ONTOLOGY-BASED DATA ACCESS AND VISUALIZATION OF BIG VECTOR AND RASTER
DATA

Konstantina Bereta, George Stamoulis and Manolis Koubarakis

National and Kapodistrian University of Athens

ABSTRACT

We present an Ontology-based data access technique for the
integration of geospatial data from different sources and dif-
ferent formats using ontologies and mappings. Our technique
is implemented in the system Ontop-spatial, which enables
the execution of GeoSPARQL queries over geospatial rela-
tional databases storing vector or raster data by performing
on-the-fly GeoSPARQL-to-SQL translation using ontologies
and mappings. Ontop-spatial is generally more efficient than
traditional geospatial RDF stores. Linked geospatial data can
then be visualised on the map using Sextant, an online tool
for browsing and visualisation of linked geospatial data.

Index Terms— GeoSPARQL, Ontology-based Data Ac-
cess, Raster data, Visualisation

1. INTRODUCTION

Previous projects TELEIOS, LEO and Melodies funded by
FP7 ICT, and OBEOS funded by ESA have demonstrated the
use of linked data in Earth Observation (EO). The current
H2020 project Copernicus App Lab (http://www.app-lab.eu/)
goes one step further by making data from three Copernicus
services (Land, Marine and Atmosphere) available on the
Web as linked data to aid their utilization by mobile develop-
ers. In previous projects, it has been assumed that EO data are
transformed from their original formats (shapefiles, spatially-
enabled relational databases, GeoTIFF, NetCDF etc.) into
RDF, stored in geospatial RDF stores and queried using
geospatial extensions of SPARQL to develop interesting ap-
plications. In this paper, we present the system Ontop-spatial
which enables the creation of virtual RDF graphs over EO
data stored in their original formats using ontologies and
mappings. Ontop-spatial allows EO data centers to make
their data available as linked data that can be queried us-
ing the OGC standard GeoSPARQL [1], without first having
to translate this data into RDF. Ontop-spatial scales to big
geospatial data and it is more efficient than related geospa-
tial RDF stores. Ontop-spatial is available as open source at
https://ontop-spatial.di.uoa.gr.

This work has been funded by the EU project Copernicus App Lab
(730124).

Ontop-spatial adopts the Ontology-Based Data Access
(OBDA) paradigm pioneered by the Semantic Web com-
munity, and it is the first geospatial OBDA system. Ontop-
spatial is able to connect to geospatial databases and create
geospatial RDF graphs on top of them, using ontologies (that
are extensions of the GeoSPARQL ontology) and R2RML
mappings. Figure 1 shows graphically the classes of the
GeoSPARQL ontology.

Spatial Object

Feature Geometry

Fig. 1. Classes of the GeoSPARQL ontology

R2RML (https://www.w3.org/TR/r2rml/) is the standard
language for encoding how relational data is mapped into
RDF terms. This virtual approach avoids the need of materi-
alization and facilitates data integration, as it enables users to
pose the same GeoSPARQL queries they would pose over the
materialized RDF data. GeoSPARQL queries are translated
by Ontop-spatial on-the-fly into the respective SQL queries
with spatial operators, and are evaluated in the geospatial
DBMS. Currently, PostGIS, Spatialite and Oracle Spatial are
supported as back-ends. The first version of Ontop-spatial
dealing with vector data only has been presented in [2]. This
version has been used in three environmental applications in
the context of project MELODIES, and in a marine-security
application in the context of German national project EMSec.

The contribution of our approach with respect to the Big
Data from space dimensions are the following. Volume:
Ontop-spatial outperforms the state-of-the-art in geospatial
RDF stores and is able to process tens of Gigabytes of data
containing complicated geometries. Velocity: When data
gets frequently updated, using traditional triple stores is in-
efficient, as batches of data need to be converted and mate-
rialized as RDF triples each time they arrive. Our approach
eliminates as much as possible the need for materializing data
and it is suitable for data sources that get frequently updated



(e.g., streams). Variety: With raster and OPenDAP support
in place, Ontop-spatial becomes the first GeoSPARQL query
engine that is able to process such a wide variety of geospatial
formats, enabling geospatial data integration using ontologies
and mappings. Value: Exposing geospatial data as virtual
RDF triples that can be accessed in the Web though standard
(Geo)SPARQL endpoints enables the interlinking of EO data
with other data (e.g., open data) increasing their value, as data
from multiple geospatial sources can be combined and rich
queries can be expressed over them.

Since vector and raster data is made available as linked
geospatial data, we can visualise them using the tool Sextant
[3]. Sextant is a web tool for browsing and visualising linked
geospatial and temporal data and is able to connect to differ-
ent (Geo)SPARQL endpoints and project geospatial results on
amap. Each layer of the map can be created either by retriev-
ing results available on the web via (Geo)SPARQL endpoints
or by uploading geospatial files (e.g., KML, GEOTIFF, etc.)
directly. Sextant combines the functionality offered by tra-
ditional GIS with the ability to combine data that is stored
locally and data that is already available on the web, to create
maps as web resources enabling collaborative on-line editing.

2. ONTOLOGY-BASED DATA ACCESS ON TOP OF
VECTOR AND RASTER DATA

The work described in [2] documented in detail how Ontop-
spatial can be used to create virtual geospatial RDF graphs on
top of geospatial DBMSs. Although there are many geospa-
tial RDF stores implementing -usually part of- GeoSPARQL,
there was no OBDA system with GeoSPARQL support un-
til the creation of Ontop-spatial. Following to this work,
we have now extended Ontop-spatial with the ability to
query raster data as well. Querying raster data sources us-
ing declarative query languages can also be done using ar-
ray DBMSs such as Rasdaman, MonetDB and SciDB. As
GeoSPARQL does not include support for raster data, in our
approach we do not deviate from the standard but instead: 1)
we overload existing vector GeoSPARQL operators such as
geof:sfintersects to be used with raster data as well,
and ii) in the mappings, we use the raster functions supported
by the underlying DBMS (e.g., PostGIS with the raster sup-
port).

More recently, work on the SciSPARQL query language
showed how to query grid coverages using a hybrid data store
composed of Rasdaman and a main-memory RDF store [4].
We deviate from this approach by proposing the encapsulation
of raster data functions in the mappings instead of extending
(Geo)SPARQL with array functionalities, so that not every
raster cell needs to be represented in RDF.

The problem of representing and querying raster
data as linked data has also been discussed in the re-
cent working note “Coverages in Linked Data” by the
OGC/W3C Spatial Data on the Web working group

(https://www.w3.0rg/2015/spatial/wiki/Coverages_in_Linked Data).

None of the geospatial extensions of the framework of
RDF and SPARQL, such as stRDF and stSPARQL and
GeoSPARQL have considered support for raster data. The
main challenge that lies behind this is twofold. First, a raster
file is associated with a geometry only as a whole. It is not
straightforward to associate separate raster cells to a geome-
try; they have to be vectorized first (i.e., translated into poly-
gons). Second, every raster cell is associated with one or
more values. In order to convert all information contained
in a raster file into RDF, then multiple triples should describe
a raster cell, producing a large amount of triples for a whole
raster file. However, not all of this information is needed. In
most of the use cases, only the information that derives from
araster file and satifies certain criteria (e.g., value constraints)
is all that is needed to be converted into RDF. This means that
the raster file needs to be processed and then the results of this
processing are useful as RDF, while any other information is
redundant. These challenges have discouraged the scientific
community from converting and materializing raster data to
RDF. The following example describes how raster data can
be mapped into virtual RDF data. For the convenience of the
reader, we present the mappings using the OBDA native lan-
guage of Ontop instead of R2ZRML. as it is more compact and
readable, but RZRML is also supported in the system.

mappingld chicago2

target geo:{geom} rdf:type f:rastCell;
geo:asWKT {geom} .

source select ST_DumpAsPolygons(rast)

as geom from chicago;

In the example described above, a GeoTIFF image has
been imported into a PostGIS database as relation chicago.
The mapping shows how raster data stored in column rast
are mapped to geometries in WKT format, after they are vec-
torized, using the PostGIS ST_DumpAsPolygons function.
This is a procedure that allows domain experts to use all ge-
ometries that they may have in a database uniformly, and exe-
cute spatial operations involving vector and raster geometries.
Domain experts usually perform this vectorization step as part
of pre-processing. In the mapping described above, we show
how this can be done on-the-fly, using Ontop-spatial.

In the project Copernicus App Lab, Ontop-spatial has also
been extended to support data sources made available via
OPenDAP services offered by our partner Dutch company
RAMANI. OPeNDAP is a framework for accessing scien-
tific data (https://www.opendap.org/) which is widely used by
Earth scientists, as it is popular in large organizations such as
NASA and NOAA. Earth science data can be consumed by
using a specific OPenDAP client. To make data provided by
OPeNDAP services available as linked data, the data should
be downloaded, materialized and then converted into RDF
using custom programs, as existing applications that convert
geospatial data into RDF do not offer support for OPeNDAP.



The approach that we describe in this paper enables the cre-
ation of virtual geospatial RDF graphs on top of data that is
accessible through OPeNDAP on-the-fly, without materializ-
ing the original data or the RDF data.

Ontop-spatial has been extended with an adapter that
enables it to retrieve data from an OPeNDAP server, cre-
ate a table view on-the-fly, populate it with this data
and create virtual semantic geospatial graphs over it.
To achieve this, Ontop-spatial utilizes the system MadIS
(https://github.com/madgik/madis) as a back-end. MadIS is
an extensible relational database system built on top of the
APSW SQLite wrapper. MadlIS is a framework that provides
a Python interface so that users can easily implement user-
defined functions (UDFs) as row, aggregate functions, or vir-
tual tables. We used MadlS in order to create a new UDF,
named Opendap, that is able to create and populate a virtual
table on-the-fly with data retrieved from an OPeNDAP server.
In this way, Ontop-spatial enables users to pose GeoSPARQL
queries on top of OPeNDAP data sources without materializ-

ing any triples or tables.
An example is provided below.

mappingld opendap_mapping

target lai:{id} rdf:type lai:Observation ;
lai:{id} lai:hasLai {LAI} "xsd:float;
lai:detectionTime {time} "xsd:dateTime;
geospargl :asWKT {wkt} "geo:wktLiteral .

source select id, LAI, time, wkt
from (ordered opendap
url:https://analytics.ramani.ujuizi.com/
%28https://ramani.ujuizi.com/
thredds/dodsC/Copernicus-Land-timeseries-
global-LAI1%29/readdods/ .LA1/)
where LAl > 0O

In this mapping, the source is a Leaf Area Index (LAI)
dataset with resolution of 100 meters is provided through an
OPeNDAP server. The dataset contains observations about
the LAI values of areas, as well as the time and location
for each observation. The MadIS operator Opendap re-
trieves this data and populates a virtual database table with
the schema (id,LAl,time,wkt). The column id was
not originally in the dataset but it is constructed from the loca-
tion and time when the observation is taken. The LAI column
stores the LAI values of an observation as Float values. The
attribute time represents the timestamp of an observation in
datetime format. In the original dataset temporal values
are represented as numeric values. The meaning of these val-
ues is described in the metadata. For example, it can be days
or months since a fixed timestamp. Unfortunately, this is not
a standard representation that we would have available if we
had imported the dataset into a geospatial database. Because
of the fact that the Opendap operator is implemented as an
SQL user-defined operator, it can be embedded into any SQL
query. So we refined the data that we want to be translated
into virtual RDF terms by adding an SQL filter to the query
to eliminate the negative or zero LAI values by filtering them
out at an intermediate level, so that i) we do not change the
values of the original dataset and ii) we provide only the cor-

rect values to the users so that they do not need to handle the
noise themselves (e.g., by using GeoSPARQL filters or cus-
tome code).

The target part of the mapping encodes how the re-
lational data can now be mapped into RDF terms. Every
row in the virtual table describes an instance of the class
lai:Observation. The values of the LAI column pop-
ulate the triples that describe the LAI values of the Observa-
tion, and the values of the columns time and wkt populate
the triples that describe the time and location of the observa-
tions accordingly.

Given the mappings provided above, we can pose the the
following GeoSPARQL query to retrieve the Leaf Area Index
values and the geometries of areas

select distinct ?s ?g ?lai where {
?s lai:hasLai ?lai
?s geo:asWKT ?g }

Notably, both translation steps are performed on-the-fly
and only after a GeoSPARQL query is posed to the system.
This approach goes considerably beyond the previous ver-
sion of Ontop-spatial that could only connect to an existing
database with materialized tables, as well as the default, non-
spatial version of Ontop and any other RDB2RDF system.
OBDA systems traditionally connect to an existing database
with materialized tables and access it before a query is fired
in order to collect metadata, etc. The exact schema of the
database tables is known beforehand. The approach that we
propose in this paper is schema-agnostic: Ontop-spatial does
not know the schema of the data as there is no database mate-
rialized. The virtual table is only created on-the-fly.

Ontop-spatial can be available as a GeoSPARQL end-
point, and thus can be used both by federation and interlink-
ing engines. For example, one can use the interlinking tool
Silk (http://silkframework.org/) to interlink Copernicus data
that is accessible as RDF graphs using Ontop-spatial with
linked data that is available using standard (Geo)SPARQL
endpoints.

We have evaluated Ontop-spatial by extending the bench-
mark Geographica with support for the evaluation of OBDA
systems. Geographica (http://geographica.di.uoa.gr) was ini-
tially designed to evaluate the performance of geospatial RDF
stores. We compared Ontop-spatial with the state-of-the-art
geospatial RDF store Strabon (http://strabon.di.uoa.gr) [5].
Strabon has also been developed by our group and has been
shown to be the most efficient geospatial RDF store available
today [6]. Our evaluation showed that Ontop-spatial generally
achieves significantly better performance than Strabon, often
by orders of magnitude, when a large number of geospatial
intermediate results are generated during the evaluation of a
query. For example, Ontop-spatial is able to execute spatial
selections and spatial joins against a 30 GB dataset that con-
tains complex geometries (i.e., from points to polygons con-






