
GeoSensor: Semantifying
Change and Event Detection over Big Data

Nikiforos Pittaras1,2, George Papadakis2, George Stamoulis2, Giorgos Argyriou2, Efi Karra
Taniskidou2, Emmanouil Thanos2, George Giannakopoulos1 and Manolis Koubarakis2

1NCSR Demokritos, Greece {pittarasnikif, ggianna}@iit.demokritos.gr,
2Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Greece

{npittaras, gpapadis, gstam, gioargyr, efikarra, ethanos, koubarak}@di.uoa.gr

ABSTRACT
GeoSensor is a novel, open-source system that enriches change
detection over satellite images with event detection over news
items and social media content. GeoSensor combines these two
orthogonal operations through state-of-the-art Semantic Web tech-
nologies. At its core lies the open-source, semantics-enabled Big
Data infrastructure developed by the EU H2020 BigDataEurope
project. This allows GeoSensor to offer an on-line functionality,
despite facing three major challenges of Big Data: Volume (a sin-
gle satellite image typically occupies a few GBs), Variety (its data
sources include two different types of satellite images and various
types of user-generated content) and Veracity, as the accuracy of
the end result is crucial for the usefulness of our system. We present
GeoSensor’s architecture in detail, highlighting the advantages of
using semantics for taking the most of the knowledge extracted
from news items and Earth Observation products. We also verify
GeoSensor’s efficiency through a preliminary experimental study.
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1 INTRODUCTION
In remote sensing, change detection is the process of comparing
two or more satellite images that depict the same area on the Earth
surface, but are taken at different points in time [25, 33]. Its goal is
to identify differences between the images in the form of areas with
changes in land cover or land use (e.g., an area that was an olive
grove in the past is now occupied by buildings). This is a crucial
task, as it provides useful information for many applications, e.g.,
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studying land cover evolution, monitoring natural disasters or sup-
port to crisis management. As an example, consider Figures 1(a) and
(b), which depict snapshots of Ukhiya, Chittagong, Bangladesh be-
fore and after the settlement of Rohingya refugees on October, 2017.
In situations like this, change detection allows for fast and accurate
estimation of natural or man-made changes on the Earth surface,
providing valuable support to decision-makers. In our example,
the outcomes of change detection appear in Figure 1(c). Modern
satellite technology makes this possible even for remote areas with
humanitarian or security issues that are difficult to reach.

Interest in change detection using satellite images has grown
recently, due to the availability of long time series of images by
flagship Earth observation programmes, such as the US Landsat
program1 and the EU Copernicus Programme2. The latter is cur-
rently the world’s largest Earth observation programme with al-
most 20 satellites, called Sentinels, expected to be in orbit by 2030.
The Copernicus Programme already consists of a set of complex
systems that collect data from satellites as well as in-situ sensors,
providing users with reliable and up-to-date information on a range
of environmental and security issues under a free, full and open
data policy. Information extracted from this data is also made freely
available to users through the Copernicus services3, which address
six thematic areas: land, marine, atmosphere, climate, emergency
and security. Techniques for change detection using time series of
satellite images are important in all of these areas [7].

To the best of our knowledge, though, there is no open-source
system that addresses the following three Vs of Big Satellite Data:

• Volume stems from the combined effect of the inherently qua-
dratic time complexity of change detection and the large size of
satellite images. In the worst case, all pixels of the one image have
to be compared with all pixels of the other image, yielding a rather
time-consuming procedure for a common pair of images - each
image typically occupies few GBs, containing millions of pixels of
low resolution (i.e., each pixel corresponds to tens of square meters
on the Earth surface). Apparently, change detection poses a quite
challenging computational task for commodity hardware.

• Veracity requires that decision makers are able to assess the
quality and correctness of the intelligence extracted from satellite
images, based on relevant news content. In practice, this means that
collateral information about news should provide reliable insights
into the detected changes, ideally on real-time.

• Variety emanates from the diverse types of images that are
produced by each satellite constellation. The two polar-orbiting
1https://landsat.usgs.gov
2http://www.copernicus.eu
3http://www.copernicus.eu/main/services
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Figure 1: Satellite images showing Ukhiya, Chittagong, Bangladesh (a) before, and (b) after the Rohingya refugee crisis on
October, 2017. (c) shows the main areas with changes in land cover or land use as identified by GeoSensor.

satellites of the Sentinel-1 constellation are equipped with C-band
Synthetic Aperture Radar (SAR) imaging systems, which enable
image acquisitions regardless of weather and light conditions (i.e.,
the sensor is able to acquire images in the presence of clouds and
during night time). In contrast, the two polar-orbiting satellites
of the Sentinel-2 mission provide High-Resolution Optical data,
acquired by a wide swath high-resolution multispectral sensor.
Their images have 12 spectral bands, covering the spectrum from
the visible domain to the short wavelength infrared domain. Being
an optical passive system, imaging is sensitive toweather conditions
and depends on external illumination. Variety further increases due
to the textual data that are necessary for addressing Veracity.

In this work, we present GeoSensor, a geospatial system that
applies change detection to Copernicus data in a way that addresses
these three Vs of Big Satellite Data. In essence,GeoSensor integrates
a remote sensing component with a social sensing one into a highly
scalable processing chain. Remote sensing applies change detection
techniques to SAR images from Sentinel-1, while using optical
Sentinel-2 images for the validation of the end result. Social sensing
applies event detection techniques to cluster together news items
and social media posts that pertain to the same real-world event
and are located in the area, where change detection took place. For
example, Figure 2(a) depicts a cluster of news items that elucidates
the changes appearing in Figure 1(c). The integration of these two
orthogonal components relies on Semantic Web technologies.

The rest of the paper is structured as follows: Section 2 briefly
discusses related work, while Section 3 delves into GeoSensor’s
architecture, highlighting the three workflows that lie at its core.
In Section 4, we present preliminary experiments over real-world
data the demonstrate the scalability of our system and in Section 5,
we conclude the paper along with directions for future work.

2 RELATEDWORK
Change Detection. Earth observation is the use of remote sensing
technologies to monitor land, marine and atmosphere. Satellite-
based Earth observation relies on the use of satellite-mounted pay-
loads to gather imaging data about Earth characteristics. We can
distinguish two kinds of remote sensing. (i) In passive remote sens-
ing, the satellite instruments monitor the energy received from the
Earth, due to the reflection and re-emission of the Sun’s energy by
the Earth’s surface or atmosphere. Optical or thermal sensors are
commonly-used passive sensors (e.g., Sentinel-2 images). (ii) In ac-
tive remote sensing, the satellite sends energy to Earth and monitors
the energy received back from the Earth’s surface or atmosphere,
enabling day and night monitoring during all weather conditions.
Commonly used active sensors are lasers and radar images, like the
SAR images provided by Sentinel-1.

Recent works on change detection use Deep Neural Networks
[19, 20] in a data-driven fashion, performing classification to detect
changes in pixels or areas in the images. Other works use hier-
archical object-based classification methods [10]. Such supervised
algorithms, though, lie out of our scope, due to the lack of publicly
available labeled datasets. Developing such datasets from scratch is
a rigorous process that requires heavy human involvement, even
in-situ inspection of identified changes.

Instead,GeoSensor considers unsupervised algorithms for change
detection. At the moment, it is equipped with the established ap-
proach implemented in ESA’s SNAP Toolbox4. Yet, its modular
architecture allows for seamlessly extending it with additional state-
of-the-art approaches, like the clustering technique in [12].

Event Detection. A review of text event detection is presented
in [37], with more recent surveys covering a large variety of detec-
tion methods that are crafted for social media [4, 31]. In [8], the
authors utilize a semantically-enabled convolutional neural net-
work (CNN) to categorize social media posts, reporting that their
model outperforms TF-IDF and Word2Vec pre-trained embeddings.

4http://step.esa.int/main/toolboxes/snap
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Figure 2: (a) A set of news items referring to the Ro-
hingya refugee crises, (b) the corresponding event created
byGeoSensor, and (c) the menu providing access to the indi-
vidual news items of the event.

Other works incorporate CNNs for the joint detection of events and
topics [8, 11, 28]. Yet, these methods rely on supervised learning,
requiring a labeled dataset, unlike our unsupervised approach.

On another line of research, several works use unsupervised,
semantically-aware clustering for event detection. For example,
a semantically rich multiple-vector representation is used in [26,
27], while [30] uses a co-occurrence-based semantic expansion of
words to produce event groups. These works report superior perfor-
mance over non-semantic baselines. In [34], the authors employ a
classification-based cleaning phase that is followed by content- and
temporal-based clustering. [1] performs a clustering on keyword-
based features over tweets, while the structure of the underlying
social network lies at the core of the approaches presented in [2, 21].
However, all these works mainly rely on vector space features that
capture frequency-related statistics, ignoring the positional infor-
mation of tokens in the source text (i.e., bag of n-grams). In contrast,
our approach relies on graphs of n-grams, which effectively capture
token context both in long, curated documents like news articles
and in short, noisy texts like tweets [3, 18, 32].

3 APPROACH
We now present GeoSensor, explaining how it addresses the above
three Vs of Big Satellite Data.

To tackle Variety, GeoSensor relies heavily on state-of-the-art
Semantic Web technologies, which provide time efficient, unified
access to the outcomes of the remote and the social sensing com-
ponents. In this way, it is capable of seamlessly processing a rich
diversity of data sources, which range from the graphic information
in SAR and optical satellite images to the textual information of
news articles and social media posts.

To address Volume, GeoSensor exploits the distributed process-
ing of a cluster based on the BDI platform [5], the open-source,
semantics-enabled Big Data infrastructure that was developed in
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Figure 3: The system architecture of GeoSensor.

the context of the EU BigDataEurope5 project. The BDI platform
combines the massive parallelization capabilities offered by Apache
Spark6 with an inherent support for Semantic Web technologies.

To tackle Veracity, GeoSensor uses Sentinel-2 images in com-
bination with the knowledge extracted from the social sensing
component for the verification of changes detected from Sentinel-1
images. For better verification, GeoSensor is also able to fetch the
latest raw data from social media through the live Twitter keyword
search that is offered by its GUI.

Figure 3 depicts GeoSensor’s architecture. It consists of 11 com-
ponents that are organized into 3workflows, one for each horizontal
layer: the change detection layer is formed by the components at
the bottom (i.e., Image Aggregator, HDFS and Change Detector),
while the event detection layer is implemented by the components
at the top (i.e., News Crawler, Apache Cassandra, Event Detector,
Lookup Service and Entity Extractor). The rest of the components
comprise the semantic layer, which acts as GeoSensor’s backbone.
Next, we describe the functionality of each layer in detail.

3.1 Change Detection Layer
This layer implements the gist of GeoSensor, retrieving and com-
paring pairs of satellite images in order to detect changes in land
cover or land use. It consists of three components.

The first one is the Image Aggregator, a RESTful web service
that downloads from ESA’s Copernicus Open Access Hub7 the
pairs of Sentinel-1 and Sentinel-2 images with the largest overlap
with the user-defined area of interest. In our example, the Image
Aggregator is responsible for downloading the images in Figure 1(a)
and (b), after the user specifies Ukhiya, Chittagong, Bangladesh as
the area of interest. This process requires also the user to define
temporal acquisition criteria, in the form of the images’ sensing
dates, i.e., the time of interest together with a reference date in the
past, before the change for took place. In our example, the time of

5https://www.big-data-europe.eu
6https://spark.apache.org
7https://scihub.copernicus.eu/
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interest - for Figure 1(b) - is October 26, 2017, while the reference
date - for Figure 1(a) - is anything before June, 2017.

The downloaded Sentinel images are then stored to the Hadoop
Distributed File System (HDFS). This is necessary for distributing
parts of the images to all nodes in the cluster at hand in order to
make them available to the parallel image processing code in a
scalable and fault-tolerant way.

Finally, the Change Detector applies the workflow depicted in
Figure 4, which implements in parallel the state-of-the-art unsu-
pervised approach offered by ESA’s SNAP Toolbox. Its goal is to
compare the downloaded images in order to identify the changes
in land cover or land use. This workflow consists of three stages:
(i) Pre-processing uses co-registration [36] to ensure that the se-
lected images have identical dimensions and correspond to the
same geolocation. (ii) Main processing compares the individual
pixels in the images to assess their difference. (iii) Post-processing
clusters together the pixels with high likelihood of changes, form-
ing broader areas with changes in a way that reduces false alarms,
i.e., it excludes outliers caused by noise, which is either inherent in
the satellite images or introduced by inaccuracies of previous steps.

In more detail, we call master image the one corresponding to
the earliest date - Figure 1(a) in our example - and slave image
the one corresponding to latest date - Figure 1(b). Typically, their
dimensions and characteristics are quite different, because they
were taken under different settings, such as the angle of the satel-
lite. Therefore, pre-processing (co-registration) is indispensable for
aligning the two images in such a way that each pair of correspond-
ing pixels represents the same point on the Earth surface.

Given that individual satellite images typically cover a very large
area on Earth, the subset operator crops the original satellite im-
ages to the borders of the user-defined area of interest. This oper-
ation curtails the running time to a significant extent, restricting
the computational cost to the absolutely essential parts of satellite
images. Its complexity is very low, requiring no parallelization.

The cropped images are given as input to the collocate op-
erator, which resamples the pixels of the slave image into the
geographical raster of the master. This operator requires accurate
geopositioning information for both images in the form of ground
control points (GCPs), i.e., markers for certain geographical po-
sitions within a geo-referenced image that are described by their
geo-coordinates and by textual descriptions in the image meta-data.

Next, the GCP selection operator generates a set of uniformly
spaced GCPs in the master image and computes their corresponding
GCPs in the slave image. This is done through an iterative process:
for each master GCP, the corresponding slave GCP is approximated
based on their geo-coordinates. Using a predetermined window
size, the areas surrounding each GCP are cross-correlated in order
to adjust the slave GCP to a more accurate position. This procedure

is repeated until the new slave GCP is located within acceptable
limits, or a maximum number of iterations is carried out.

Based on the selected GCPs, the warp operator computes the
warp function, which will be used for mapping the pixels of the slave
image into the co-registered image. This is a linear function that is
estimated by repeating the following process until convergence: a
warp function is initially computed using the available master-slave
GCP pairs. The resulting function is used to map the master GCPs
to the slave image. Then, the residuals between the mapped master
and the corresponding slave GCPs are computed along with the root
mean square (RMS) and the standard deviation of all residuals. Next,
the master-slave GCP pairs are filtered to eliminate those exceeding
the mean RMS. Upon completion of this process, the remaining
master-slave GCP pairs are filtered with a predetermined RMS
threshold and the warp function is derived from the retained pairs.

Finally, the co-registered image is generated using the resulting
warp function in combination with bilinear interpolation. This
means that every point of the original slave image is projected
to a point in the master image as the weighted sum of the warp
projection of its four surrounding pixels.

Using the master and the co-registered image as input, the
change detection algorithm computes the ratio of the correspond-
ing pixels in the two images. The pixels exhibiting very large or
very low ratios indicate candidate areas with changes.

Lastly, DBScan [13] is applied for post-processing the set of
candidate areas with changes. DBScan groups together those pixels
that are closely packed together (i.e., pixels with many nearby
change indicators), while treating as outliers those pixels that lie
alone in low-density regions, with their nearest neighbors located
far away. The end result is a set of areas with changes in land cover
or land use. In our example, DBScan produces the image in Figure
1(c), yielding the 7 yellow clusters that correspond to such areas.

Due to the high time complexity of all processes (except the
Subset operator), they are massively parallelized in Apache Spark.
Due to space limitations, we omit the parallelization details.

3.2 Event Detection Layer
To address Veracity, this layer attaches a set of recent events to every
area with identified changes in land cover or land use, providing
users with a possible explanation and verification of the detected
changes. This functionality is offered by the five components at the
top layer of GeoSensor’s architecture in Figure 3.

The first component is the News Crawler, which scans at half-
hour intervals specific social media sources and news agencies
for the latest news items (posts and news articles, respectively).
For the time being, these sources include most of the RSS feeds
that are freely provided by Reuters in English8 as well as several
selected public accounts in Twitter9, also in English. The crawler
structure, though, is extensible, facilitating the integration of more
information sources, or even the extension with other operation
modes. For example, it has been used as a basic data collection
infrastructure in a summarization application [16] and in the EU

8https://www.reuters.com/tools/rss
9https://twitter.com
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project “NOMAD”10. In our running example, the News Crawler is
responsible for gathering the news items in Figure 2(a).

All data gathered by the News Crawler are stored in the second
component, namely Apache Cassandra11. We opted for this par-
ticular data management system, due to its capacity to store a large
volume of information, while offering linear scalability and fault-
tolerance (i.e., it provides high availability with no single point of
failure). In fact, Cassandra is crafted for large-scale infrastructures
like the BDI platform, offering robust support for clusters with
multiple commodity servers. Besides, it is an open-source NoSQL
database that is compatible with the SemaGrow component, which
is used by the semantic layer for federated access to the details of
individual news items or entire events (cf. Section 3.3).

The news items stored in Cassandra are periodically processed
by the Event Detector module at half-hour intervals. They are
grouped into real-world events by a modified version of NewSum12

[16], a summarization algorithm providing commercial-grade per-
formance. NewSum uses n-gram graphs [15] to model its textual
input, a representation that has been shown to be effective in noisy
settings in multiple genres (i.e., blogs, articles, microblogging and
social media) [18, 32]. In addition, NewSum is robust to multi-
lingual data, ranking among the top performers in multilingual,
multi-document summarization tasks [17].

In more detail, Event Detector first builds a coarse-grained set of
events. Pairs of news articles are compared with each other using
their n-gram graphs representation and the corresponding graph-
based textual similarity measures [15]. Appropriate thresholding
is then applied to retain only the pairs with high similarity. Those
pairs are then grouped into larger sets (pools) of news articles
based on a transitivity analysis that forms clusters from connected
components in the similarity graph. The pools of news articles with
a very low support are discarded, whereas the remaining pools are
considered as “real-world events”. Due to its high time complexity,
this process is parallelized in Apache Spark, as shown in Figure
5. The same procedure is applied independently to Twitter data,
yielding a set of tweet pools. Each tweet pool is then compared with
every pool of news articles. If their similarity exceeds a predefined
threshold, the tweet pool is added to the pool of news articles. Then,
every pool of news articles goes through a summarization process
that builds its event description (e.g., title selection) and enriches
it with relevant metadata, i.e., spatiotemporal information, named
entities as well as image elements from its member documents.
These metadata are extracted from its content directly, or with the
help of RESTful-based tools and services, internal (Lookup Service
and Entity Extractor) and external ones (PoolParty13 and Flickr14).

Inmore detail, theLookup Service associates the location names
from news items with their actual geo-coordinates so that they
can be joined with areas with detected changes in land cover or
land use. The location names are identified and extracted from
the text data in each news item using Apache openNLP15. In the
example of Figure 2(a), the location of Kutupalong refugee camp

10http://www.nomad-project.eu
11http://cassandra.apache.org
12https://github.com/scify
13https://www.poolparty.biz
14https://www.flickr.com
15https://opennlp.apache.org/

Figure 5: The Spark-based implementation of Event Detector.

(Ukhiya, Chittagong, Bangladesh) will be converted into the follow-
ing geo-coordinates: POLYGON ((92.0455551147462 21.3476104736329, 92.2031173706055

21.3476104736329, 92.2031173706055 21.1280899047852, 92.0455551147462 21.1280899047852,

92.0455551147462 21.3476104736329)) – note that the output is in the form of
the OGC16 standard Well Known Text (WKT).

This conversion may seem a trivial task, given that there is lit-
tle ambiguity in our example. In reality, though, location names
typically suffer from high levels of noise. There are homonymous
locations (e.g., London, UK and London, Ontario, Canada) as well
as spelling mistakes (e.g., Landon), due to errors in the extraction
process. To address both challenges, the Lookup Service poses ev-
ery place name as a keyword query to an Apache Lucene17 index
that contains about 180,000 location names of administrative areas
worldwide (GADM dataset18). Lucene’s fuzzy query functionality
deals with spelling mistakes, while homonymy is addressed by
ranking the candidates in decreasing order of the ratio "string simi-
larity/area". The WKT polygon coordinates corresponding to the
top ranked location are finally returned as output.

Valuable metadata are also provided by the Entity Extractor,
which enriches the event description with named entities that are
extracted from their textual content, thus empowering a Semantic
Web view of the produced information. This view allows for im-
proved indexing and disambiguation of the main players in an event,
based on the URIs mapped to each extracted entity. At the core of
this functionality lies the PoolParty Semantic Suite, which con-
stitutes a state-of-the-art thesaurus management tool that is based
on Linked Data [35]. Specifically, a “Famous People” thesaurus was
constructed, containing almost half a million entities of well-known
actual and fictitious personalities, each grounded to a URI. Two
RESTful APIs were implemented and hosted by PoolParty. Given
an input text or a news item url, the first endpoint, called Extractor
API, provides a list with entities deemed relevant to the supplied
content. The entity URIs are stored in Cassandra, along with their
corresponding thesaurus id. The second endpoint, called Metadata
API, retrieves descriptive metadata related to the entity, whose URI
is given as input. These procedures are illustrated in Figure 6.

The Entity Extractor also associates every detected event with
publicly available images from Flickr. Using the Flickr search API,

16The Open Geospatial Consortium - http://www.opengeospatial.org
17https://lucene.apache.org
18http://www.gadm.org
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Figure 6: Entity extraction example, illustrating the Extrac-
tor and Metadata API.

it retrieves photographs geo-tagged within the geolocation(s) of
each event that have been uploaded at a close enough date.

Finally, all event descriptions, including their metadata, are
stored into Cassandra in the appropriate tables that distinguish
them from individual news items. Duplicate events are discarded
and Strabon is notified for the new entries (see below for details).

3.3 Semantic Layer
This layer constitutes GeoSensor’s backbone, bringing the gap be-
tween the two orthogonal operations of change and event detection.
This is achieved by the four components in the middle of Figure 3,
which encapsulate state-of-the-art Semantic Web technologies.

The first component is Geotriples [24], a tool for transforming
geospatial data from their original formats into RDF. In our case,
it converts into RDF the descriptions of areas with changes in
land cover or land use (from change detection) as well as the event
summaries (from event detection).We selectedGeoTriples, as it is an
established system that supports a wide variety of data formats [23].

The output of Geotriples is stored into Strabon [22], a state-
of-the-art open-source spatio-temporal triplestore that efficiently
executes GeoSPARQL and stSPARQL queries. Strabon supports
spatial datatypes, enabling the serialization of geometric objects
in the OGC standards WKT and Geography Markup Language
(GML). It has been implemented by extending the established RDF
store Sesame (now called RDF4J19), using the spatially-enabled
database PostGIS20 as back-end so as to exploit its large variety
of spatial functions and operators. Thorough experiments have
demonstrated that Strabon is the most efficient spatio-temporal
RDF store available today [6, 14].

The third component of this layer is SemaGrow [9], a query
processing system that provides a single SPARQL endpoint for
federating multiple remote SPARQL endpoints. It is also capable
of transparently optimizing queries and dynamically integrating
heterogeneous data models by applying the appropriate vocabulary
transformations. To boost federated query execution, it employs
vocabulary mapping techniques and a balanced query optimizer,
considering instance statistics from the federated bases, where
available. SemaGrow is highly efficient, consistently outperforming
the state-of-the-art in federated query processing [9]. In our case,
SemaGrow federates Cassandra and Strabon, offering a unified
SPARQL endpoint for both of them to GeoSensor’s user interface.
In this way, GeoSensor gains in query performance (with respect
19http://rdf4j.org
20https://postgis.net

(a) (b) 

Figure 7: User criteria for triggering (a) Change Detection,
and (b) Event Detection.

to other systems, e.g., FedX and SPLENDID) and has increased
extensibility – in case new sources need to be added in the future.

GeoSensor’s interface is offered by Sextant [29], a web-based
application for exploring, interacting and visualizing time-evolving
linked geospatial data. Sextant is also capable of creating, sharing,
searching and collaboratively editing maps and of producing statis-
tical charts out of statistically enhanced data sets. Even though it
relies heavily on Semantic Web technologies, it offers an intuitive
interface that allows both domain experts and lay users to exploit
all available features. Being the entry point for GeoSensor, Sextant
has been widely extended to cover all its requirements. Three are
the new functionalities it offers:

(i) Core functionality. Sextant provides an intuitive interface for
initiating the event and the change detection processes of GeoSen-
sor. The window for launching change detection appears in Figure
7(a). The user selects an area of interest either by typing its name
(with the help of auto-complete), or by highlighting it on the Earth
Map. The credentials for Copernicus Open Access Hub are also
required along with the reference and the target date. For event
detection, Figure 7(b) depicts the window that prompts users to
define three optional search criteria: an area of interest, a time
window defined by two dates, or a keyword that pertains to events
of interest. The last criterion can be a combination of location or
entity names, or any other words that are likely to appear in an
event title. Users can also search for events by setting as the area
of interest one that appears in the results of change detection.

(ii) Authorization/authentication. To support history over each
user’s actions, Sextant implements a sign-up and login functionality.
At its core, lies a database located in GeoSensor’s server that holds
all account information along with the encrypted passwords. To
ensure security over the network, Sextant can be deployed using the
HTTPS protocol. When GeoSensor first loads, the user is prompted
to create a new account, or to log-in using an existing one. Three
types of users that are supported: (a) The administrators have full
access to all the supported functionality, including the history panel,
and are responsible for accepting or declining sign-up requests
by new users. (b) The classified users are the main users of the
application and have full access to all the supported functionality,
including the history panel. (c) The unclassified users are potential
trial or occasional users that have limits in using the supported

http://rdf4j.org
https://postgis.net
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Figure 8: Execution times for parallelization approaches of
the change detection workflow.

functionality: they lack a history panel, they cannot search for
events using keywords, and their event detection searches return
up to 5 events. They are also deprived of the "SMART" buttons that
alternate change and event detection.

(iii) Live Twitter keyword search. To further clarify the map visual-
ization with the latest raw information, overcoming the processing
delay of the event detection layer, Sextant offers an emdeded Twit-
ter keyword search function that supports all Twitter API filters,
such as "#" or "@". Using up to five keywords in the search field,
Sextant returns the relevant tweets in chronological order, with
the most recent one appearing first. There is also a refresh button
that fetches the latest results, if they are available. The results are
presented using an infinite scroll technique that allows for quickly
loading the tweets in the interface.

4 EXPERIMENTS
We now present a preliminary experimental evaluation of GeoSen-
sor’s main functionalities, namely the change and the event detec-
tion workflows. Note that our evaluation focuses on time efficiency,
aiming to assess the response time of each workflow. In other words,
effectiveness lies out of the scope of this evaluation, as GeoSensor
employs unsupervised state-of-the-art methods for each operation.

4.1 Change detection
For change detection, we evaluate the time efficiency of two differ-
ent approaches: (i) the Change Detector, which uses Apache Spark
to parallelize the process depicted in Figure 4. (ii) the baseline ap-
proach, which corresponds to the multi-threaded implementation
of the same workflow, as provided by ESA’s SNAP Toolbox.

Data. As test data, we use two pairs of Sentinel-1A images. One
comprising two images of Los Angeles, with file sizes of 508MB
and 504MB, and one consisting two images of Saudi Arabia, with
file sizes of 524MB and 526MB.

Experimental Setup. All experiments were performed on a
server with Ubuntu 12.04, 132GB RAM and 4 AMD Opteron 6320
processors, each having 4 physical cores and 8 logical cores at
2.80GHz. For the Spark implementation, we created 4 virtual ma-
chines (VMs), each one comprising two cores and 20GB RAM. For
each pair of images, we used 2 and 4 VMs. In each case, one VM
was the master and the rest were used as slaves. The multi-threaded
implementation of SNAP was run using 2 cores on the same server.

Figure 9: Execution times for parallelization approaches of
the event detection workflow.

For each method and configuration, we took 3 measurements of
the execution time and report the average in Figure 8.

Time Efficiency & Scalability. As shown in Figure 8, the 2-
VMs Spark implementation is three times faster that the multi-
threaded one. This shows that the communication overhead of
Spark is negligible in comparison to the processing time and does
not affect the execution times. Furthermore, as we add more slave
nodes to the Spark implementation, the execution times decrease
consistently. We are working, though, on further improving this
performance so as to achieve a linear speedup.

4.2 Event Detection
For event detection, we perform an empirical evaluation of the
runtime performance of two approaches: (i) the Event Detector,
which implements the Spark-based distributed similarity mapping
pipeline illustrated in Figure 5, and (ii) the baseline approach, which
parallelizes the same pipeline using the Java multi-threading library.

Data. We use the Reuters 21K news articles dataset21. Prepro-
cessing discards everything but the clean text, title and publication
date information, storing all data in Cassandra.

Experimental Setup. We run a set of experiments for two dif-
ferent input sizes, namely for input batches of 4, 000 and 8, 000
articles to be clustered into events. These sizes correspond to ap-
proximately 16 and 64 million unique article pairs. For each batch
size, we apply the baseline approach using 2 threads, while for the
Event Detector we vary the number of Spark partitions p ∈ {2, 4}.
For each configuration, we perform 5 experiments and compute the
mean average execution time. We run all experiments on a single,
8-core 2.6 GHz Ubuntu 14.04 virtual machine with 32 GB of memory.
For data storage, we use a Cassandra 2.2.4 docker container.

Time Efficiency & Scalability. Figure 9 depicts the execution
time results per configuration. For the Event Detector, we observe
that the runtime drops significantly as we increase the number of
Spark partitions, i.e., the number of jobs run in parallel. Yet, the
baseline approach is significantly slower only for the largest batch
size. The reason is that for a small number of small texts, as in
Reuters 21K, Spark’s parallelization overhead is higher than the
speedup it achieves. We are working on improving Event Detector’s
implementation so that its performance is competitive even for
small workloads.
21http://www.daviddlewis.com/resources/testcollections/reuters21578/
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5 CONCLUSIONS
We presented GeoSensor, the first open-source system that applies
Semantic Web technologies to a combination of remote and social
sensing. The RDF data model plays a crucial role, as it offers two ma-
jor advantages compared to traditional, semantic-free approaches.
First, it allows for effectively dealing with Variety, seamlessly com-
bining all data sources to produce meaningful analysis. It also facil-
itates the use of ontologies together with reasoning techniques so
as to derive new facts that are not explicitly expressed in the avail-
able data. The second advantage comes from the power of linked
open data and semantics. Transforming GeoSensor’s data into RDF
allows for effortlessly interlinking it with other data sources and
for discovering hidden links between entities that assist in the data
analysis. This linking process provides richer data and allows us
to build fully automated workflows using machine learning algo-
rithms, based on the power of semantics.

Moreover, GeoSensor can be easily deployed in any cluster. All
its components are provided as Docker images that are publicly avail-
able through the BDE repository22. As a result, the whole system can
be launched through a single docker-compose file, running the in-
dividual components as Docker containers within Docker Swarm23.
GeoSensor also offers an intuitive user interface that is suitable for
both expert and lay users, despite the rich information it processes.
In fact, GeoSensor provides a hands-off functionality in the sense
that all its operations are fully automatic, requiring no specialized
input or domain knowledge from its users. GeoSensor thus makes
a big step forward in the exploration and visualization of big data
in the context of remote sensing. Our preliminary experimental
study also demonstrated the high time efficiency of our system.

In the future, we plan to testGeoSensor in a rigorous, operational
scenario, where decision makers require fast and easy-to-use tools
to support their decision.
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