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Abstract

Redundant processing is a key problem in the translation of initial queries posed over an ontology into
SQL queries, through mappings, as it is performed by ontology-based data access systems. Examples of
such processing are duplicate answers obtained during query evaluation, which must finally be discarded,
or common expressions evaluated multiple times from different parts of the same complex query. Many
optimizations that aim to minimize this problem have been proposed and implemented, mostly based on
semantic query optimization techniques, by exploiting ontological axioms and constraints defined in the
database schema. However, data operations that introduce redundant processing are still generated in many
practical settings, and this is a factor that impacts query execution. In this work we propose a cost-based
method for query translation, which starts from an initial result and uses information about redundant
processing in order to come up with an equivalent, more efficient translation. The method operates in a
number of steps, by relying on certain heuristics indicating that we obtain a more efficient query in each
step. Through experimental evaluation using the Ontop system for ontology-based data access, we exhibit
the benefits of our method.
Keywords: Query Translation, Data Integration, Ontology-Based Data Access, Ontop

1. Introduction and Outline

Ontology Based Data Access (OBDA) is a
database technique in which an ontology is linked to
underlying data sources through mappings. An end
user can pose queries over the ontology, which we
assume to represent a familiar vocabulary and con-
ceptualization of the user domain. The OBDA sys-
tem automatically translates the query and sends it
for execution to the underlying data sources. This
approach provides the end user with a convenient
abstraction over possibly complex schemas and de-
tails about the data storage and query processing.
The query translation involves query rewriting and
query unfolding. During query rewriting, an ini-
tial query over an ontology is rewritten in order
to take into consideration the ontological axioms.
The result of this process is a query that when
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posed over property and class assertions only (that
is, by disregarding all the ontological axioms), will
return the same answers as the initial query posed
over the ontology. This is done using the notion
of certain answers, that is, answers present in ev-
ery model of the ontology. During query unfold-
ing the rewritten query is transformed into another
query expressed in the query language of the un-
derlying data sources. In what follows we consider
an OBDA setting, where an OWL 2 QL ontology
is linked through mappings to data stored in a re-
lational database management system (RDBMS).
This method provides the user with access to a
virtual RDF graph. The original query is a con-
junctive query expressed over the vocabulary of the
virtual RDF graph, and the result of rewriting and
unfolding is a SQL query.

Example 1. As an example of OBDA setting con-
sider a relational schema that contains the rela-
tional tables A1, A2, A3,C1 and C2 and the mappings
from Figure 1. In these mappings P1,Q1,R1, P2, P3
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and Q3 are properties defined in the ontology,
whereas f , g, h and k are functions that construct
ontology objects from database values. These func-
tions are responsible for constructing an object that
acts as an ontology individual out of values occur-
ring in the database. In our setting, they con-
struct an RDF term. A query posed over the
ontology can be the following: ans(x, y,w, z) ←
P1(x, y), P2(x,w), P3(y, z).

The notion of OBDA as we describe it, was pre-
sented in [21]. There, the result of query rewriting
of an initial conjunctive query (CQ) over the ontol-
ogy is a union of conjunctive queries (UCQ) over
the vocabulary of the ontology. Then, the authors
define a faithful representation of this UCQ, along
with the mappings and database instance in terms
of a logic program. Query unfolding is based on par-
tial evaluation of such logic programs, and as final
result it produces a query which can be viewed as
an SQL query. More details about this process are
given in Section 3. Subsequent research was focused
on more efficient rewritings in the form of UCQs
over the ontology [14, 6, 20]. The main aim of
these approaches was to produce a UCQ with as few
subqueries as possible, as it was observed that the
number of union subqueries in the result of query
rewriting could be very large. A different approach
was followed in [3], where a cost-based comparison
of different reformulations is carried out, consider-
ing that no mappings are used and the ABox is di-
rectly stored in the external database. In general,
the final query in this case will be an SQL query
that contains joins over UCQs (JUCQs). An exten-
sion of this work for arbitrary relational schemas, so
that it also takes into consideration the unfolding
step with arbitrary mappings, is presented in [16].
Regarding the implementation of OBDA sys-

tems, it has been observed that in practice it is more
efficient to compile ontological knowledge regarding
class and property hierarchies into the mappings,
and ignore such axioms during query rewriting. For
this reason, Ultrawrap-OBDA[26] uses the notion of
saturated mappings and Ontop[4] uses the so called
T -Mappings [22]. For example, consider the setting
of Example 1 and an ontology that contains the fol-
lowing axioms: Q1 ⊑ P1,R1 ⊑ P1 and Q3 ⊑ P3. We
can ignore the axiom Q1 ⊑ P1 during rewriting if we
add to the original mappings the mapping m1′ from
Figure 2, and similar for the other two axioms.
In [22] three main reasons are specified for the

presence of a large number of union subqueries

in the result of query translation: i) ontological
queries with existentially quantified variables that
can lead to rewritings of exponential size, ii) large
ontological hierarchies and iii) multiple mappings
for each ontology term. Also, the authors notice
that the first reason is rarely observed in real-world
ontologies and queries. As a result, when compil-
ing ontological information about hierarchies into
the mappings, as for example in the Ontop T -
mappings, the last two important reasons that lead
to a large number of subqueries are encountered
during query unfolding. As an example, consider
the query from Example 1 posed over the previously
specified OBDA setting and T -mappings. The un-
folding method from [21] will produce a UCQ over
the database that contains six union subqueries as
shown in Figure 3. Each subquery corresponds to
a different combination of the three mappings de-
fined for P1 with the two mappings defined for P3.
One can easily see that in case of queries with many
atoms posed over large hierarchies, the final UCQ
can contain hundreds or thousands of subqueries.
On the other hand, a different unfolding method
could choose to first compute as intermediate re-
sults the queries that correspond exactly to the first
and third atoms of the initial query. In the spe-
cific example, the first temporary result would be a
union query over tables A1, A2 and A3 and the sec-
ond temporary result would be a union query over
tables C1 and C2. The final result would be a join of
UCQs. Finally, one could choose an intermediate
strategy, that would compute only one of these two
intermediate results. Clearly, a cost-based decision
should be made by the OBDA system regarding
which exactly of these intermediate results should
be computed, and if the overhead from computing
and saving these results is counterbalanced from the
gain in the final query.

Unfortunately, uncertainty about query execu-
tion costs is an inherent problem in data inte-
gration, where the mediator system (in our case
the OBDA system) operates outside the database
engine[11], as knowing all the factors that affect
query execution is difficult or even impossible. For
example, these factors include the exact execution
plan that will be chosen by the RDBMS, includ-
ing the access methods for each base relation and
the join order in a join query, hardware character-
istics like the amount of available memory and disk
throughput, the disk block size, the exact details of
the database physical design, like the existing in-
dexes and the kind of each index and several other
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m1 : A1(vm1
1 , vm1

2 )→ P1( f (vm1
1 ), g(vm1

2 ))

m2 : A2(vm2
1 , vm2

2 )→ Q1( f (vm2
1 ), g(vm2

2 ))

m3 : A3(vm3
1 , vm3

2 , vm3
3 )→ R1( f (vm3

1 ), g(vm3
2 ))

m4 : A3(vm4
1 , vm4

2 , vm4
3 )→ P2( f (vm4

1 ), h(vm4
3 ))

m5 : C1(vm5
1 , vm5

2 )→ P3(g(vm5
1 ), k(vm5

2 ))

m6 : C2(vm6
1 , vm6

2 )→ Q3(g(vm6
1 ), k(vm6

2 ))

Figure 1: Example Mappings

m1 : A1(vm1
1 , vm1

2 )→ P1( f (vm1
1 ), g(vm1

2 ))

m1′ : A2(vm1′
1 , vm1′

2 )→ P1( f (vm1′
1 ), g(vm1′

2 ))

m1′′ : A3(vm1′′
1 , vm1′′

2 , vm1′′
3 )→ P1( f (vm1′′

1 ), g(vm1′′
2 ))

m2 : A2(vm2
1 , vm2

2 )→ Q1( f (vm2
1 ), g(vm2

2 ))

m3 : A3(vm3
1 , vm3

2 , vm3
3 )→ R1( f (vm3

1 ), g(vm3
2 ))

m4 : A3(vm4
1 , vm4

2 , vm4
3 )→ P2( f (vm4

1 ), h(vm4
3 ))

m5 : C1(vm5
1 , vm5

2 )→ P3(g(vm5
1 ), k(vm5

2 ))

m5′ : C2(vm5′
1 , vm5′

2 )→ P3(g(vm5′
1 ), k(vm5′

2 ))

m6 : C2(vm6
1 , vm6

2 )→ Q3(g(vm6
1 ), k(vm6

2 ))

Figure 2: Example T -Mappings

factors.
On the other hand, one could expect that the

RDBMS is capable of optimizing the produced
query, since it performs query planning and op-
timization by taking into consideration the afore-
mentioned parameters. Unfortunately, database
engines focus on optimization of certain aspects
of queries, including join ordering of multi-join
queries, optimization of aggregate functions, access
methods for each relation, etc. Queries produced
by OBDA systems have some characteristics that
are not regularly encountered on human-written
queries for database applications. One such char-
acteristic is the occurrence of common subexpres-
sions in different parts of the query, for example in
different subqueries of a union query. As we saw,
the number of these subexpressions and subqueries
can be very large. Although common subexpression
identification (and in the case of multiple queries
the related multi-query optimization area) have
long been investigated in database research and
implemented in database prototypes [25, 19, 24],

to the best of our knowledge these methods have
not become integral part of commercial RDBMSs,
due to the increase in optimization time and the
complexity introduced to the query optimizer. But
since these common subexpressions are created dur-
ing query translation, the OBDA system has the
knowledge about them that can be taken into con-
sideration to produce the final SQL query. Fur-
thermore, it has been observed [16] that by using
knowledge from the mappings, we can compute dur-
ing system setup some parameters that will help us
obtain more accurate selectivity estimations. For
example, in our approach, a crucial factor that must
be used when deciding about the exact form of the
final SQL query, is the number of duplicates con-
tained in the mappings used during unfolding for
each ontology predicate. For example, for predi-
cate P1 of the query given in the previous example,
it is crucial to know the number of duplicates rows
in tables A1, A2 and the table obtained by select-
ing the first two columns of table A3. The OBDA
system knows from the mappings for which such
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ans( f (x), g(y), h(w), k(z))←
A1(x, y), A3(x, v1,w),C1(y, z)∨
A2(x, y), A3(x, v1,w),C1(y, z)∨

A3(x, y, v2), A3(x, v1,w),C1(y, z)∨
A1(x, y), A3(x, v1,w),C2(y, z)∨
A2(x, y), A3(x, v1,w),C2(y, z)∨

A3(x, y, v2), A3(x, v1,w),C2(y, z)

Figure 3: UCQ over the database

columns and tables it should collect such informa-
tion as an one-time task prior to query execution.
On the other hand, an RDBMS cannot accurately
estimate the number of duplicates in seemingly un-
related tables and columns during query execution.
Given the previous observations, in this work

we propose a cost-based method employed by the
OBDA system during unfolding for choosing the fi-
nal form of the SQL query to be executed by the
RDBMS. This method relies on heuristics that in
turn rely only on factors known to the OBDA sys-
tem, such as sizes of the relations, duplicates in-
troduced by the mappings for each ontology term
and selectivity estimation for simple CQs over the
database, that are not affected by issues such as join
ordering or access methods, and thus can be per-
formed even from a system operating outside the
RDBMS as long as some basic statistics about the
tables have been obtained prior to the deployment
of the system. Specifically, our method starts with
the “fully” unfolded query produced by the method
of [21] as the baseline, and uses the heuristics in
order to “fold” back specific paths, when this is ex-
pected to be more effective. Each such fold corre-
sponds to the creation of an intermediate table, as
explained in the previous example. These heuristics
are based on the notion of redundant processing be-
tween the union subqueries. We make a distinction
between two kinds of redundant processing: i) du-
plicate answers and ii) repeated operations (disk ac-
cess regarding the same data) from different union
subqueries of the same query even in the absence of
duplicate answers.
Regarding duplicates, using the standard set se-

mantics for queries over ontologies, the final answer
should be duplicate-free, but since RDBMSs oper-
ate using the bag semantics, duplicates are often in-
troduced during query evaluation. Duplicates can

be introduced as different ways to obtain the same
fact from the data, for example the same tuple may
be produced from different mappings used for the
same property or class assertion. Using the unfold-
ing method from [21], this will result in duplicate
answers coming from different union subqueries.
But duplicates can be introduced even from a single
mapping due to the projection operator in the SQL
query in the body of the mapping. In this setting,
duplicates are redundant answers whose impact can
be detrimental for query evaluation, as the size of
intermediate results can increase exponentially in
the number of joins in the query. Even if the fi-
nal SQL query produced by an OBDA system dic-
tates that the result should be duplicate-free using
the SQL DISTINCT or UNION keyword, relational
systems rarely consider early duplicate elimination
in order to limit the size of intermediate results, but
only perform the task on the final query result. This
behavior is justified by the fact that duplicate elim-
ination is a costly blocking operation [2] and also
that the SQL queries are usually formulated by ex-
pert users who take into consideration the integrity
constraints of normalized relational schemas. Un-
der these assumptions, considering early duplicate
elimination options during optimization is not usu-
ally regarded worthy. Contrary to this situation
for SQL queries, it has been ascertained [13] that
in real-world OBDA settings, duplicate answers fre-
quently dominate query results and also that this
appears as “noise” to end users that might be us-
ing a visual query formulation tool. In the previous
version of this work [1], we introduced a heuristic
regarding early duplicate elimination, for duplicates
introduced from a single mapping. In this version
we extend this heuristic for the case of duplicates
that show up in different union subqueries, and use
it to help us decide when to “fold” back specific
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branches of the unfolded query.
Regarding the second kind of redundant process-

ing, this depends heavily on the exact execution
plan that will be chosen by the RDBMS. As an
example, consider the UCQ from Figure 3 and let
us suppose that there are no duplicates (each fact
for each ontology predicate can be obtained only
once from a single mapping). Also suppose that
the RDBMS chooses to perform all the joins using
index-based nested loops, using for the first three
subqueries the table C1 as the leftmost table and
for the next three subqueries the table C2 as the
leftmost table. In this case, the redundant pro-
cessing is equal to the two scans of table C1 plus
the two scans of table C2 (ignoring the possible im-
pact of the memory cache). If there was no re-
dundant processing, then it is reasonable to assume
that this form of the query would be the most effi-
cient translation, as it consists of simple CQs which
the RDBMS can efficiently optimize and probably
evaluate in parallel. But since we have redundant
processing, one would expect that it would be more
efficient to first compute and save the temporary
union table corresponding to the three mappings
for P1, if the RDBMS will again choose to perform
index-based nested loops and the cost for creating
and saving the temporary result is smaller than the
cost of the initial redundant processing. As all these
possible execution plans cannot be known to the
OBDA system, for this case of redundant process-
ing, we use a criterion according to which tempo-
rary tables are created in a “conservative” manner,
only when it is almost certain that this decision will
lead to smaller execution cost.
In this work we present efficient solutions to the

problem of handling redundancy, considering on-
tologies belonging to the OWL 2 QL language1,
as the W3C recommendation for query answer-
ing against datasets stored in relational back-ends.
Nevertheless, several aspects of this work can be
considered for other ontology languages as well.
As mentioned, an early version of this work was
presented in [1], where a heuristic was presented
for early duplicate elimination in duplicates intro-
duced from a single mapping (that is for each union
subquery of the final SQL query separately). This
heuristic was evaluated over four different RDBMSs
and it was shown that its usage is justified and
that for query mixes from two different used bench-

1https://www.w3.org/TR/owl2-profiles/

marks, such that low selectivity queries do not dom-
inate execution time, it can lead to overall improve-
ment of up to 25% compared to the strategy of al-
ways performing duplicate elimination. The main
contributions of the present work, extending this
previous version in several aspects, are as follows:

• We enhance the unfolding step previously de-
scribed in the literature with cost-based deci-
sions regarding the redundant processing, ob-
taining a full cost-based method for OBDA
query translation (Section 3).

• We extend the heuristic in order to deal with
duplicate answers coming from different union
subqueries (Section 4).

• We take into consideration other forms of re-
dundant processing in the form of repeated op-
erations (Section 4).

• We implement our method for cost-based
translation by modifying the state of the art
OBDA system Ontop [22] and we perform ex-
tended experimental evaluation (Section 5).

The organization of this paper is as follows. We
start by providing some preliminaries regarding on-
tologies, mappings, relational databases and logic
programs (Section 2). In Section 3 we modify the
unfolding method from [21], which is based on par-
tial evaluation of logic programs, in order to ex-
plore equivalent results given that certain mappings
have been replaced by a combined mapping which
we define. In Section 4 we describe the cost-based
decisions and we present the algorithm that incor-
porates them in the unfolding process. In Section
5 we present experimental evaluation of our imple-
mentation using the Ontop OBDA framework and
the NPD and LUBM benchmarks. We also use the
Wisconsin benchmark to compare our results with
the results of [16]. In Section 6 we present relevant
work and conclusions.

2. Preliminaries

We consider the following pairwise disjoint alpha-
bets: ΣO of ontology predicates, ΣR of database rela-
tion predicates, Const of constants, Var of variables
and Λ of function symbols, where each function
symbol has an associated arity. We also consider
that Const is partitioned into DBConst of database
constants and OConst of ontology constants.
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As in [21], we use functions with symbols from Λ
in order to solve the so called impedance mismatch
problem of constructing ontology objects from val-
ues occurring in the database. We assume that for
λ1, λ2 ∈ Λ, where λ1 , λ2, the range of function with
symbol λ1 and the range of function with symbol
λ2 are disjoint. That is, the same ontology object
cannot be produced from different functions.

2.1. Databases.
We start by giving definitions for database in-

stances and queries over them, following the bag
semantics from [5]. A bag B is a pair (US B, µ),
where US B is a set called the underlying set of B
and µ is a function from elements of US B to the
positive integers, which gives the multiplicities of
elements of US B in B. A relation instance is a bag
of tuples of fixed arity using constants from DBConst.
A source schema S is a set of relation names from
ΣR. A database instance D for a source schema S
is a mapping from relation names in S to relation
instances.

2.2. Queries.
We define queries following the bag semantics of

[5]. In our definitions we use the term “SQL query”
although the syntax of our formulas is that of first-
order logic. Similarly, relation instances are viewed
as bags of ground atoms (i.e., with no variables) of
first-order logic.
A SQL query over a relational schema S is an

expression that has the form: S QL(x⃗) ← α, where
α is a first order expression containing predicates
from ΣR, which are among the relations that belong
to S , S QL ∈ ΣR, S QL < S and x⃗ is a vector of
constants from DBConst and variables from Var that
appear in α.
A conjunctive query Q over a relational schema

S is a SQL query, where α has the form R1(x⃗1)∧ ...∧
Rn(x⃗n), where x⃗1, ..., x⃗n are vectors of constants from
DBConst and variables from Var, and R1, ...,Rn ∈ S .
Variables from x⃗1, ..., x⃗n that do not appear in x⃗ are
existentially quantified, but we omit the quantifiers
in order to simplify the reading. CQs roughly cor-
respond to SQL Select-From-Where queries.
An assignment mapping of a conjunctive query Q

into a database instance D is an assignment of val-
ues from DBConst belonging to D to the variables of
Q such that every atom in the body of Q is mapped
to a ground atom in D. Let θ be an assignment
mapping of Q into database instance D and let X

be a variable in Q. We denote by θ(X) the constant
in DBConst to which θ maps X and we denote by
θ(Ri(x⃗i)) the ground atom to which Ri(x⃗i) is mapped.

Let µi denote the multiplicities µ(θ(Ri(x⃗i))), i =
1, ..., n. The result due to θ of a conjunctive query
Q over D is the tuple (θ(x⃗), µθ) with the multiplicity
µθ = µ1µ2 · · · µn. The result of a conjunctive query
Q over a database instance D denoted by Q(D) is
given by ⊎θrθ, where θ is any assignment mapping
of Q into D, rθ is the result due to θ and ⊎ denotes
bag union.

2.3. Ontology and Mappings.

A TBox is a finite set of ontology axioms. An
ABox is a finite set of membership assertions A(ρ)
or role assertions P(ρ, ρ′), where ρ, ρ′ ∈ OConst and
A, P ∈ ΣO denote a concept name and role (or prop-
erty) name respectively. A DL ontology O is a pair
⟨T ,A⟩ where T is a TBox and A an ABox.

A mapping assertion (or simply a mapping) m
from a source schema S to a TBox T has the form:
ϕ(x⃗) → ψ, where ϕ(x⃗) will be denoted by body(m)
and it is the right-hand side of an SQL query over a
database schema S , ψ has the form P( f 1(x⃗1), f 2(x⃗2))
or C( f 1(x⃗1)) with P ( respectively C) ∈ ΣO a property
(respectively concept) name, all variables in ψ also
appear in x⃗, and each f j ∈ Λ is a function with
arity equal to the length of x⃗ j and range a subset
of OConst. The right-hand side will be denoted by
head(m). A mapping collection M is a finite set of
such mapping assertions. In this setting, having a
conjunction of atoms in the head of the mapping
assertion does not add to the expressivity of the
mapping language [21].

Let M be a mapping collection, we will use the
symbolMCQ to denote the assertions fromM whose
body is a CQ over the database schema. In cor-
respondence with CQs over a relational schema,
we define a CQ over an ontology O as an expres-
sion of the form: Query(x⃗) ← P1(x⃗1) ∧ ... ∧ Pn(x⃗n)
where x⃗1, ..., x⃗n are vectors of constants from OConst

and variables from Var, x⃗ is a vector of constants
from OConst and variables from Var that appear in
x⃗1, ..., x⃗n, and P1, ..., Pn ∈ ΣO are ontology predicates
that appear in O. A union of conjunctive queries
UCQ over an ontology O is an expression of the
form Query(x⃗) ← CQ1(x⃗) ∨ ... ∨ CQn(x⃗), where each
CQi for i = 1, ..., n is an expression of the form
Pi

1(x⃗i
1) ∧ ... ∧ Pi

n(x⃗i
n) as in the previous definition.
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2.4. Logic Programs
Following [21], we use partial evaluation of logic

programs in order to translate a UCQ over the vo-
cabulary of the ontology into a UCQ over the data
sources. In this section we present basic notions
from logic programs[17] regarding partial evalua-
tion [18]. As we are interested in the translation
of UCQs, we do not deal with negation, and as a
result we only present notions related to definite
logic programs. As a result, in what follows we are
referring to definite programs, clauses and rules.
A logic program is a set of statements that have

the following form: ∀x⃗(A ← A1 ∧ ... ∧ An), where
A, A1, ..., An are atoms as in standard first order logic
definitions and x⃗ are all the variables occurring in
A, A1, ..., An. Each such statement is also called a
program clause, or a rule, with A being the head of
the rule, and A1∧...∧An the body of the rule. A goal
is a clause such that the head is empty. Following
the standard convention in logic programming, we
omit the existential quantifiers and use the syntac-
tic form A1, ..., An for the body, instead of A1∧...∧An,
both in clauses and goals.
A substitution θ is a finite set of the form:

{x1/t1, .., xn/tn}, where each xi is a variable, each ti
is a term distinct from xi, variables x1, ..., xn are
pairwise distinct and no variable xi occurs in some
term ti. Let Exp be an expression. The applica-
tion of a substitution θ on Exp is denoted Expθ
and is the expression obtained by Exp after replac-
ing each occurrence of xi with ti for i = 1, ..., n.
Let Exp1 and Exp2 be expressions. A unifier
for Exp1 and Exp2 is a substitution θ such that
Exp1θ = Exp2θ. Let θ1 = {x1/s1, ..., xm/sm} and
θ2 = {y1/t1, ..., yn/tn} be substitutions such that no
variable from x1, ..., xm occurs in θ2. The compo-
sition of θ1 with θ2 is the following substitution:
{x1/s1θ2, ..., xm/smθ2, y1/t1, ..., yn/tn}. The most gen-
eral unifier (mgu) of two expressions Exp1 and
Exp2, is a unifier ξ such that for every unifier ν
of Exp1 and Exp2 there exists a substitution θ such
that ν is the composition of ξ with θ.
A computation rule is a function from a set of

goals to a set of atoms, such that the value of the
function for a goal is always an atom, called the
selected atom, in that goal.
Let G be ← A1, ..., Am, ..., Ak, C be A ← B1, ..., Bq

and R be a computation rule. Then, the goal G′ is
derived from G and C using the mgu θ via R if the
following conditions hold:

• Am is the selected atom in G given by R,

• θ is an mgu of Am and A,

• G′ is the goal ←
(A1, ..., Am−1, B1, ..., Bq, Am+1, ..., Ak)θ.

A resultant is a first order formula of the form
Q1 ← Q2, where each of Q1,Q2 is either absent or a
conjunction of atoms. Any variables in Q1 or Q2 are
assumed to be universally quantified at the front of
the resultant.

Let P be a program, G′ be a goal with body G
and R a computation rule. Then, the SLD-tree of
P ∪ {G′} via R is the tree defined as follows:

• Each node is a resultant (possibly with an
empty body)

• The root node is G0{} ← G0, where G0 = G.

• Let Gθ0...θi ← A1, ..., Am, ..., Ak be a node in
the tree with k ≥ 1 and suppose that Am is
the selected atom of the derivation given by
R. Then, this node has a descendant for each
input clause of A ← B1, ..., Bq of P such that
Am and A are unifiable. The descendant is
Gθ0...θi+1 ← (A1, ..., B1, ..., Bq, ..., Ak)θi+1, where
θi+1 is an mgu of A and Am.

• Nodes which are resultants with empty bodies
have no descendants.

Each branch of the SLD-tree is a derivation of
G′. A branch which ends in a node such that the
selected atom does not unify with the head of any
program clause is called a failure branch. A branch
which ends in the empty clause is called a suc-
cess branch. An SLD-tree is complete if all of its
branches are either failure or success branches. An
SLD-tree that is not complete is called partial.
In general an SLD-tree can contain branches that

correspond to infinite derivations, but we will not
deal with this case, as the logic programs that we
will construct do not contain recursion.
The computed answer θ for a node Qθ0, ..., θi ← Qi

of an SLD-tree is the restriction of Qθ0, ..., θi to the
variables in the goal G′.

Let P be a program, A an atom and R a compu-
tation rule and T an SLD-tree for P ∪ {← A} via R.
Then:

• any set of nodes such that each non-failing
branch of T contains exactly one of them is
a Partial Evaluation (PE) of A in P;
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• the logic program obtained from P by replacing
the set of clauses in P whose head contains A
with a PE of A in P is a PE of P with respect
to A.

The semantics of a logic program P can be de-
fined by two different ways, proved to be equiv-
alent. The first one is the declarative, that uses
the model-theoretic semantics of first-order logic,
where the semantics are given by the least Herbrand
model, which contains the facts that are true in ev-
ery model of P. The second way is the procedural,
where the SLD-tree is used, and the semantics are
given by the success set of P, that is all the facts
A such that the SLD-tree of P ∪ {← A} has a suc-
cess branch. Also, it is known that the semantics
of a program P coincide with the semantics of any
partial evaluation of P[17].

3. Unfolding Queries Through Partial Evaluation

In this section we describe the process of unfold-
ing queries over the ontology, into queries over the
external relational database using mappings. We
are following the approach of [21], with the follow-
ing modifications:

• We enforce that during each step of the SLD-
Derive process, the algorithm employs the com-
putation rule that chooses for unification the
leftmost possible atom in the right-hand side
of the resultant.

• We make a distinction between mapping as-
sertions whose body is a CQ over the database
and the rest of the mapping assertions.

• We define a step that “folds” back specific
branches of the PE tree based on the notion
of combined mapping, and we show that the
SQL query that is obtained based on this form
of the PE tree has exactly the same answers
with the SQL query obtained using the initial
form of the tree.

The logic program for a UCQ Q(x⃗) ← CQ1(x⃗) ∨
... ∨ CQn(x⃗) over: (i) an ontology O (ii) a database
instance D over a database schema S and (iii) a
mapping collectionM from source schema S to the
vocabulary of O is defined in [21]. As it is shown
that the result of the unfolding process is indepen-
dent of the database instance D, here we omit the
second component and we directly define the logic

program with respect to O and M. Also, we mod-
ify the process by using auxiliary predicates only
for mapping assertions in M\MCQ.

The program for Q and M, denoted P(Q,M) is
the logic program defined as follows:

• P(Q,M) contains the clause Q(x⃗)← CQi(x⃗) for
each CQi in the right-hand side of Q.

• P(Q,M) contains each mapping assertion m ∈
MCQ.

• For each mapping assertion m ∈ M \
MCQ, P(Q,M) contains the clause head(m) ←
Auxm(x⃗), where Auxm is an auxiliary predicate
associated to m, whose arity is the same as
head(m).

We now present the function SLD-Derive de-
fined in [21], with the extra condition that
we enforce use of the computation rule that
chooses for unification the leftmost possible atom.
The SLD-Derive(P(Q,M)) takes as input P(Q,M),
where Q has the form q(x) ← β, and returns a
set Res of resultants constituting a PE of q(x⃗) in
P(Q,M), by constructing an SLD-tree for P(Q,M)∪
{← q(x⃗)} as follows:

• it starts by selecting the atom q(x⃗),

• it continues by selecting the atoms whose pred-
icates belong to the alphabet of T , as long as
possible, using the computation rule R which
selects each time the leftmost such atom

• it stops the construction of a branch when no
atom with predicate in the alphabet of T can
be selected.

The partial evaluation PE(Q,M) of P(Q,M) with
respect to q(x⃗) is obtained by dropping the clauses
for q in P(Q,M) and replacing them with the result
of SLD-Derive(P(Q,M)).

Example 2. Consider the query ans(x, y, z) ←
P1(x, y), P2(x, h(A)), P3(y, z), with h ∈ Λ and A ∈
DBConst the mapping collection (T -mappings)
shown in Figure 2 and a database instance
over a schema that contains the relation names
A1, A2, A3,C1 and C2 with tuples of appropriate ar-
ities according to Figure 2. The SLD-tree for
P(Q,M) ∪ {← ans(x, y, z)} is shown in Figure 4.

In [21] the virtual ABox given by a mapping col-
lectionM over a database instance D for a database
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schema S is defined as the set of ABox assertions
generated by applying each mapping assertion in
M over D and it is shown that for each tuple of
constants t⃗, P(Q,M) ∪ {← q(⃗t)} is unsatisfiable if
and only if t⃗ belongs to the result of executing Q
over the database instance that stores exactly the
assertions contained in the virtual ABox. Here we
omit the formal definitions and the proof, but we
note that it is straightforward to see that the spe-
cific result carries over to our modified definition of
P(Q,M). Also, the algorithm UnfoldDB is defined,
which, given an UCQ Q over an ontology O with a
mapping collection M, translates the set of resul-
tants returned by SLD-Derive(P(Q,M)) into queries
over the database instance D. Again, we omit the
details and we note that in our case the resulted
query will be a UCQ over S that has the form

Query(x⃗)← Q1(x⃗) ∨ ... ∨ Qn(x⃗) (1)

where each Qi for i = 1, ..., n is the translation given
by UnfoldDB that corresponds to a resultant re-
turned by SLD-Derive(P(Q,M)), and it is an ex-
pression of the form

Qi( f⃗i(x⃗i))←
Auxi1 (x⃗i1 ) ∧ ... ∧ Auxil (x⃗il ) ∧ Ril+1 ( ⃗xil+1 ) ∧ ... ∧ Rim (x⃗im )

(2)

where each f j
i ∈ f⃗i is a function whose function

name belongs in Λ and whose variable arguments
are among the variables of x⃗i1 , ..., x⃗im , each Auxi j

for j = 1, ..., l corresponds to body(m) for some
m ∈ M \ MCQ and each Rik for k = l + 1, ...,m is
a relation name from the database schema. Note
that on the original definition of UnfoldDB seman-
tic query optimization (SQO) with respect to the
database schema S is not performed. Nevertheless,
in subsequent research, the role of SQO with respect
to this context was proved crucial [27, 23]. In this
work we consider that SQO, like self-join elimina-
tion, is performed in the result of UnfoldDB, that
is in each Qi for i = 1, ..., n in (1). Furthermore,
by overloading the definition of UnfoldDB, we con-
sider a version of the function that takes as input
an SLD-tree resulted from the application of the
SLD-Derive(P(Q,M)), and operates as described to
produce a query that has the aforementioned form.

We now proceed with some definitions that will
be used when we “fold back” the SLD-tree produced
by SLD-Derive. For each edge e of the SLD-tree we

define source(e) to be the node at the beginning of e,
target(e) to be the node at the end of e, T M(e) to be
the predicate symbol of the atom selected by com-
putation rule R at source(e), M(e) to be the clause
(mapping assertion) used in the specific derivation,
sub(e) to be the substitution used in the specific
derivation and pos(e) to be the set of integers cor-
responding to the positions of atoms affected by the
derivation in the right-hand side of the resultant in
target(e).

Let m1, ...,mn be mapping assertions of the form
ϕi → ψi where no variable is repeated in ψi, for
i = 1, ..., n. Also let θ be a unifier such that the
atoms ψ1θ, ..., ψnθ are all equal (obviously the pred-
icate symbol at the head of each assertion is the
same). Then, the combined mapping of m1, ...,mn is
the following expression:
ϕ1θ ∨ ... ∨ ϕnθ → ψ1θ
If a variable z is repeated in some ψi, we modify ψi

by keeping only the first occurrence and we replace
all other occurrences with fresh variables z1, ..., zk ∈
Var. Then, we add the conditions z = z1, ..., z = zn

as conjuncts in the body of ψi.
Essentially, the combined mapping introduces a

mapping assertion whose body is the union the in-
put mappings, with the appropriate renaming. Two
examples of combined mappings for the example
mappings shown in Figure 2 are presented in Fig-
ures 5 and 6.

Proposition 1. Let T be an SLD-tree resulted
from SLD-Derive with input P(Q,M), mc be the
combined mapping of mappings m1, ...,mn ∈ M
and Mc = (M \ {m1, ...,mn}) ∪ {mc}. The seman-
tics of PE(Q,M) coincide with the semantics of
PE(Q,Mc).

Proof. We need to show that for every tuple t⃗ of
constants, q(⃗t) is true in PE(Q,M) if and only if q(⃗t)
is true in PE(Q,Mc), which follows directly from the
construction of mc.

Let T be the tree resulted from
SLD-Derive(P(Q,M)) and e0 an edge in
T . Also, let e1, ..., en be edges in T with
source(e0) = source(e1) = ... = source(en) and
T M(e0) = T M(e1) = ... = T M(en) such that there ex-
ists a combined mapping mc : ϕ0θ ∨ ... ∨ ϕnθ → ψ1θ,
with θ = sub(e0) and T M(e0) be equal to the
predicate at the head of mc. A fold of T into e0 is
the tree T1 that is resulted from T by replacing
in each descendant node of target(e0) (including
target(e0)) the atoms at positions pos(e0) with the
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cm1 : A1(vm1
1 , vm1

2 ) ∨ A2(vm1
1 , vm1

2 ) ∨ A3(vm1
1 , vm1

2 , vm1′′
3 )→ P1( f (vm1

1 ), g(vm1
2 ))

θ = {vm1′
1 /vm1

1 , vm1′′
1 /vm1

1 , vm1′
2 /vm1

2 , vm1′′
2 /vm1

2 }

Figure 5: Combined Mapping for Mapping Assertions m1, m1′ and m1′′

cm2 : C1(vm5
1 , vm5

2 ) ∨C2(vm5
1 , vm5

2 )→ P3(g(vm5
1 ), k(vm5

2 ))

θ = {vm5′
1 /vm5

1 , vm5′
2 /vm5

2 }

Figure 6: Combined Mapping for Mapping Assertions m5 and m5′

atom ψ1θ, and deleting all the sub-trees starting
from target(e1), ..., target(en). Moreover, let f1, ..., fm
be all the edges in T (including e0) such that
M( f1) = ... = M( fm) = M(e0). Then, the fold of
T based on mc is the tree that is obtained if we
sequentially apply the process of obtaining the fold
of T into fi for i = 1, ...,m ensuring that for each
fk, fl with k, l in 1, ...m, if the depth of target( fk) in
T is smaller than the depth of target( fl), then the
fold of T into fk is obtained after obtaining the fold
of T into fl.
Figure 7 shows the fold of the SLD-tree of exam-

ple 2 based on the combined mapping from Figure
6, where Auxcm2 is an auxiliary predicate used for
mappings inM\MCQ according to the construction
of P(Q,M), that correspond to combined mapping
cm2. Note that the same combined mapping is rec-
ognized and used in three different nodes of the
initial tree.

Proposition 2. Let T be an SLD-tree resulted from
SLD-Derive with input P(Q,M), mc be the com-
bined mapping of mappings m1, ...,mn ∈ M and
Mc = (M \ {m1, ...,mn}) ∪ {mc}. The fold of T based
on mc is exactly the tree returned by SLD-Derive
with input P(Q,Mc).

Proof. Let T f old be the fold of T based on mc and
Tc be the SLD-tree resulted from SLD-Derive with
input P(Q,Mc). We need to show that T f old and
Tc consist of the same resultants. Clearly the two
trees have the same root. Then, given a resultant
ans(x⃗)θ0...θk ← A1(x⃗1), ..., Ai(x⃗i), ..., Aw(x⃗w) at depth k
which is the same for the two trees, it is sufficient
to show that the children of this resultant are the
also the same for the two trees. Let nodeTc and
nodeT f old be the nodes in Tc and T f old respectively
that contain the specific resultant. Suppose that

Ai is the leftmost atom in the body of the resul-
tant with predicate that belongs to the alphabet of
T and will be chosen by the computation rule R.
Also, for now, let us suppose that there is only one
node nodeT in the initial tree T such that for ev-
ery edge e in T with T M(e) equal to the predicate
symbol at the head of mc, then source(e) = nodeT .
According to the construction of the fold of T into
e0, if nodeT is different from nodeT f old , then the chil-
dren of nodeT f old are the same with the children
of nodeTc , as they are not affected by the com-
bined mapping. If nodeT is equal to nodeT f old , then
nodeT has n children affected by the combined map-
ping, plus a number of children not affected (pos-
sibly 0). The second kind of children are also chil-
dren of nodeTc , whereas the first kind have been
replaced in T f old with the child ans(x⃗)θ0...θkθk+1 ←
A1(x⃗1), ..., Auxcm(⃗z), ..., Aw(x⃗w), which is also a child
of nodeTc , and these are the only children of both
nodeTc and nodeT f old . Now, if there are more nodes
in T affected by the fold of T based on mc, then
from the construction of the fold, where descendant
nodes are always modified prior to their predeces-
sors, and from the fact that R chooses always the
leftmost possible atom, it is straightforward to see
that the result of the case where only one node is
affected by the combined mapping is carried over
to this case.

A direct consequence of Propositions 1 and 2 is
that if we consider the SLD-tree tree T resulted
from SLD-Derive with input P(Q,M) and we ap-
ply the UnfoldDB algorithm on the resultants con-
tained in the the fold of T based on the combined
mapping mc, then the SQL query that will be pro-
duced has exactly the same answers with the SQL
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query produced by applying the UnfoldDB algo-
rithm on the resultants of the original tree T . This
gives us the ability to choose a sequence of folds, in
order to obtain an equivalent translation that can
be more efficient, by using a cost-based search in
the initial SLD-tree, which we describe in detail in
the Section 4.2.

An issue that arises in these translations has to
do with the way the combined mapping is treated.
One way is to be treated as a regular mapping as-
sertion, as the body of this mapping is simply a
union query over the original mapping assertions.
This union query will be computed as many times
as the combined mapping is used in the produced
query. Obviously a better choice would be to cre-
ate a temporary table that holds the specific result
as an intermediate result of the main query, in the
same database connection. This is the solution that
we follow in this work, as it also avoids the over-
heads of creating permanent materialized views in
the database as in [26]. A second issue that has
to be handled is the decision regarding which folds
should be used, if any, for a specific query. As we
will describe in the following section, the process of
taking the specific decision heavily depends on the
size of the SQL query, the size of each combined
mapping in comparison to the size of the final SQL
query and the number of duplicate answers con-
tained in them.

4. Cost-Based Selection of Query Translation

In this section we consider a cost-based algo-
rithm in order to choose a specific sequence of
folds and obtain the SQL translation of the initial
query. During this process we take into consider-
ation the two kinds of redundant processing that
we described in Section 1. Regarding the first kind
(redundancy due to duplicates), we will employ a
heuristic about early duplicate elimination of in-
termediate results during query evaluation that we
first described in [1]. In order to describe the heuris-
tic, we first consider a single subquery that has the
form shown in formula (2) of Section 3. After that,
in Section 4.2 we describe our algorithm operating
on the complete query that has the form shown in
formula (1). Our method relies on an estimation
of the final result size of each union subquery. To
obtain this estimation we should gather some statis-
tics from the database in the form of data summa-
rization for all the columns that can be possibly
referenced from a query, that is all the columns in

the SQL queries of some mapping assertion. As
making an estimation for an arbitrary FOL query
is an involved process, we make a distinction be-
tween assertions in MCQ (Ri+l+1, ...,Ri+m in formula
2) and assertions inM\MCQ (Auxi1 , ..., Auxin in for-
mula 2). We consider that the latter are primitive
tables as if they were virtual views, and we collect
statistics only for the output columns, whereas the
former are parsed and we collect statistics for all
the referenced columns. We will refer to each con-
junct in the right-hand side of (2) as an input table
of query Qi( f⃗i(x⃗i)).

Let q be a query as in (2) and Ii(x⃗i) be an input ta-
ble of q. The query ans(x⃗ci )← Ii(x⃗i), where x⃗ci con-
tains exactly the variables of x⃗i that appear at least
two times in q, will be called the projection query
of input table Ii(x⃗i) from q. Additionally, let D be
a database instance (which will be implied). Intu-
itively the projection query selects all the columns
of an input table that are mentioned elsewhere in
q. In Section 4.1, we decide if we will save each pro-
jection query as an intermediate result with respect
to duplicates.

Analyzing External Tables. As we operate outside
the RDBMS engine, in order to extract the needed
information we should import all the corresponding
data, which is clearly not practical. Luckily we have
several other options. One such option is to only
import a random sample and extract the needed
information from that, as most database vendors
support ordering the results by a random function.
Another option is to obtain the data summariza-
tion directly from the RDBMS, if it provides a way
to access this information. This option is likely to
give the most accurate results, but it is highly de-
pendant on the specificities of each database ven-
dor. One third option is to build a simple single-
bucket histogram for each column, by sending for
execution queries that ask for the number of values,
number of distinct values, minimum and maximum
value. Simple histograms like this are known to
give imprecise selectivity estimations for filter and
join results of attributes that exhibit skewness [10],
but on the other hand their construction and usage
is faster in comparison to more elaborate kinds of
histograms. For our experiments we have chosen
the last option, as it is fast and simple and can be
applied to any underlying RDBMS. This is a one-
time offline process that needs to be done before
query execution, similar to an analyze command in
a database schema, as it only depends on the re-
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Node	7
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Root : ans(x, y, z)θ0 ← ans(x, y, z)
θ0 = {}

Node1 : ans(x, y, z)θ0θ1 ← P1(x, y), P2(x, h(A)), P3(y, z)
θ1 = {}

Node2 : ans(x, y, z)θ0θ1θ2 ← A1(vm1
1 , vm1

2 ), P2( f (vm1
1 ), h(A)), P3(g(vm1

2 ), z)

θ2 = {x/ f (vm1
1 ), y/g(vm1

2 )}
Node3 : ans(x, y, z)θ0θ1θ3 ← A2(vm1′

1 , vm1′
2 ), P2( f (vm1′

1 ), h(A)), P3(g(vm1′
2 ), z)

θ3 = {x/ f (vm1′
1 ), y/g(vm1′

2 )}
Node4 : ans(x, y, z)θ0θ1θ4 ← A3(vm1′′

1 , vm1′′
2 , vm1′′

3 ), P2( f (vm1′′
1 ), h(A)), P3(g(vm1′′

2 ), z)

θ4 = {x/ f (vm1′′
1 ), y/g(vm1′′

2 )}
Node5 : ans(x, y, z)θ0θ1θ2θ5 ← A1(vm1

1 , vm1
2 ), A3(vm1

1 , vm4
2 , A), P3(g(vm1

2 ), z)

θ5 = {vm4
1 /vm1

1 , vm4
3 /A}

Node6 : ans(x, y, z)θ0θ1θ3θ6 ← A2(vm1′
1 , vm1′

2 ), A3(vm1′
1 , vm4

2 , A), P3(g(vm1′
2 ), z)

θ6 = {vm4
1 /vm1′

1 , vm4
3 /A}

Node7 : ans(x, y, z)θ0θ1θ4θ7 ← A3(vm1′′
1 , vm1′′

2 , vm1′′
3 ), A3(vm1′′

1 , vm4
2 , A), P3(g(vm1′′

2 ), z)

θ7 = {vm4
1 /vm1′′

1 , vm4
3 /A}

Node8 : ans(x, y, z)θ0θ1θ2θ5θ8 ← A1(vm1
1 , vm1

2 ), A3(vm1
1 , vm4

2 , A), Auxcm2 (vm1
2 , vm5

2 )

θ8 = {vm5
1 /vm1

2 , z/k(vm5
2 )}

Node9 : ans(x, y, z)θ0θ1θ3θ6θ10 ← A2(vm1′
1 , vm1′

2 ), A3(vm1′
1 , vm4

2 , A), Auxcm2 (vm1′
2 , vm5

2 )

θ10 = {vm5
1 /vm1′

2 , z/k(vm5
2 )}

Node10 : ans(x, y, z)θ0θ1θ4θ7θ12 ← A3(vm1′′
1 , vm1′′

2 , vm1′′
3 ), A3(vm1′′

1 , vm4
2 , A), Auxcm2 (vm1′′

2 , vm5
2 )

θ12 = {vm5
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Figure 7: SLD Tree 2
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lations occurring in mappings and data. Also, as
it is crucial to have an accurate estimation of the
number of duplicate answers that come from dif-
ferent mappings for the same predicate, we execute
queries counting exactly the distinct number of an-
swers for queries in bodies of mappings that can
possibly formulate a combined mapping assertion.
These mapping assertions can simply be identified
offline as the subsets of mappings whose heads can
be unified during the partial evaluation. Regarding
duplicates coming from a single mapping, adopting
the commonly used value independence assumption
between the result attributes and the uniformity of
values in an attribute [28], we estimate the distinct
tuples of the relation to be the product of the dis-
tinct values of its attributes. In case this value is
larger than the number of tuples in the relation,
we assume that there are no duplicate tuples in the
relation.

4.1. Early Duplicate Elimination of Intermediate
Results

First, we define the duplicate-tuple ratio DTRR

of a relation instance R to be equal to
∑

t∈US R µ(t)
|US R | .

A relation instance with DTR equal to 1 will be
called a duplicate-free relation instance. Now, let us
suppose that we have a single SQL subquery com-
ing from the unfolding step and we have to take
the decision regarding a single input table (either
“real” primitive table or virtual view) used in this
subquery; we will take into consideration different
union subqueries in Section 4.2. In this case, it may
be advantageous to dictate the RDBMS to perform
the duplicate elimination on projection query of the
specific input table at the beginning of query execu-
tion, store the duplicate-free intermediate result in
a temporary table and use it for the specific query.
This can be done in several ways depending on the
exact SQL dialect and capabilities of the underlying
system. For example, one can use (non-recursive)
common table expressions or temporary table def-
initions. Of course, the exact decisions as to when
this should happen depend on several factors, in-
cluding the exact query, the DTR of the projec-
tion query of the input table, the number of uses
of the specific input table in the query, the choice
to save the temporary table in disk or keep it in
memory and several other factors that depend on
the database physical design, database tuning pa-
rameters, the exact query execution plan and the
evaluation methods chosen by the optimizer of the

RDBMS. As mentioned, it is difficult for all these
factors to be estimated outside the database engine.
For this reason, in what follows, we propose to take
this decision according to a heuristic that depends
only on the size of the data and the DTR of the in-
put table, whose estimation can be obtained using
data summarization.
The main assumption that we make regarding

duplicate elimination, states that the impact of an
input table with DTR equal to a constant number
n in the number of tuples of the final query result
is proportional to n. As a result of this assump-
tion, the selectivity of the query plays the most
important role in duplicate elimination decisions.
Intuitively, a query whose result size is much larger
than the size of the intermediate result for which we
examine the duplicate elimination option, it is ex-
pected to be faster to first perform the elimination,
as each tuple of the intermediate result has as im-
pact the creation of a large number of tuples in the
final result. On the other hand, a query with few
results is expected to be evaluated faster if dupli-
cates are eliminated directly from the final result.
In this case one would expect that each tuple of
the intermediate result does not add that much to
the total cost of the query in order to counterbal-
ance the cost of a duplicate elimination, especially
when expecting the optimizer to limit the sizes of
intermediate query results as soon as possible.

A Heuristic Regarding Duplicate Elimination.
Given a database instance D, a query q of the form
(2) whose result over D is the relation instance Q
and an input table Ii(x⃗i) of q, perform duplicate
elimination on input table Ii(x⃗i) prior to execution
of q if

S izeQ −
S izeQ

DTRAns
>

S izeAns

DTRAns

where relation instance Ans is the result of the pro-
jection query of Ii(x⃗i) from q on D and S izeQ and
S izeAns are the estimated sizes (in bytes) of rela-
tion instances Q and Ans respectively. That is,
duplicate elimination should be performed if it is
expected that the reduction on the size of the final
result will be bigger than the size of the intermedi-
ate result with duplicate elimination.

4.2. Cost-based Translation
In this section we present the algorithm

GetTranslation (Algorithm 1), which, given a UCQ
Q over an ontology O and a mapping collection M
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from O to a database instance D over a database
schema S , it returns a SQL query over D and
provides a set CMtemporary of temporary views to
be created. Each of these temporary views corre-
sponds to a SQL query on the body of a combined
mapping that exists in the SDL-tree produced by
SLD-Derive(P(Q,M)). In other words, the algo-
rithm chooses a sequence of folds based on one of
these combined mappings each time, that are per-
formed repeatedly in a corresponding sequence of
trees, starting from the initial SLD-tree. The Tcurrent

variable holds the current tree at each point of ex-
ecution. In each step, the fold that is expected to
provide the largest gain is chosen, and this process
is continued until no fold that provides gain exists.
In this sense, the algorithm proceeds in a greedy
way, in order to avoid examining all the combina-
tions. The gain for each possible combined map-
ping is estimated based in the redundant processing
that we avoid by materializing and using the spe-
cific mapping with respect to i) duplicate answers
and ii) repeated operations even in the absence of
duplicate answers.
Regarding duplicate answers, in correspondence

with the observations made in Section 4.1, here the
main factors that determine the behavior of the al-
gorithm are the query selectivity and the size of the
result of the SQL query in the body of each com-
bined mapping. The difference here is that we con-
sider the final query that is the result of UnfoldDB,
instead of a single union subquery, and a combined
mapping that contains many input mappings which
can produce duplicate results between them, in-
stead of a single input table of one subquery. Let
cm be the combined mapping ϕ1∨ ...∨ϕn → ψ in this
context, for simplicity we will denote by S izecm and
DTRcm the size and DTR of the relation instance
that is the result of executing the query ϕ1 ∨ ...∨ ϕn

over the database instance D, given that duplicate
elimination is not performed. Computing and sav-
ing the combined mapping is expected to be more
efficient, if the reduction on the size of the final
SQL query will be bigger than the size of the tem-
porary table resulting from the materialization of
the combined mapping with duplicate elimination
(S izecm/DTRcm). Using the quantity S izeS QLcm to
denote the size of the result of the final SQL query
when the combined mapping cm has been chosen
for materialization with the duplicates eliminated,
which is equal to S izeS QLcurrent/DTRcm, we have that
the result of UnfoldDB with input the fold of T into
cm (S QLcm) is preferred over the result of UnfoldDB

with input T (S QLcurrent) if:

S izeS QLcurrent − S izeS QLcm >
S izecm

DTRcm
(3)

Regarding repeated operations even in the ab-
sence of duplicate answers, as discussed in Section
1, in order to obtain an exact cost model we should
be aware of the exact execution plan and the choice
of access methods for each relation in order to esti-
mate the amount of data read and written to disk
for each CQ. As this is not viable for the OBDA
system that operates outside the database engine,
we base our estimation on the sizes of the input
relations and the size of the result. Specifically,
we consider that the smaller table in each CQ is
fully scanned once, and all other tables are either
probed using an index as many times as the num-
ber of final query results or are fully scanned once,
depending on which of the two options has the low-
est cost. In order to find the smaller table, table
sizes in this context are compared by taking into
consideration the filters that appear in each table
in the CQ, that is tables are compared according
to the size of each corresponding projection query.
Also, as we do not want to take into consideration
duplicates introduced from the combined mapping
under consideration, for each input table that par-
ticipates in the combined mapping, we take its size
after we divide it by DTRcm.

Let SQL be an SQL query of the form 1 that is
the result of UnfoldDB, we will denote by RRS QL

the estimation for the size in bytes of redundant
reads in the absence of duplicates as described. In
other words, RRS QL holds the sum of redundant
reads for every disjunct (CQ) in the right-hand side
of (1). Then, the result of UnfoldDB with input
the fold of T into cm (S QLcm) is preferred over
the result of UnfoldDB with input T (S QLcurrent)
if the estimated reduction in redundant reads from
S QLcurrent to S QLcm is larger than the size of the
temporary table resulting from the materialization
of the combined mapping with duplicate elimina-
tion (S izecm/DTRcm):

RRS QLcurrent − RRS QLcm >
S izecm

DTRcm
(4)

If we want to take both kinds of redundant pro-
cessing into consideration concurrently, we simply
have to add the left-hand side parts of (3) and (4):
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S izeS QLcurrent − S izeS QLcm + RRS QLcurrent − RRS QLcm

>
S izecm

DTRcm
(5)

In Algorithm 1 we are considering the heuristic as
a quantity giving the expected gain, with negative
values meaning that we have loss instead of gain,
as shown in Line 11 of the algorithm, since we want
to compare the different options and choose the one
that gives the biggest gain at each step. So the final
formula used is:

S izeS QLcurrent − S izeS QLcm+

RRS QLcurrent − RRS QLcm −
S izecm

DTRcm
(6)

Regarding some implementation issues, we
should note that we do not need to make selec-
tivity estimation for all the results each time, but
only for those that are affected by the combined
mapping, that is, the disjuncts in the result of Un-
foldDB that correspond to resultants in the SLD-
tree which are descendants of nodes which use some
of the input mappings of the combined mapping
examined each time. As a matter of fact, we can
modify the gain formula so that only these disjuncts
are taken into consideration in the computation of
RRS QLcurrent ,RRS QLcm , S QLcurrent and S QLcm.

5. Implementation and Experimental Evaluation

We have implemented our translation in an pro-
totype extension of Ontop version 1.18.1. This ver-
sion of Ontop normally uses the default unfolding
method of [21] over the T -Mappings in order to
emulate H-complete ABoxes [22], as we mentioned
in Section 1, and employs the tree-witness query
rewriting [14] on such ABoxes. We follow the same
architecture, using the tree-witness approach for
query rewriting and we modify the unfolding step
over the T -Mappings as described here.

Newer versions of Ontop use a different query un-
folding method that employs the notion of interme-
diate query (IQ) [30]. We discuss the relevance of
our method to this in Section 6. For this reason, we
compare our method with both the default transla-
tion based in partial evaluation of logic progrmams
obtained by version 1.18.1, but also with the new

Algorithm 1: Translation Process
1 GetTranslation (M,Q,D);
Input : Mapping Collection M, Query Q,

Database D
Output: SQL query over D

2 CMtemporary = ∅;
// The combined mappings that should be

used as temporary tables
3 Tcurrent = SLD-Derive(P(Q,M)); // The

SLD-tree at each step. Initially equal to
the result of SLD-Derive(P(Q,M))

4 S QLcurrent = UnfoldDB(Tcurrent);
5 Add to CMused all the combined mappings

that exist in Tcurrent;
6 MaxGain = 0;
7 do
8 foreach cm ∈ CMused do
9 Tcm: the fold of Tcurrent based on cm;

10 S QLcm = UnfoldDB(Tcm);
11 Compute Gain from S QLcurrent to

S QLcm according to Formula 6 ;
12 if Gain > MaxGain then
13 MaxGain = Gain;
14 Tbest = Tcm;
15 S QLbest = S QLcm;
16 BestCm = cm;
17 end
18 end
19 if MaxGain > 0 then
20 S QLcurrent = S QLbest;
21 Tcurrent = Tbest;
22 Remove BestCm from CMused;
23 Add BestCm to CMtemporary;
24 end
25 while MaxGain > 0;
26 return S QLcurrent;
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translation method obtained from the latest Ontop
versions 3.0.1 and 4.0.2. In general, version 3.0.1
outperforms version 4.0.2, so we only report times
for version 3.0.1 here, but all the execution times
for version 4.0.2 are also available along with all
other material2.

Our aim in this section is to perform an ex-
perimental comparison of our approach with other
methods using well-known benchmarks. For this
reason, we present experiments using the NPD and
LUBM benchmarks in Section 5.1, comparing our
approach with the translation performed by the two
aforementioned Ontop versions. Then, in Section
5.2, we compare our approach with the JUCQ ap-
proach using the datasets and queries from [16] and,
in Section 5.3, we study the performance of our
method in comparison to the default translation,
for different query characteristics. Finally, in or-
der to obtain an empirical analysis of our heuristic
regarding duplicate elimination, in Section 5.4 we
perform an experimental evaluation using a micro
benchmark with specific query fragments coming
from queries used in the general evaluation.

5.1. Experiments with NPD and LUBM Bench-
marks

We have performed an experimental evaluation
of our techniques using the LUBM [9] and NPD
[15] benchmarks, with the ontology and mappings
that are publicly available at the Ontop repository
on github3 and with existential reasoning enabled.
Both datasets were generated for scale 100.
The experiments in this section were carried out

on a machine with an Intel Core i7-3770K processor
with 8 cores and 32 GB of RAM running UBUNTU
18.04, using PostgreSQL version 11.3 as a backend.
PostgreSQL was setup and tuned for usage in a ma-
chine with 32GB RAM. The schema and data in all
systems were identical and all the proposed indexes
were created. The database size was about 1.1 GB
for LUBM and about 5.8 GB for NPD.

Queries and Mappings. For LUBM benchmark in
total 84 mapping assertions were produced as T -
Mappings from Ontop. For LUBM we used the
original 14 queries. For NPD we used a subset
of 19 out of the original 30 queries: queries 1-12,

2http://cgi.di.uoa.gr/~dbilid/experiments-obda/
3https://github.com/ontop/iswc2014-benchmark/

tree/master/LUBM and https://github.com/ontop/
npd-benchmark

22-25 and 28-30, excluding the queries that use
GROUP BY, as it is not supported by the used On-
top version, queries that contain OPTIONAL and
queries with empty translation due to incompati-
ble IRIs. To these queries we added four more, in
order to showcase the advantage of duplicate elim-
ination coming from a single mapping. The rea-
son for this addition is that despite the fact that
many mappings introduce duplicates, the existing
queries are only using a small subset of the map-
pings that mostly avoid this problem. We believe
that the four added queries are sensible and simple,
yet their evaluation proved very hard. This show-
cases that the problem we are dealing with is also
present in the NPD benchmark. These new queries
are numbered 31 to 34 and presented in Appendix
A. All SPARQL queries were executed using the
DISTINCT modifier.

Overhead in Setup and Optimization. The time
needed to gather all the necessary statistics and
analyze tables prior to the first deployment of the
system as described in Section 4 was 48 seconds for
LUBM and 3 minutes and 10 seconds for NPD. To-
tal optimization time for the 14 LUBM queries total
time increased from 325 ms to 360 ms, whereas for
the 23 NPD queries the increase was from 1115 ms
to 1380 ms. The given times include the total time
from parsing each SPARQL query to outputting
the corresponding SQL query. The first time is the
time needed by the original Ontop version 1.18.1,
whereas the second time is the time needed by our
modified version.

Results. For each query we used a timeout of 1000
seconds. For each setting, all queries were executed
sequentially according to their numbering, after a
full system reboot. The given times measure the
total time needed for each query including the op-
timization time in Ontop, the execution time in the
relational back-end and the time to obtain the re-
sults in Ontop. All the results were obtained, but
they were not saved or processed otherwise. The
combined mappings chosen by our method were
materialized as temporary tables during execution
in the same session as the main query and unique
indexes were created on those tables. All times are
in milliseconds. All results and the produced SQL
queries, as well as all the necessary material to re-
produce the experiments are available in the link
given in the beginning of this section.
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Query v1 Default v1 Opt. v3 #Results

NPD 1 4899 5258 13696 1627744
NPD 2 4189 4142 5015 172751
NPD 3 1155 1119 1535 83737
NPD 4 20542 20899 27159 1627744
NPD 5 54 66 128 193
NPD 6 33234 23533 36128 1231564
NPD 7 1438 1377 1489 180
NPD 8 307 303 ERROR1 5974
NPD 9 2354 2222 1537 12750
NPD 10 4243 3649 3800 79512
NPD 11 86773 7650 8523 418056
NPD 12 122712 14376 16824 838430
NPD 22 6373 3247 8003 1113200
NPD 23 6565 3304 44340 763400
NPD 24 2437 498 ERROR1 147400
NPD 25 10055 9324 12106 1725400
NPD 28 32343 22815 167362 2141968
NPD 29 90271 17212 26400 419834
NPD 30 163276 26661 58143 705984
NPD 31 TIMEOUT 29771 54641 2979400
NPD 32 1085 318 746 8000
NPD 33 77139 19545 24509 148037
NPD 34 5443 3329 18678 486000

Avg. 307682 9592 252742

1 Error during unfolding
2 Excluding timeouts and errors

Table 1: Results for NPD scale 100 (Times in ms)

Query v1 Default v1 Opt. v3 #Results

LUBM 01 543 587 685 4
LUBM 02 1283 1272 1377 264
LUBM 03 129 87 101 6
LUBM 04 149 125 438 34
LUBM 05 69 98 71 719
LUBM 06 17086 8868 29419 1048532
LUBM 07 259 306 334 67
LUBM 08 393 301 1079 7790
LUBM 09 47126 33518 16539 27247
LUBM 10 16 16 13 4
LUBM 11 191 187 192 224
LUBM 12 132 134 245 15
LUBM 13 112 111 138 472
LUBM 14 3096 2826 4406 795970

Avg. 5042 3460 3931

Table 2: Results for LUBM scale 100 (Times in ms)

Results are presented in Table 1 for NPD queries
and in Table 2 for LUBM queries. Results in col-
umn v1 Default contains the execution times ob-
tained by the Ontop version 1.18.1, column v1 Opt.
contains the times obtained by the modified Ontop
version according to our approach and column v3
contains the times obtained by Ontop version 3, the
latest stable Ontop release. The average execution
times for each case are also shown in the bottom of
each table, excluding errors and timeouts. For the
case of NPD queries, there was 1 timeout from v1
Default for query 31, and two errors during unfold-
ing from Ontop v3. The exact error message for
each error can be found at our result repository.
According to the results, our approach outperforms
on average both Ontop version 1.18.1 and version
3. For the NPD benchmark the decrease in average
execution time obtained by our method is 69% and
62% in comparison to version 1.18.1 and version 3
respectively, while for the LUBM benchmark the
decrease is 31% and 12% respectively. Also, with
very few exceptions, our method outperforms the
other two approaches on every single query.

5.2. Comparison with the JUCQ Approach
In this section we compare our method with the

approach from [16]. As this implementation is
not part of the Ontop release, we directly use the
queries produced by this approach, which are avail-
able at the Ontop examples github repository 4.
For this reason, in all the experiments presented in
this section we only report the time for executing
the SQL queries in PostgreSQL, omitting the time
for query unfolding. For measuring the execution
times of the JUCQ approach, we used the scripts
provided in the aforementioned github repository.
As in the previous section, we also include the times
obtained using the versions 1.18.1 and 3 of Ontop.
The execution environment is the same as in the
previous section.
We use the exact benchmark and queries that

were also used in [16]. Specifically, we use the
OBDA version of the Wisconsin benchmark [7],
with the same ontology and mappings, for which
we have created 24 instances of the base relational
table, each one with 1 million tuples. This is the
exact setting used in [16]. The results of the Wis-
consin benchmark are presented in Table 3, where

4https://github.com/ontop/ontop-examples/tree/
master/iswc-2017-cost/
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there are two different query sets, one that con-
tains queries consisting of 3 atoms, and the other
with queries consisting of 4 atoms. Each query
set contains 84 queries, and the average execution
time for each approach is shown. Our approach
outperforms all other translations, followed by the
JUCQ approach, whereas the worst performance is
obtained from the default translation of version 1,
which is the only approach such that timeouts oc-
cur. One other observation has to do with the ex-
ecution times for the UCQ (default translation of
Ontop 1.18.1) and JUCQ translations reported in
[16]. Specifically, our execution times for these two
sets of approaches seem to be much better. For ex-
ample, in their reported times, timeouts of 20 min-
utes occurred in every setting, and the average exe-
cution time for the JUCQ approach was 160 seconds
for the 3 atoms query set, whereas in our experi-
ments the corresponding time is only 30.5 seconds.
These differences can possibly be attributed to dif-
ferent versions of the PostgreSQL database (they
used version 9.6) and different tuning parameters of
the database engine. Other than that, our findings
are consistent with theirs. Specifically, we observed
the largest improvement of JUCQ with respect to
the default UCQ translation for queries with more
mappings and redundancy. The behavior of our
approach is similar, exhibiting large improvement
for these queries in comparison to all other three
approaches.
Finally, we use the same modified NPD queries

NPD 6*, NPD 11*, NPD 12* and NPD 31* as
in [16], executed over the scale 100 of the NPD
benchmark. This is different from [16], where these
queries were executed only over the original NPD
dataset (scale 1). The results are presented in Ta-
ble 4. Again our approach outperforms all other
approaches. Also, regarding the JUCQ translation,
the results here show a different situation in com-
parison to the Wisconsin benchmark, as it exhibits
the worst performance and also a timeout occurs
for query NPD 31*. The queries produced by the
JUCQ approach seem in general more complicated
from the ones produced from the other three ap-
proaches.

5.3. Performance gain
In this section, we study the performance gain of

our optimized method over the default translation
which is obtained by partial evaluation of logic pro-
grams and leads to generation of UCQs. Following
the setup of [16], we use the Wisconsin benchmark,

Query Set v1 Default v1 Opt. v3 JUCQ

3 atoms 73133 22589 53624 30528
4 atoms 2236841 30922 64048 43926

1 Excluding 24 timeouts

Table 3: Average execution time (ms) for Wisconsin Bench-
mark (24 tables with 1 million tuples per table)

Figure 8: Performance gain for varying number of mappings
per predicate

generating 24 tables with 1 million tuples per ta-
ble, executing 84 queries with 3 atoms each, with
a varying number of mappings used for each query
(from 1 to 6) and we compute the performance gain
using the formula 1−(Opt. Time/Default Time). In
Figure 8 we present results for each number of map-
pings per predicate. The figure presents the average
gain for all the queries per case (1 to 6 mappings).
As expected, when there is only 1 mapping per
predicate, our method does not generate any tem-
porary table, and as a result, it performs roughly
the same as the default translation. Starting from
two predicates, our methods begins to outperform
the default translation, reaching an average gain of
more than 0.7.

In Figure 9, we present a scatter chart with the
performance gain with respect to the number of
results for the 84 queries of the benchmark. As
shown, the queries are partitioned in visually dis-
tinct groups with respect to the number of their
results. The effect of query selectivity is evident in
this chart, with our method becoming increasingly
efficient compared to the default, as the number of
results grows larger, achieving a gain of 0.75 for the
queries with about 1.7 million results. On the con-
trary, for the first group of queries, with low num-
ber of results, we cannot see a consistent behavior
in comparison with the default.
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Query v1 Default v1 Opt. v3 JUCQ [16] #Results

NPD 6* 91083 21700 132787 295445 2150854
NPD 11* 169833 9189 20070 204426 734214
NPD 12* 74001 5415 11471 14699 734214
NPD 31* 224925 18201 3980 ERROR1 1718
AVG 139960 13626 42077 1715232

1 Error during execution after 221 seconds
2 Excluding Errors

Table 4: Results for NPD queries from [16] (scale 100-Times in ms)

Figure 9: Performance gain with respect to number of results

5.4. Evaluating the Duplicate Elimination Heuris-
tic

In this section we present experimental justifica-
tion for the use of our heuristic regarding duplicate
elimination. For this purpose, we have chosen four
query fragments from the LUBM benchmark and
four from NPD, such that duplicate elimination is
applicable on them, as it was found during the pre-
viously described experiments. The experiments of
this section were carried out on a machine with an
Intel Core i7-3770K processor with 8 cores and 16
GB of RAM running UBUNTU 16.04. As our inten-
tion was to examine how our optimizations perform
in different underlying systems, we used four differ-
ent back-ends: PostgreSQL (version 9.3), MySQL
(version 5.7) and two of the most widely used pro-
prietary RDBMSs, which due to their license we
will call System I and System X. All systems were
setup and tuned for usage in a machine with 16GB
RAM.
Each query fragment consists of a single select-

from-where subquery. The fragments were chosen
such that they have varying characteristics regard-
ing the execution time, the number of results and
the DTR of the mapping assertion under consider-

ation. In order to test these queries with different
selectivities, we applied to them extra filters. As
LUBM100 contains information about exactly 100
universities, we used a filter on the university ID at-
tribute in direct correspondence to the percentage
of selectivity, whereas for NPD we used different
filters for each fragment. We used filters that re-
sult in selectivity percentage of 1, 5, 10, 30 and 60,
resulting in a total of 40 queries per system. We
executed each of these 40 queries with and with-
out duplicate elimination performed, resulting in a
total of 240 runs for all systems. The results were
obtained with warm caches.
In the upper part of Table 5 (one-time) we

present the total execution times for these queries
per system, depending on the duplicate elimination
strategy. The titles of the first three columns are
self-explanatory. The fifth column gives the total
time, if always the best strategy was chosen for each
system. The fourth column gives the best time, if
for each query and each selectivity, the best com-
mon strategy was chosen for all systems. This way,
the difference between the fourth and fifth column
can give an indication of how similar the behaviors
of the systems are, whereas comparison of third and
fourth columns can give a measure of how well our
heuristic takes advantage of this common behavior.
One can observe that the strategy of always per-

forming duplicate elimination is much better than
never performing, and that even the strategy of al-
ways choosing the best approach is not extremely
better. The reason for this result is that for queries
with low selectivity, the execution time is much
larger and dominates the total time. For these
queries, performing duplicate elimination is prefer-
able and sometimes gives up to two orders of mag-
nitude better results. In order to simulate a query
mix such that low selectivity queries do not dom-
inate execution time, we also computed results
where we give very selective queries a weight, such
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that queries with 1% selectivity have been executed
60 times, queries with 5% selectivity have been exe-
cuted 12 times, etc. We present the total execution
time under this setting in the lower part of Table
5. As before, exact times and queries are available
at the same location 5.

6. Related Work and Conclusions

Regarding related work, the research of Lanti et
al. [16] constitutes the most relevant to ours, as it
also deals with cost-based translation. The authors
extend the cover-based translation of Bursztyn et
al. [3], in order to take into consideration the map-
pings to arbitrary relational schemas. The authors
analyze the database as a preprocessing step, in or-
der to extract useful statistics, such as the cardinal-
ity of join results between queries in bodies of map-
ping assertions whose heads can be joined. Using
these statistics, the authors can obtain accurate se-
lectivity estimations for the produced queries. Un-
fortunately, despite the accurate selectivity estima-
tions, the cost model used to compare the differ-
ent cover-based reformulations is not realistic, as it
assumes that all joins in a CQ are performed us-
ing hash joins, which is highly unlikely, and also it
is assumed that every input relation is completely
scanned. Also, the join order is not taken into con-
sideration at all, something that can have a huge
impact in the cost of the query. As we have dis-
cussed, this is an inherent problem of a system that
operates outside the database engine. The differ-
ence with our method is that we use heuristics that
apply to different execution plans and database en-
gines, and also, at each step of our method, we com-
pare highly relevant queries, where apart from the
relations affected by the combined mapping under
consideration, all other input relations and joins be-
tween them are the same, such that query selectiv-
ity plays the most important role in our decision.
Also, we avoid running the query translation pro-
cess multiple times, whereas in [16] for each differ-
ent query cover, the rewriting, unfolding and esti-
mation process has to be performed independently.
Finally, the authors only consider mappings whose
the body is always a CQ over the relational schema.
Since version 3, the Ontop system has departed

from the usage of partial evaluation of logic pro-
grams for query unfolding. Specifically, it now re-

5http://cgi.di.uoa.gr/~dbilid/experiments-obda/

lies on a query representation which is called in-
termediate query [30], in order to represent both
SPARQL and SQL queries, facilitating the transla-
tion of SPARQL query operators like OPTIONAL
[29] and GROUP BY. Instead, in this work we
concentrate only on CQs over the ontology. We
have experimentally shown that our method per-
forms better on average for CQs in comparison with
the latest Ontop versions. We believe that it is an
interesting topic for future research to also apply
cost-based methods to other operators present in
SPARQL, possibly combining our results with the
line of research carried out in [30, 29].

The work presented by Sequeda et al. [26] is also
relevant, as it uses a cost model in order to mate-
rialize specific views prior to query execution. This
solution in many cases provides efficient query exe-
cution, but incurs expensive preprocessing and also,
using materialized views in the database increases
the database maintenance load, especially for fre-
quently updated tables, as well as the the database
size. Also, it is not in line with the overall OBDA
approach of providing the end user with access to
several underlying data sources, without the need
to modify data, and on a practical level, such access
may not be even possible. In contrast, we compute
specific temporary views during query execution,
when we estimate that this will result in lower exe-
cution cost, without affecting the original database
schema.
Jacques et al. [12] adopt a logic which enables

them to avoid mappings when using an object-
relational back-end and a combination of data com-
pletion and query rewriting. During this process
primary keys are used for object identification, re-
moving the need for duplicate elimination. Also,
the authors use disjointness axioms in the ontology
to further remove the need of duplicate elimination
between unions. Gottlob et al. [8] present query
rewriting and optimization techniques that elimi-
nate redundant atoms during the application of a
resolution based algorithm. To do so, they employ
a method that takes into consideration the tuple-
generating dependencies (TGDs) of the ontological
language they consider, which unlike the DL-Lite
languages, considers atoms of arbitrary arity, thus
it is conceptually closer to the relational model and
does not need separate mappings, so a separate un-
folding phase is not needed.
We have identified redundant processing as a bot-

tleneck in OBDA query processing and we have
proposed solutions to overcome this problem. We

21

http://cgi.di.uoa.gr/~dbilid/experiments-obda/


System Always Never Heuristic Best (common) Best(Separate)

on
e-t
im
e PostgreSQL 13345 168785 12854 12638 12353

MySQL 281598 - 281685 279522 279265
SystemI 10733 143616 9906 9693 9502
SystemX 20558 27479 8588 8803 7280

qu
ery
-m
ix PostgreSQL 167116 618328 144984 146406 143191

MySQL 1129311 - 1066499 1056659 1056145
SystemI 135790 520408 102724 101984 99989
SystemX 167761 220408 93660 90557 83045

Table 5: Query Results for Different Duplicate Elimination Strategies (Times in sec.)

believe that using cost-based planning is a promi-
nent direction towards OBDA query optimization,
that has not been fully explored yet. In future
work, we plan to incorporate decisions about phys-
ical database design by analyzing the mapping as-
sertions. One more direction regarding future re-
search has to do with duplicate elimination in case
the OBDA system is equipped with query process-
ing capabilities, in other words when it acts as a
mediator. In this setting, along with decisions re-
garding which query fragments should be evaluated
in external databases, one should decide when du-
plicate elimination should be “pushed” to endpoints
or performed by the OBDA processing engine dur-
ing data import.
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Appendix A. NPD Queries 31-34

SELECT DISTINCT ?q ?u
WHERE {
?q : inLithostrat igraphicUnit ?u .
?u rdf : type : Lithostrat igraphicUnit .
}

Listing 1: Query NPD 31

SELECT DISTINCT ?quadrant ?name
WHERE {
?quadrant rdf : type : Quadrant .
?quadrant :name ?name .
}

Listing 2: Query NPD 32

SELECT DISTINCT ? unit ? era
WHERE {
? unit : geochronologicEra ? era .
? unit rdf : type : Lithostrat igraphicUnit .
}

Listing 3: Query NPD 33

SELECT DISTINCT ? wellbore ? discovery ?year
WHERE {
? wellbore rdf : type : Wellbore .
? wel lbore : wellboreForDiscovery ? discovery .
? discovery : discoveryYear ?year
}

Listing 4: Query NPD 34
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