈ dom(θ) or uθ = null or vθ = null

⊥ otherwise

GeoSPARQL to Datalog. In the approach described in [14, 5], the SPARQL
query is translated into a set of rules that comprise a Datalog program preserv-
ing the semantics of the original query. The translation algorithm is a modified
version of the one presented in [11]. The intention behind this step is to optimise

3 http://d2rq.org/

the query before it gets translated into an SQL query that is eventually exe-
cuted by the DBMS. The deviations of the original SPARQL-to-SQL translation
algorithm of [11] proposed in [14, 5] lead to a more compact encoding of rules,
due to the fact that the final goal is to translate the Datalog program in SQL
instead of executing it as in [11]. We follow the same approach and we extend
the algorithm of [14, 5] to take into account the spatial filters defined above.

We extend the algorithm by introducing a new set of distinguished pred-
icates, namely the distinguished spatial predicates. We define a distinguished
spatial predicate for each GeoSPARQL spatial filter [2]. Then the GeoSPARQL
to Datalog translation algorithm is like the algorithm of [14, 5] for SPARQL and
results in ΠQGS , a Datalog program that corresponds to a geospatial query.

Datalog to SQL. In a similar way as in the GeoSPARQL-to-Datalog transla-
tion, we extend Definition 18 of [14, 5] in order to consider distinguished spatial
predicates as well: Every distinguished spatial predicate occurring in a Datalog
program ΠQGS is translated into the equivalent geospatial SQL operator.

Mappings. In our framework we allow exactly the same mapping languages used
in [14, 5], namely R2RML mappings and OBDA mappings (mapping language
native to Ontop).

The mapping languages offer functionalities that are useful to in our geospa-
tial setting. For example, when geometry columns (e.g, columns storing geome-
tries in Well-Known-Binary format) of geospatial relational tables are present in
the mappings, we allow geometries to be mapped as WKT GeoSPARQL literals.
Similarly, we allow the presence of geospatial SQL operators in the mappings,
enabling users to manipulate their geospatial data on-the-fly (e.g., transforma-
tion of the geometries into a different Coordinate Reference System) before they
are mapped to RDF.

4 Implementation

We implemented the theoretical extensions of the SPARQL-to-SQL translation
framework of [14, 5] discussed in Section 3 as an extension of the system Ontop
with geospatial features focusing on spatial selections and spatial joins. We chose
to extend Ontop instead of systems offering similar functionality because (i) it
is open source, robust and extensible, (ii) it offers a wide range of functionalities
that are useful for geospatial applications (reasoning, multiple APIs), and (iii) it
implements significant SPARQL-to-SQL optimizations, producing queries that
can be executed efficiently by the underlying DBMS as reported in [14, 5].

Ontop-spatial supports the following components of GeoSPARQL: Core,
Topology Vocabulary extension, Geometry Topology extension, RDFS entailment
extension and the spatial filters defined in the Geometry Extension. It is also, to
the best of our knowledge, the first GeoSPARQL implementation that supports
the Query Rewrite extension of GeoSPARQL. The high level architecture of the
system as well as an abstract overview can be seen in Figures 1(a) and 1(b)
respectively.

(a) Ontop-spatial architecture

Source

Application

Ontology

Mappings

Spatial

(b) Abstract overview

Fig. 1: Ontop-spatial

In the following, we highlight the components of Ontop that we have extended
as they are placed in the query processing workflow:

– The virtual Ontop repository takes as input an ontology and a mapping file.
Mappings can be either OBDA or R2RML.

– Once Ontop-spatial receives a GeoSPARQL query, the query gets parsed.
We modified the Sesame parser used by Ontop (and the javacc parser that
the respective Sesame library uses), in order to extend its syntax to support
geospatial operations in the filter clause of the query. Additionally, quali-
tative geospatial queries, (i.e., queries containing geospatial triple patterns
such as ex:feauture1 geo:overlaps ex:feature2) are also supported as
standard SPARQL triple patterns, and get transformed into their quantita-
tive equivalents (i.e., queries with spatial filters) in the following step.

– Conventionally, the next step in Ontop is to translate the SPARQL query
and the R2RML mappings into a Datalog program so that the query can be
represented formally and optimized following a series of optimization steps
described in detail in [14, 5]. Ontop-spatial inherits these optimizations and
extends the SPARQL-to-Datalog translation module. As explained in the
previous section, the geospatial filters are transformed into Datalog using
distinguished geospatial predicates. The same distinguished geospatial pred-
icates are used in the case of the qualitative geospatial queries as well. As a
result, both quantitative and qualitative representations of a GeoSPARQL
query are transformed into the same SQL query in the following step.

– The optimized version of the query, as derived from the previous step, gets
translated into SQL. Every geospatial Datalog predicate is mapped to the
respective geospatial SQL operator, following the syntax of the underlying
DBMS. The DBMS adapter has been extended in order to be able to identify
geospatial columns in the database of the user. The PostgreSQL adapter has
been modified and the Spatialite adapter has been added.

– The SQL query gets eventually executed in the underlying DBMS. Currently,
the spatially-enabled databases that Ontop-spatial supports are the geospa-
tial extensions of PostgreSQL and Sqlite, namely PostGIS and Spatialite
respectively. More geospatial databases will be supported in the future.

– After the evaluation of the spatial SQL query in the DBMS, Ontop-spatial
gets the results and sends them to the user. If geometries need to be pro-
jected, the SQL query that is produced returns the result as WKT. This en-
ables Ontop-spatial to be used as a GeoSPARQL endpoint, that could serve
as input endpoint for applications like linked geospatial data visualizers [10]
to display the geometries that are returned as a result of a GeoSPARQL
query.

Like the default version of Ontop, Ontop-spatial can be used as a web appli-
cation (using Sesame workbench), as a Sesame library, as a Protege plugin, or it
can be executed from the command line. The virtual geospatial graphs created
by Ontop can also be materialized, creating an RDF dump, so that it can then
be imported in a geospatial RDF store.

Ontop-spatial is available as free and open source software at the following
link: https://github.com/ConstantB/Ontop-spatial.

Ontop-spatial in use. The motivation behind the development of Ontop-spatial
was the Statoil use case of the project Optique, in order to address the issue of
creating virtual RDF graphs on top of large databases that contain geometries
and get frequently updated. Ontop-spatial is also being used in the urban ac-
countant, land management and crisis mapping services of the EU FP7 project
MELODIES4. Finally, ontop-spatial has recently be used in the Maritime secu-
rity domain, in collaboration with Airbus and the University of Bolzano [4].

5 Evaluation

We conducted an empirical evaluation of our implementation based on the phi-
losophy of Geographica5, a benchmark for testing the performance of geospa-
tial RDF stores [7]. Geographica consists of a micro benchmark and a macro
benchmark. The micro benchmark is designed for testing basic geospatial oper-
ators, such as spatial selections and spatial joins. The macro benchmark tests
the performance of the evaluated systems using queries that correspond to real
application scenarios. As our aim is not to test geospatial RDF stores as done in
[7], we use a modified benchmark based on the micro benchmark of Geographica
as we explain later in this section.

Since there was no alternative OBDA systems that allow for posing
GeoSPARQL queries over geospatial relational databases, we decided to eval-
uate Ontop-spatial in comparison with a geospatial RDF store. We consider
that the spatiotemporal RDF store Strabon [8] is a good representative of the

4 http://www.melodiesproject.eu/software-tools
5 http://geographica.di.uoa.gr/

family of the geospatial RDF stores to compare with as (i) it is a state-of-the-
art geospatial RDF store both in terms of functionality and performance [8, 7]
(ii) it supports a big subset of GeoSPARQL (apart from stSPARQL), and (iii)
it uses a spatially-enabled DBMS as back-end, performing a SPARQL-to-SQL
translation following a specific storage scheme as explained in [8]. This enables
us to use the same DBMS (PostGIS with the same configuration and tuning)
and perform a comprehensive comparison.

5.1 Datasets

Geospatial data come, in most cases, in native geospatial data formats. In a
real-world scenario, a user that works with geospatial data obtains it as files
in a geospatial data format (e.g., a shapefile) and stores it either in a GIS or
a spatially-enabled relational database. Later on, he may convert the data into
RDF and store it in a geospatial RDF store in order to combine it with other
linked data.

The benchmark Geographica is based on such real-world geospatial appli-
cation scenarios and for the experimental evaluation of Ontop-spatial we will
also follow this approach: We will import real geospatial datasets in a spatially-
enabled relational database and use it as the back-end of Ontop-spatial.

We chose to use the datasets of Geographica that are available in their orig-
inal format (shapefiles). These datasets are the Corine Land Cover dataset of
Greece, which is provided by the European Environment Agency (EEA), the
Greek Administrative Geography (GAG), and the Hotspots dataset provided by
the National Observatory of Athens. We complemented these data sources with
the original raw files of OpenStreetMap data about Greece which are available as
shapefiles.6 Geographica uses the RDF versions of the same subset of the OSM
datasets created by the project LinkedGeoData7. For the rest of this paper, we
will refer to this dataset using the acronym of the resulting, RDF-ized version
(LGD). We added more OSM categories to our workload (e.g., buldings, water-
ways, etc.), as we will exploit the fact that each one is contained in a different
shapefile (so it will be imported into a different table), to stress our system as
we explain later on in this section.

For the evaluation of Ontop-spatial, we imported the shapefiles in a PostGIS
database using the shp2pgsql command as described here: https://github.
com/ConstantB/Ontop-spatial/wiki/Shapefiles. In this way, each shapefile
is loaded into a separate table in the database. Each one of these tables contains
a column where geometries are stored in binary format (WKB) and an index
has been built on that column. Then, we created the minimum set of mappings
in order to pose the queries of the benchmark. We used PostgreSQL version
9.1.13 and PostGIS 2.0.3, performing the fine tuning configurations suggested
here: http://geographica.di.uoa.gr.

6 http://download.geofabrik.de/europe/greece.html
7 http://linkedgeodata.org/

Table 3 shows information about the datasets described above, such as the
disk size that each of these tables occupy, the number of tuples and the average
number of points per geometry. Notice that the LGD dataset consists of 7 shape-
files/tables which is important in the OBDA setting as we will explain later on.
Also, LGD-Places and LGD-Points contain only point geometries.

In order to compare the performance of our system with Strabon, we materi-
alized the virtual geospatial RDF graphs produced by Ontop-spatial and stored
them in Strabon, so that both the virtual RDF graphs produced by Ontop-spatial
and the graphs stored in Strabon contain exactly the same information. The pro-
duced RDF dump consists of 5.620.482 triples and contains 855.502 geometries.
The total PostGIS database size (in terms of disk usage) of Ontop-spatial is 700
MB. The respective size of the PostGIS database that was produced after load-
ing the RDF dump to Strabon is 1665 MB, which is more than twice the disk
space compared to the original database produced by importing the shapefiles
directly. The reason is that in the first case the database stores the data, while
in the second case the database stores the equivalent set of triples. This kind of
overhead is common in RDF stores that use a relational database as back-end.
Also, Strabon inherits the per predicate storage scheme of the Sesame RDBMS
package, so every predicate is stored in a different table and additional tables are
used for dictionary encoding. According to this storage scheme, all geometries
are stored in a table called geo values in WKB format and the respective column
is indexed using an R-tree-over-GiST index, as described in [8].

5.2 Queries

The GeoSPARQL queries that we used for the experimental evaluation of our
system are a set of spatial selections and a set of spatial joins. We used some of
the queries of Geographica, and some queries that are appropriate in the OBDA
setting as we will explain in the rest of this section. The queries used in our
evaluation are presented in Tables 1 and 2. Each query has a numeric identifier,
a mnemonic label, a number that shows how many BGPs it consists of and a
number that shows how many results it returns.

Both spatial selection and spatial join queries contain a spatial filter that
checks if a spatial relation holds between two geometries that are given as argu-
ments to the respective GeoSPARQL function. In the case of spatial selections,
one of the arguments is a variable and the other one is a constant, which can
be either a line (queries suffixed with “L” in the query label) or a polygon (us-
ing “P” suffix). In spatial join queries, both arguments of the respective spatial
binary operator are variables. The first set of queries that we consider contains
simple geospatial queries, i.e., queries consisting of a single triple pattern to re-
trieve the geometries of a dataset and a spatial filter (spatial selections 00-14 and
spatial joins 00-03). Note that spatial joins require at least two triple patterns
to retrieve the geometries that will be bound to the variables that are involved
in the spatial filter. This kind of queries test the response time of the compared
systems to perform “pure” geospatial queries (i.e., involving the least possible

mappingId lgd_buildings_geometry
target lgd:{gid} lgd:asWKT {geom }^^ geo:wktLiteral .
source select gid , geom from buildings

mappingId lgd_landuse_geometry
target lgd:{gid} lgd:asWKT {geom }^^ geo:wktLiteral .
source select gid , geom from landuse

Fig. 2: Examples of geospatial mappings for two LGD tables

select ?s1 ?o1 where {
?s1 lgd:asWKT ?o1 .

filter(geosparql:FUNCTION(SPATIAL_CONSTANT ,?o1)).}

Fig. 3: Template for spatial selection queries

number of triple patterns, focusing as much as possible on the evaluation of the
spatial condition).

The next set of queries that we consider tackles an important issue that is
crucial in OBDA systems: the generation of Union operators, deriving from the
ontology and the schema of the database in the SPARQL-to-SQL translation
phase. For example, the LGD dataset consists of 7 shapefiles, each one con-
taining a column where geometries are stored. But according to the ontology,
the data property that connects a spatial object with its geometry is universal
for all spatial objects in the dataset. We present the mappings for two of these
tables/shapefiles in Figure 2.

Let us now consider the template for spatial selection queries in Figure 3.
The translated SQL query corresponding to a GeoSPARQL query following this
template would create unions in order to fetch results deriving from all the tables
it has been mapped to, that is, all seven LGD tables, and then apply the spatial
selection to this union. This is the case for spatial selection queries 15-19. In order
to test how our system responds by increasing/decreasing the number of unions
produced in the translated query, we add an additional, thematic filter that
selects a different number of LGD categories each time, thus affecting a different
number of tables, and producing different number of unions, respectively. For
example, consider query 19 which is shown in Listing 1.1, which contains an
OR-condition in the second filter, so the respective translated query contains a
union.

Listing 1.1: Query 19

select distinct ?s1 where {
?s1 lgd:asWKT ?o1 .
?s1 rdf:type ?type .
filter(geof:sfIntersects(GEOMETRY ,?o1))
filter(?type = lgd:Road ||
?type = lgd:Waterway) }

Listing 1.2: Spatial join query 6

select ?s1 ?s2 where {
?s1 lgd:asWKT ?o1 .
?s2 lgd:asWKT ?o2 .
(geo:sfIntersects (?o1 ,?o2))
}

The queries 15, 16, 17, and 18 produce 6, 4, 3, and 4 unions respectively.
The presence of unions has a negative impact on the query response time, but
things get even worse when unions appear in spatial joins (e.g., spatial join query
6). Since variables appear in the spatial filters that serve as the conditions of
the spatial joins, all combinations of the respective tables that are involved in
the corresponding mappings should be spatially joined pairwise. For example,
consider the spatial join query 6 which is given in Listing 1.2. This query performs
a spatial join with the condition intersects in all LGD tables that are involved
in the mappings containing the predicate lgd:asWKT. This join is translated into
the corresponding relational algebra expression as follows:

(Lbuildings ∪Lluse ∪ ...∪Lwaterways) onsf (Lbuildings ∪Lluse ∪ ...∪Lwaterways)
where Lbuildings, Lluse,..., Lwaterways, etc are LGD tables and sf is spatial

operator corresponding to geof : sfIntersects from the query. The query engine
evaluates this relational algebra expression as unions of joins and all involved
tables get spatially joined pairwise.

Last, in order to measure how the selectivity of the queries affect the per-
formance of the systems, we included the spatial selection queries 20 and 21
involve the computation of the intersection of all kinds of LGD areas with a
specific polygon. This polygon is large in the case of spatial selection query 20 so
that many geometries will be returned, while in spatial selection query 21 this
polygon is small enough so that very few LGD areas intersect with it.

5.3 Results

Experimental set up. The experiments were carried out on a server with the
the following specifications: Intel(R) Xeon(R) CPU E5620 @ 2.40GHz, 12MB
L3, RAID 5, 32GB RAM and OS: Ubuntu 12.04. All experiments were carried
out with both cold and warm cache. Queries are first executed in cold cache and
then in warm cache. The queries for which the system under test times out (
the time out threshold is set to 40 minutes) are not executed in warm cache.
All queries and code we used to execute the experiments in both systems, can
be found in the “experiments” branch of the github repository of Ontop-spatial
(folder “benchmark”) at https://github.com/ConstantB/Ontop-spatial.
Query response time. The results of our experimental evaluation can be seen
in Figures 4 - 5. Response time is measured in nanoseconds and presented in log-
arithmic scale. A general observation is that the query response time of Ontop-
spatial is better than the one of Strabon, especially when big datasets are in-
volved, both for spatial selections and spatial joins. Strabon times out after 40
minutes in spatial join queries 6 and 7. In spatial selection queries 2-5, although
Ontop-spatial achieves better response time than Strabon in cold cache, it gets
outperformed in warm cache, as intermediate results (which are not many as the
dataset involved in this query is relatively small), are more likely to be found in
the cache, increasing the hit rate of the cache and decreasing I/O requests. How-
ever, such differences between executions in warm and cold cache are eliminated
in larger datasets. In what follows we explain why Ontop-spatial outperforms
Strabon.

No Query #BGPs results

00 Equals GADM P 1 0

01 Contains GADM P 1 9

02 Contains GADM P 1 0

03 Equals GADM L 1 1

04 Overlaps GADM L 1 0

05 Contains GADM L 1 0

06 Intersects CLC L 1 5

07 Contains CLC L 1 0

08 Equals CLC L 1 5

09 Overlaps CLC L 1 0

10 Overlaps CLC P 1 132

11 Intersects CLC P 1 533

12 Contains CLC P 1 401

13 Equals CLC P 1 0

14 Intersects LGD P 2 2749

15 Intersects LGD B 2 2749

16 Intersects LGD PL 2 2626

17 Intersects LGD P 2 2522

18 Intersects LGD LU 2 2722

19 Intersects LGD ROA 2 2387

20 Intersects LGD bigP 1 729189

21 Intersects LGD P2 3 5

Table 1: Spatial selections description

No Query #BGPs results

00 Within CLC GADM 2 34114

01 Intersects GADM GADM 2 1556

02 Overlaps GADM CLC 2 17035

03 Intersects LGD GADM 3 154725

04 Intersects LGD LGD Mus 4 2

05 Intersects LGD GADM 2 819319

06 Intersects LGD LGD 1 3686229

07 Crosses LGD LGD Roads 4 178602

Table 2: Spatial joins description

Dataset Size Tuples Avg #points
geometry

CLC 283MB 44834 187.84

Hotspots 35 MB 37048 5

GAG 24 MB 326 3020.14

LGD-Buildings 42 MB 155474 6.5

LGD-Landuse 20 MB 40220 19.4

LGD-Places 2.4 MB 13043 1

LGD-Points 12 MB 61664 1

LGD-Railways 2 MB 4996 13.3

LGD-Roads 250 MB 514403 19

LGD-Waterways 16 MB 20565 39.84

Table 3: Workload characteristics

Listing 1.3: Spatial join query 2

select ?s1 ?s2 where {
?s1 clc:asWKT ?o1 .
?s2 gag:asWKT ?o2 .
filter(geof:sfWithin (?o1, ?o2))}

Listing 1.4: Spatial join query 4

select ?s1 ?s2 where {
?s1 lgd:asWKT ?o1 .
?s1 rdf:type lgd:Building .
?s1 lgd:type "Museum" .
?s2 lgd:asWKT ?o2 .
?s2 rdf:type lgd:Landuse .
filter(geof:sfIntersects (?o1 ,?o2))}

Listing 1.5: Ontop-spatial SQL query

SELECT
1 AS "s1QuestType", NULL AS "s1Lang",
(’http :// geo.linkedopendata.gr/clc/’
|| REPLACE (...... || ’/’) AS "s1",
1 AS "s2QuestType", NULL AS "s2Lang",
(’http :// geo.linkedopendata.gr/gag/ont/’
|| REPLACE (...’/’) AS "s2"

FROM
clc QVIEW1 ,
gag QVIEW2
WHERE
QVIEW1."gid" IS NOT NULL AND
QVIEW1."geom" IS NOT NULL AND
QVIEW2."gid" IS NOT NULL AND
QVIEW2."geometry" IS NOT NULL AND
(ST_Within(QVIEW1."geom",QVIEW2."geometry"))

Listing 1.6: Strabon SQL query

SELECT a0.subj ,
u_s2.value ,
a2.subj ,
u_s1.value
FROM aswkt_855211 a0
INNER JOIN geo_values l_o2
ON (l_o2.id = a0.obj)
INNER JOIN geo_values l_o1 ON
((ST_Within(l_o1.strdfgeo ,
l_o2.strdfgeo)))

INNER JOIN aswkt_135992 a2
ON (a2.obj = l_o1.id)
LEFT JOIN uri_values u_s2
ON (u_s2.id = a0.subj)
LEFT JOIN uri_values u_s1
ON (u_s1.id = a2.subj)

Fig. 4: Spatial Selections experiment (cold and warm cache)

Fig. 5: Spatial Joins experiment (cold and warm cache)

The queries provided in Listings 1.5 and 1.6 are the SQL translations of the
GeoSPARQL spatial join query 2, which is provided in Listing 1.3. One can ob-
serve that Ontop-spatial produces the same query as one would have written by
hand in a geospatial relational database. Strabon produces some extra joins, as a
result of the star schema that it follows in the database (and has been inherited
from the Sesame RDBMS that Strabon is built on), i.e., each predicate is stored
in a different table and there are some additional tables used for dictionary en-
coding (tables storing URIs, one table for each different datatype, etc.). This has
a negative impact on performance when many intermediate results are produced.
In Strabon, geometries are stored in a single table, named geo values, and are
indexed on the geometry column using an R-tree-over-GiST index. On the other
hand, Ontop-spatial stores each shapefile in a different table, and geometries are
stored in a sepate column for each table, and a separate R-tree-over-GiST in-
dex is constructed for the geometries of each shapefile/table. As Table 3 shows,
there are cases where geometries of a shapefile/table are of the same type (e.g.,
all contain points/linestrings/polygons), allowing Ontop-spatial to build smaller
and more efficient indices.

Nevertheless, in spatial join query 4, Strabon outperforms Ontop-spatial. The
query is provided in Listing 1.4. Using this query, we want to retrieve the land
use of areas that intersect with Museums. This is a very selective query with
respect to the thematic condition, so the PostGIS optimizer correctly chooses to
perform the thematic conditions first so that only the geometries of Museums
will be checked in the spatial condition that follows, and the R-tree index will be
used. Both systems execute the query very fast, with Strabon achieving nearly

4 times better performance than Ontop-spatial, as the overhead of the extra
joins it performs, as described above, is reduced because very few intermediate
results are produced. Also, dictionary decoding helps Strabon to perform string
comparison (for value “Museum”) only once, in order to retrieve the id of that
value and then perform thematic joins efficiently using the id (numeric) value.

Queries 15-19 have filters that select different kinds of LGD categories. Query
response time increases every time many LGD categories are involved (Query
15 asks for all categories), producing the respective number of unions in the
case of Ontop-spatial and more intermediate results for Strabon, forcing more
geometries to be checked in the spatial filter. On the contrary, query response
time decreases when less LGD categories need to be selected.

The results of union-queries are more interesting in the case of spatial joins,
shown in Figure 5. One would expect that unions with spatial joins, as in the
case of the spatial join query 6, would dramatically decrease the performance of
Ontop-spatial. Indeed, query response time increases in the case of queries like
query 6, but Ontop-spatial still performs better than Strabon. The explanation
for this lies in the fact that each time a spatial join is performed between two
different LGD tables, the optimizer chooses the one having the smaller index (and
usually smaller geometries, in this case) to be nested inside the inner branch of
the nested loop, where it performs an index scan. This has greater impact on the
execution time of geospatial queries, as the evaluation of spatial joins is more
expensive due to the cost of the evaluation of the spatial conditions.

In spatial selection query 20, the performance of the two systems is very
close, while in the more selective version of the same query, i.e., spatial selection
query 21, the gap in the execution times between Ontop-spatial and Strabon
increases again. This happens because nearly every geometry in the workload is
included in the results of the spatial selection query 20, so spatial indices are
not useful in this case.

Overall, we observe that importing the shapefiles to a database and then
using an OBDA approach is very efficient, as in most cases, the information that
is contained in a shapefile is compact and homogeneous, as we often have one
shapefile per data source. So, the SQL queries that are produced based on such
a schema contain reduced amount of joins and can be executed efficiently.

6 Discussion and Conclusions

In this paper, we describe how we extended the techniques of [14, 5] to develop the
first geospatially-enabled OBDA system, named Ontop-spatial. By extending the
OBDA system Ontop, Ontop-spatial inherits the advantages of using RDB2RDF
systems in real use cases: i) RDB-to-RDF workflow becomes less complicated,
without having to use different tools for converting data into RDF and then
storing it in RDF stores, ii) no data needs to be transfered, as existing databases
are used as input to the system, and iii) mappings provide a layer of abstraction
between the data manipulation/database experts and the end users.

These advantages have even greater impact when dealing with geospatial
data. The domains where geospatial data are produced and used are dominated
by geospatial databases and other tabular file formats that could easily be im-
ported to a database (e.g., shapefiles). GIS practitioners use geospatial relational
databases in their day-to-day tasks, either directly or as the back-end of appli-
cations to store and manipulate data (e.g., GIS have connectors for geospatial
relational databases). Ontop-spatial provides a solution for combining the advan-
tages of geospatial relational databases, for example, the wide variety of geospa-
tial data operators and the performance achieved by the use of spatial indices,
with the data modeling advantages of the RDF data model. Moreover, Ontop-
spatial allows for encapsulating geospatial data manipulation functions offered
by geospatial extensions to SQL (e.g., functions for transforming geometries to
a different coordinate reference system) in the mappings.

On the other hand, Ontop-spatial inherits the disadvantages of the OBDA
systems as well. First, in order to combine information coming from different
geospatial sources, the data should be imported in databases. Second, as the
database is given as input to the system, it is read-only and Ontop-spatial does
not support SPARQL store or update operations; all updates should be done
directly on the database level. Third, the performance of the system is heavily
dependent on the ontology, the schema of the database, and the mappings, as
we explained in the previous sections, which applies for OBDA approaches in
general. However, our experiments showed that in many cases, our geospatially
enchanced OBDA approach achieves significantly better performance than the
state-of-the-art geospatial RDF store Strabon. The main reasons for this are
summarized as follows:

– The database schema that is produced simply by importing the shapefiles to
the database is in most cases suitable for OBDA approaches, as shapefiles
contain compact and homogeneous information per dataset.

– The database produced by storing the materialized RDF dump that ontop
exports in Strabon is bigger than the database that results from importing
the shapefiles, even though only the RDF triples that were involved in the
OBDA mappings (i.e., the virtual RDF triples) were exported. This happens
because of i) the normalization imposed by the RDF data model itself (i.e.,
triples) and ii) the additional tables used for dictionary encoding.

– The additional joins that are created in the translated SQL queries of Stra-
bon and the fact that geometries are stored in a single table where geospatial
operators are performed increase even by more than an order of magnitude
in very large workloads with many and complicated geometries, when many
intermediate results are produced in queries.

In future work, we plan to continue the development of Ontop-spatial in
the directions of i) fully supporting GeoSPARQL and stSPARQL (i.e., adding
also valid time support), and ii) creating a distributed version of our extension
exploiting the fact that the union-all spatial queries are parallelizable.

Acknowledgement. This work is partially supported by the EU projects Op-
tique (318338) and MELODIES (603525). We would like to thank the Ontop
development team for their support.

References

1. Open Geospatial Consortium. OpenGIS Simple Features Specification For SQL.
OGC Implementation Standard (1999)

2. Open Geospatial Consortium. GeoSPARQL - A geographic query language for
RDF data. OGC Candidate Implementation Standard (2012)

3. Bereta, K., Smeros, P., Koubarakis, M.: Representation and Querying of Valid
Time of Triples in Linked Geospatial Data. In: Extended Semantic Web Conference
2013. vol. 7882, pp. 259–274. Springer Berlin Heidelberg (2013)

4. Bruggemann, S., Bereta, K., Xiao, G., Koubarakis, M.: Ontology-Based Data Ac-
cess for Maritime Security, pp. 741–757. Springer International Publishing (2016)

5. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M.,
Rodriguez-Muro, M., Xiao., G.: Ontop: Answering SPARQL queries over relational
databases. Semantic Web Journal, 2016. (To appear)

6. Egenhofer, M.: A formal definition of binary topological relationships. In: Founda-
tions of Data Organization and Algorithms, Lecture Notes in Computer Science,
vol. 367, pp. 457–472. Springer Berlin Heidelberg (1989)

7. Garbis, G., Kyzirakos, K., Koubarakis, M.: Geographica: A Benchmark for Geospa-
tial RDF stores (long version). Lecture Notes in Computer Science, vol. 8219, pp.
343–359. Springer (2013)

8. Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: A Semantic Geospa-
tial DBMS. In: ISWC. LNCS, vol. 7649, pp. 295–311. Springer (2012)

9. Kyzirakos, K., Vlachopoulos, I., Savva, D., Manegold, S., Koubarakis, M.:
Geotriples: a tool for publishing geospatial data as RDF graphs using R2RML
mappings. In: Proceedings of the ISWC 2014 Posters & Demonstrations Track ,
Riva del Garda, Italy, October 21, 2014. pp. 393–396 (2014)

10. Nikolaou, C., Dogani, K., Bereta, K., Garbis, G., Karpathiotakis, M., Kyzirakos,
K., Koubarakis, M.: Sextant: Visualizing time-evolving linked geospatial data. J.
Web Sem. 35, 35–52 (2015)

11. Polleres, A.: From SPARQL to rules (and back). In: Proceedings of the 16th In-
ternational Conference on World Wide Web. pp. 787–796. WWW ’07, ACM, New
York, NY, USA (2007)

12. Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and experiences of R2RML-
based SPARQL to SQL query translation using Morph. In: Proc. of the 23rd In-
ternational Conference on World Wide Web. pp. 479–490. ACM, NY, USA (2014)

13. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection.
In: Proceedings of the 3rd International Conference on Principles of Knowledge
Representation and Reasoning (KR’92). Cambridge, MA, October 25-29, 1992.
pp. 165–176 (1992)

14. Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings.
Journal of Web Semantics 33(1) (2015)

15. Sequeda, J., Miranker, D.P.: Ultrawrap: SPARQL execution on relational data.
Journal of Web Semantics 22 (2013)

