
CREATING VIRTUAL SEMANTIC GRAPHS ON TOP OF BIG DATA FROM
SPACE

Konstantina Bereta and Manolis Koubarakis

National and Kapodistrian University of Athens

ABSTRACT

We present the system Ontop-spatial for the integra-
tion of geospatial data from different sources and
different formats using ontologies and mappings.
Ontop-spatial answers GeoSPARQL queries over
geospatial relational databases storing vector or
raster data by performing on-the-fly GeoSPARQL-
to-SQL translation using ontologies and mappings.
Our experimental evaluation shows that Ontop-
spatial outperforms all state-of-the-art geospatial
RDF stores.

Index Terms— GeoSPARQL, RDF, Ontology-
based Data Access, Geospatial Data Integration

1. INTRODUCTION

Previous projects TELEIOS, LEO and Melodies
funded by FP7 ICT, and OBEOS funded by ESA
have demonstrated the use of linked data in Earth
Observation (EO). The current H2020 project Coper-
nicus App Lab (http://www.app-lab.eu/)
goes one step further by making data from three
Copernicus services (Land, Marine and Atmo-
sphere) available on the Web as linked data to aid
their utilization by mobile developers. In previ-
ous projects, it has been assumed that EO data
are transformed from their original formats (shape-
files, spatially-enabled relational databases, Geo-
TIFF, NetCDF etc.) into RDF, stored in geospa-
tial RDF stores and queried using geospatial ex-
tensions of SPARQL to develop interesting ap-
plications. In this paper, we present the system

This work has been funded by the EU project Copernicus
App Lab (730124).

Ontop-spatial which enables the creation of vir-
tual RDF graphs over EO data stored in their
original formats using ontologies and mappings.
Ontop-spatial allows EO data centers to make their
data available as linked data that can be queried
using the OGC standard GeoSPARQL [1], with-
out first having to translate this data into RDF.
Ontop-spatial scales to big geospatial data and
it is more efficient than related geospatial RDF
stores. Ontop-spatial is available as open source at
https://ontop-spatial.di.uoa.gr.

Ontop-spatial adopts the Ontology-Based Data
Access (OBDA) paradigm pioneered by the Seman-
tic Web community, and it is the first geospatial
OBDA system. Ontop-spatial is able to connect
to geospatial databases and create geospatial RDF
graphs on top of them, using ontologies (that are ex-
tensions of the GeoSPARQL ontology) and R2RML
mappings. Figure 1 shows graphically the classes
of the GeoSPARQL ontology.

Fig. 1. Classes of the GeoSPARQL ontology

R2RML (https://www.w3.org/TR/r2rml/)
is the standard language for encoding how rela-
tional data is mapped into RDF terms. This virtual
approach avoids the need of materialization and
facilitates data integration, as it enables users to



pose the same GeoSPARQL queries they would
pose over the materialized RDF data. GeoSPARQL
queries are translated by Ontop-spatial on-the-fly
into the respective SQL queries with spatial oper-
ators, and are evaluated in the geospatial DBMS.
Currently, PostGIS, Spatialite and Oracle Spatial
are supported as back-ends. The first version of
Ontop-spatial dealing with vector data only has
been presented in [2]. This version has been used in
three environmental applications in the context of
project MELODIES, and in a marine-security ap-
plication in the context of German national project
EMSec.

The contribution of our approach with respect to
the Big Data from space dimensions are the follow-
ing. Volume: Ontop-spatial outperforms the state-
of-the-art in geospatial RDF stores and is able to
process tens of Gigabytes of data containing com-
plicated geometries. Velocity: When data gets fre-
quently updated, using traditional triple stores is in-
efficient, as batches of data need to be converted
and materialized as RDF triples each time they ar-
rive. Our approach eliminates as much as possi-
ble the need for materializing data and it is suit-
able for data sources that get frequently updated
(e.g., streams). Variety: With raster and OPen-
DAP support in place, Ontop-spatial becomes the
first GeoSPARQL query engine that is able to pro-
cess such a wide variety of geospatial formats, en-
abling geospatial data integration using ontologies
and mappings. Value: Exposing geospatial data as
virtual RDF triples that can be accessed in the Web
though standard (Geo)SPARQL endpoints enables
the interlinking of EO data with other data (e.g.,
open data) increasing their value, as data from mul-
tiple geospatial sources can be combined and rich
queries can be expressed over them.

2. ONTOP-SPATIAL

Since the publication of [2] which discussed how
Ontop-spatial can be used to query vector data,
we have extended Ontop-spatial with the ability to
query raster data as well. Querying raster data
sources using declarative query languages can also
be done using array DBMSs such as Rasdaman,

MonetDB and SciDB. As GeoSPARQL does not in-
clude support for raster data, in our approach we
do not deviate from the standard but instead: i)
we overload existing vector GeoSPARQL operators
such as geof:sfIntersects to be used with
raster data as well, and ii) in the mappings, we
use the raster functions supported by the underlying
DBMS (e.g., PostGIS with the raster support).

More recently, work on the SciSPARQL query
language showed how to query grid coverages us-
ing a hybrid data store composed of Rasdaman and
a main-memory RDF store [3]. We deviate from
this approach by not extending (Geo)SPARQL with
array functionalities but allowing for the encapsula-
tion of raster data functions in the mappings, so that
not every raster cell needs to be represented in RDF.

The problem of representing and query-
ing raster data as linked data has also been
discussed in the recent working note ”Cov-
erages in Linked Data” by the OGC/W3C
Spatial Data on the Web working group
(https://www.w3.org/2015/spatial/
wiki/Coverages_in_Linked_Data).

None of the geospatial extensions of the frame-
work of RDF and SPARQL, such as stRDF and
stSPARQL and GeoSPARQL have considered sup-
port for raster data. The main challenge that lies be-
hind this is twofold. First, a raster file is associated
with a geometry only as a whole. It is not straight-
forward to associate separate raster cells to a geom-
etry; they have to be vectorized first (i.e., translated
into polygons). Second, every raster cell is associ-
ated with one or more values. In order to convert all
information contained in a raster file into RDF, then
multiple triples should describe a raster cell, pro-
ducing a large amount of triples for a whole raster
file. However, not all of this information is needed.
In most of the use cases, only the information that
derives from a raster file and satifies certain crite-
ria (e.g., value constraints) is all that is needed to be
converted into RDF. This means that the raster file
needs to be processed and then the results of this
processing are useful as RDF, while any other in-
formation is redundant. These challenges have dis-
couraged the scientific community from converting
and materializing raster data to RDF. The following



example describes how raster data can be mapped
into virtual RDF data. For the convenience of the
reader, we present the mappings using the OBDA
native language of Ontop instead of R2RML. as it
is more compact and readable, but R2RML is also
supported in the system.

mappingId chicago2
target geo:{geom} rdf:type f:rastCell;

geo:asWKT {geom} .
source select ST_DumpAsPolygons(rast)
as geom from chicago;

In the example described above, a GeoTIFF im-
age has been imported into a PostGIS database as
relation chicago. The mapping shows how raster
data stored in column rast are mapped to geome-
tries in WKT format, after they are vectorized, us-
ing the PostGIS ST DumpAsPolygons function.
This is a procedure that allows domain experts to
use all geometries that they may have in a database
uniformly, and execute spatial operations involving
vector and raster geometries. Domain experts usu-
ally perform this vectorization step as part of pre-
processing. In the mapping described above, we
show how this can be done on-the-fly, using Ontop-
spatial.

In the project Copernicus App Lab, Ontop-
spatial has also been extended to support data
sources made available via OPenDAP services of-
fered by our partner Dutch company RAMANI.
OPeNDAP is a framework for accessing scientific
data (https://www.opendap.org/) which is
widely used by Earth scientists, as it is popular
in large organizations such as NASA and NOAA.
Earth science data can be consumed by using a
specific OPenDAP client. To make data provided
by OPeNDAP services available as linked data, the
data should be downloaded, materialized and then
converted into RDF using custom programs, as ex-
isting applications that convert geospatial data into
RDF do not offer support for OPeNDAP. The ap-
proach that we describe in this paper enables the
creation of virtual geospatial RDF graphs on top of
data that is accessible through OPeNDAP on-the-
fly, without materializing the original data or the
RDF data.

Ontop-spatial has been extended with an adapter
that enables it to retrieve data from an OPeNDAP
server, create a table view on-the-fly, populate it
with this data and create virtual semantic geospa-
tial graphs over it. To achieve this, Ontop-spatial
utilizes the system MadIS (https://github.
com/madgik/madis) as a back-end. MadIS is
an extensible relational database system built on
top of the APSW SQLite wrapper. MadIS is a
framework that provides a Python interface so that
users can easily implement user-defined functions
(UDFs) as row, aggregate functions, or virtual ta-
bles. We used MadIS in order to create a new UDF,
named Opendap, that is able to create and populate
a virtual table on-the-fly with data retrieved from an
OPeNDAP server. In this way, Ontop-spatial en-
ables users to pose GeoSPARQL queries on top of
OPeNDAP data sources without materializing any
triples or tables.

An example is provided below.

mappingId opendap_mapping
target lai:{id} rdf:type lai:Observation ;

lai:{id} lai:hasLai {LAI}ˆˆxsd:float;
lai:detectionTime {time}ˆˆxsd:dateTime;
geosparql:asWKT {wkt}ˆˆgeo:wktLiteral .

source select id, LAI, time, wkt
from (ordered opendap
url:https://analytics.ramani.ujuizi.com/
%28https://ramani.ujuizi.com/
thredds/dodsC/Copernicus-Land-timeseries-
global-LAI%29/readdods/.LAI/)
where LAI > 0

In this mapping, the source is a Leaf Area In-
dex (LAI) dataset with resolution of 100 meters is
provided through an OPeNDAP server. The dataset
contains observations about the LAI values of ar-
eas, as well as the time and location for each ob-
servation. The MadIS operator Opendap retrieves
this data and populates a virtual database table with
the schema (id,LAI,time,wkt). The column
id was not originally in the dataset but it is con-
structed from the location and time when the ob-
servation is taken. The LAI column stores the LAI
values of an observation as float values. The at-
tribute time represents the timestamp of an obser-
vation in datetime format. In the original dataset
temporal values are represented as numeric values.
The meaning of these values is described in the
metadata. For example, it can be days or months



since a fixed timestamp. Unfortunately, this is not
a standard representation that we would have avail-
able if we had imported the dataset into a geospatial
database. Because of the fact that the Opendap op-
erator is implemented as an SQL user-defined oper-
ator, it can be embedded into any SQL query. So
we refined the data that we want to be translated
into virtual RDF terms by adding an SQL filter to
the query to eliminate the negative or zero LAI val-
ues by filtering them out at an intermediate level, so
that i) we do not change the values of the original
dataset and ii) we provide only the correct values
to the users so that they do not need to handle the
noise themselves (e.g., by using GeoSPARQL filters
or custome code).

The target part of the mapping encodes how
the relational data can now be mapped into RDF
terms. Every row in the virtual table describes an
instance of the class lai:Observation. The
values of the LAI column populate the triples that
describe the LAI values of the Observation, and the
values of the columns time and wkt populate the
triples that describe the time and location of the ob-
servations accordingly.

Given the mappings provided above, we can
pose the the following GeoSPARQL query to re-
trieve the Leaf Area Index values and the geometries
of areas

select distinct ?s ?g ?lai where {
?s lai:hasLai ?lai .
?s geo:asWKT ?g }

Notably, both translation steps are performed
on-the-fly and only after a GeoSPARQL query is
posed to the system. This approach goes consid-
erably beyond the previous version of Ontop-spatial
that could only connect to an existing database with
materialized tables, as well as the default, non-
spatial version of Ontop and any other RDB2RDF
system. OBDA systems traditionally connect to an
existing database with materialized tables and ac-
cess it before a query is fired in order to collect
metadata, etc. The exact schema of the database ta-
bles is known beforehand. The approach that we
propose in this paper is schema-agnostic: Ontop-
spatial does not know the schema of the data as there

is no database materialized. The virtual table is only
created on-the-fly.

Ontop-spatial can be available as a
GeoSPARQL endpoint, and thus can be used
both by federation and interlinking engines. For
example, one can use the interlinking tool Silk
(http://silkframework.org/) to inter-
link Copernicus data that is accessible as RDF
graphs using Ontop-spatial with linked data that is
available using standard (Geo)SPARQL endpoints.

3. EVALUATION

We have evaluated Ontop-spatial by extending the
benchmark Geographica with support for the eval-
uation of OBDA systems. Geographica (http:
//geographica.di.uoa.gr) was initially de-
signed to evaluate the performance of geospatial
RDF stores. We compared Ontop-spatial with
the state-of-the-art geospatial RDF store Strabon
(http://strabon.di.uoa.gr) [4]. Strabon
has also been developed by our group and has been
shown to be the most efficient geospatial RDF store
available today [5]. Our evaluation showed that
Ontop-spatial generally achieves significantly better
performance than Strabon, often by orders of mag-
nitude, when a large number of geospatial interme-
diate results are generated during the evaluation of a
query. For example, Ontop-spatial is able to execute
spatial selections and spatial joins against a 30 GB
dataset that contains complex geometries (i.e., from
points to polygons containing thousands of points)
in less than a second. A summary of the experi-
ments that we carried out is illustreated in Figure 2.

For the experiments, we used as set of spatial se-
lection queries and a set of spatial joins. The queries
in both sets contain a spatial filter. In spatial se-
lections, one of the two arguments of the filter is a
spatial constant, for example it can be a point or a
linestring or a polygon. We experimented with dif-
ferent kinds of spatial constants with variant number
of points per geometry in order to construct queries
with various spatial selectivity. To construct spa-
tial selections with low selectivity we used polygons
that cover a large area so that most of the geometries
of the dataset are contained in this area. We did the



opposite to construct highly selective queries. We
used the same approach for the spatial joins. The
difference is that in spatial joins both arguments of
the spatial filter are spatial variables, not constants.
As shown in Figure 2, both systems have execution
times at the same scale in spatial selections, regard-
less of the spatial selectivity of the queries. The dif-
ference in the performance of the two systems in-
creases in spatial selections where the geometries
involved are more complex (i.e., polygons).

In spatial joins the difference in execution times
between Ontop-spatial and Strabon increases even
more, especially in queries with low selectivity
where complex geometries are involved. This is be-
cause the SQL queries that are produced by Stra-
bon contain larger number of joins in comparison
with Ontop-spatial, because of the schema of the
database that serves as a back-end of Strabon, and
the fact that all geometries are stored in a separate
table which is R-tree indexed. In Ontop-spatial, on
the other hand, every dataset is imported into the
database as a separate table. The geometries are
stored in a separate column of this dataset and are
indexed using R-tree. So when a spatial join in-
volves geometries from two datasets, only these two
tables will be involved in the query evaluation. This
issue is very common in RDF stores, as triple stores
by nature store information about triples, whereas
the relational model is more compact. This is the
reason why Strabon, that extends the RDBMS ver-
sion of Sesame triple store, creates a database that
is a lot larger than the one that Ontop-spatial uses.

Both the functionality and the performance
achieved by Ontop-spatial make it the system of
choice for making geospatial data available using
linked data technologies.

4. CONCLUSIONS

We presented an extension of the OBDA paradigm
for accessing vector and raster data, as well as data
offered through DAP services. Our future work
will concentrate on extending Ontop-spatial with
the ability to query array databases.

Fig. 2. Overview of evaluation results

5. REFERENCES

[1] “Open Geospatial Consortium. OGC
GeoSPARQL - A geographic query language
for RDF data,” OGC Candidate Implementation
Standard, 2012.

[2] K. Bereta and M. Koubarakis, “Ontop of
geospatial databases,” in ISWC 2016.

[3] Andrej Andrejev, Dimitar Misev, Peter Bau-
mann, and Tore Risch, “Spatio-temporal grid-
ded data processing on the semantic web,” in
DSDIS 2015.

[4] Kostis Kyzirakos, Manos Karpathiotakis, and
Manolis Koubarakis, “Strabon: A Semantic
Geospatial DBMS,” in ISWC, Philippe Cudr-
Mauroux and et al., Eds. 2012, vol. 7649 of
LNCS, pp. 295–311, Springer.

[5] G. Garbis, K. Kyzirakos, and M. Koubarakis,
“Geographica: A Benchmark for Geospatial
RDF Stores,” ISWC 2013.


