
Ontop4theWeb: SPARQLing the Web On-the-fly
Konstantina Bereta
Dept. of Informatics

and Telecommunications, UoA
Email: konstantina.bereta@di.uoa.gr

George Papadakis
Dept. of Informatics

and Telecommunications, UoA
Email: gpapadis@di.uoa.gr

Manolis Koubarakis
Dept. of Informatics

and Telecommunications, UoA
Email: koubarak@di.uoa.gr

Abstract—Web data come in many different structures and
formats that are not supported by Semantic Web tools. To lever-
age them, we propose a system, called Ontop4TheWeb, which
allows for mapping Web data of various formats into virtual
RDF triples and querying them on-the-fly without materializing
them as RDF triples. We put our system into practice, querying
with SPARQL diverse Web data sources that range from HTML
tables to REST APIs, such as social media APIs. Our thorough
experimental evaluation demonstrates the high efficiency of our
approach, which goes beyond the current state-of-the-art in this
area, in terms of both functionality and performance.

I. INTRODUCTION

Querying Web data sources on-the-fly is an important task
for several reasons: (i) Having full access to such data sources
may involve a high economic cost (e.g., the price of subscrib-
ing to the entire Twitter stream). (ii) The constantly changing
terms of use and the corresponding legislation complicates
data crawling (e.g., the constraints defined by the recent EU
General Data Protection Regulation1). (iii) The high frequency
of updates (Velocity) makes it difficult for data consumers to
synch with Web sources like social media applications. E.g.,
∼6.000 tweets are posted per second in Twitter2.

Moreover, querying non-RDF Web data on-the-fly using
SPARQL has become a major issue, given that many Web
data sources rely on REST APIs and HTML tables. Several
solutions address this issue by extending standards, such as
the SPARQL language [1], the SPARQL protocol [2], or
the R2RML mapping language [3], to provide primitives for
querying various kinds of Web data sources, such as APIs.

However, these works merely support relational data or
specific file formats (e.g., XML, CSV). They also rely on cus-
tom SPARQL/R2RML extensions that hamper their adoption,
while their combination with third-party added-value services
is a very complicated procedure. Some of them also implement
a caching mechanism such as [1] and [2], but do not fully
exploit it, as shown in Section IV.

In this paper, we extend the traditional OBDA paradigm
with support for non-relational, Web data. We propose a novel
OBDA-based system architecture that is able to query Web
APIs and other sources on-the-fly using SPARQL, without
extending standards such as SPARQL and R2RML. Our main
contributions are the following:

This work was partially funded by the EU H2020 project ExtremeEarth
(Grant agreement No. 825258).

1See https://eugdpr.org for more details.
2http://www.internetlivestats.com/twitter-statistics/

• We introduce an extension of the OBDA paradigm to support
data sources not materialised in relational native databases.
• We implement our approach in the system Ontop4theWeb,
an OBDA-based system for posing SPARQL queries on top
of non-RDF Web data on-the-fly. To achieve this, virtual table
operators are embedded in the SQL queries that are included
in R2RML mappings. These mappings specify which part and
source of Web data will be fetched and how they will be
mapped to virtual RDF terms. Combining these mappings with
an ontology allows for returning the virtual relational data that
are involved in the query as RDF results.
• We perform a qualitative and quantitative, experimental,
comparison of our system with the state-of-the-art system
described in [1], and we show that Ontop4theWeb provides
more functionality, is more efficient and does not deviate from
the standards.

The rest of the paper is organized as follows: Section II
presents background and related work. Section III describes
the implementation and Section IV presents our experimental
evaluation and comparison to the state-of-the-art. Section V
concludes the paper along with directions for future work.

II. BACKGROUND AND RELATED WORK

OBDA systems [4] are primarily useful in cases where
users store their data in relational databases, but do not want
to materialize them as RDF triples, particularly when these
databases are large or/and get frequently updated, due to
Velocity [5]. As a result, many OBDA and RDB2RDF systems
have been developed in the recent years, such as Ontop [6],
Ultrawrap [7], Morph [8], Sparqlify3, and Oracle Spatial and
Graph4. Most of them support the R2RML mapping language
or similar native languages.

Closer to our work is the SERVICE-to-API system [1],
which proposes an extension of SPARQL that enables users
to combine the responses of JSON APIs with results from
the evaluation of standard triple patterns. We deviate from
this approach in that: (i) we do not extend SPARQL syntax,
(ii) we allow users to query APIs using standard SPARQL
triple patterns directly, without having to combine them with
stored RDF data, (iii) we provide a general approach that is
not limited to JSON APIs, and (iv) we produce significantly

3http://aksw.org/Projects/Sparqlify.html
4http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/

index.html

Fig. 1: Tables with 100 movies from Rotten Tomatoes (left) and Wikipedia (right).

fewer API calls, which translates to improved performance, as
we explain in detail in Section IV.

Another related approach is based on the development of
SPARQL wrappers for Web APIs [2]. To this end, it extends
HTTP requests to SPARQL endpoints, including arguments
that are used to retrieve a fragment of the data that can be
accessed via the Web API. This fragment is converted into
RDF and stored using an in-memory triple store. We deviate
from this approach in that: (i) no data are materialized into
RDF, as the query is converted on-the-fly using mappings, (ii)
our approach can be adapted to a different schema simply
by modifying the mapping file, without requiring a change in
the system code, unlike [2], and (iii) the translation of the
original SPARQL query is completely transparent to the end-
user, whereas [2] requires the end user to be aware of the Web
API documentation so as to specify the fragment of the Web
API he wants to access.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

In this section we describe the methdology and the imple-
mentation of our system, Ontop4TheWeb. Its architecture is
shown in Figure 2 and it builds on the following components:

MadIS. The back-end relies on MadIS5 [9], a relational
database system based on SQLite that can be extended with
user-defined row, aggregate, or virtual table operators. MadIS
exploits the APSW SQLite wrapper, which provides a Python
interface for implementing such operators in an extensible
way. Using APSW, we define our own virtual table operators
and populate them with data retrieved from the Web. To query
the retrieved data, we use MadQL, the MadIS implementation
of an extended-SQL language, which supports user defined
functions embedded in SQL queries.

We extended MadIS to support the caching mechanism
that is described below as well as the virtual table operators
that lie at the core of our approach. In fact, we define
a virtual table operator for each kind of data source as:
VT ::= vtable(args[. . . , f]), where the vector args denotes
the arguments that are given as input to the virtual table
operator, while f is optional, denoting the cache update rate.
In relational algebra, a virtual table (vtable) is handled as a

5http://madgik.github.io/madis

relational table. Thus, any mapping language that allows for
SQL queries in mappings is compatible (e.g., R2RML).

Instead of extending MadIS, we could implement the same
virtual table operators in C, extending SQLite directly, but this
would be less user-friendly and less re-usable than the plug-
and-play MadIS Python operators. It would also undermine
the modularity and extensibility of Ontop4theWeb.

Caching. To improve performance, each virtual table can
optionally use a cache. The cache feature is useful in cases
where: (i) not all data sources get updated with the same
frequency, (ii) some data sources might not be accessible at the
next query time (e.g., due to API limitations), or (iii) a minimal
query execution time is required, due to a large number of
queries, i.e., the frequency of queries is much higher than
the update frequency of data sources. To support these cases,
f indicates the length of the time window (in milliseconds),
during which the retrieved data are temporarily stored. If the
virtual table operator with the same input parameters (args)
is invoked twice (or more) before this time window ends, the
cached data will be used, improving query time. If the query
is repeated after the end of the time window, the fresh data is
fetched from the data source and gets stored in the system. If f
gets a negative or null value, nothing is stored and the virtual
table operator fetches fresh data every time it is invoked. This
is supported by storing metadata about when and where data
resulting from a virtual table signature was stored last time.

Ontop-spatial6 [10] is the geospatial extension of the OBDA
system Ontop [6]. As an OBDA system, Ontop-spatial con-
nects only to populated and materialized databases, using
their data for optimization, before querying them. Instead,
Ontop4theWeb retrieves the data to be queried only after the
user fires a query, creating a virtual table on-the-fly without
any prior knowledge of the data. We have extended the MadIS
JDBC connector so that it complies with Ontop-spatial.

Third-party applications. These are external micro-services
that can be invoked by a virtual table operator in MadIS.
For example, a virtual table operator is able to identify the
polarity of a tweet by calling a micro-service that implements a
Sentiment Analysis classifier (see below). This feature enables
Ontop4theWeb to perform data analysis tasks without facing

6http://ontop-spatial.di.uoa.gr/

MadIS

Third party services

SPARQL

MadQL
Ontop-
spatial

cache

Mappings Ontology

Caching parameter f

Fig. 2: System architecture for Ontop4theWeb.
.any compatibility issues between the corresponding compo-

nent and the vtable operator: the server can be written in
any language, but the client can still use it as a service.

IV. EXPERIMENTAL EVALUATION

In this section we perform a qualitative and a quantita-
tive comparison of our work and state-of-the-art approach
described in [1].

1) Qualitative comparison: The SERVICE-to-API system
[1] enriches RDF data with data from external sources, such
as REST APIs. Thus, its query language requires at least
one triple pattern to be evaluated in the RDF repository and
its variables to be bound to values that populate their URI
templates. Every variable binding yields a separate API call. A
cache mechanism aims to minimize the API calls. An example
is presented in Listing 1. The value of keyword SERV ICE
creates a URI template for each one of the values bound to the
variable l, which is used in the query’s triple pattern. In this
case, a call to the Yelp API is produced for each binding of
the variable l, returning a JSON file. This JSON file is parsed
according to the JSON pattern included in the query, which
bounds the variables i, name and rating to the values of the
respective attributes of the JSON file.

Listing 1: Get Yelp businesses with a SERVICE-to-API query
SELECT ?i ?name WHERE {
?x <http://www.w3.org/2000/01/rdf-schema#label> ?l .
SERVICE <https://api.yelp.com/v3/businesses/{l}>{
($.[\"id\"], $.[\"name\"]) AS (?id, ?name)}}

In this context, there are two major qualitative differences
between Ontop4theWeb and SERVICE-to-API [1]:

1) The query language. For SERVICE-to-API, the JSON
attributes are directly bound to variables by parsing the JSON
response, as instructed by the JSON patterns included in the
query. As a result, the users need to know the documentation
of the API in order to identify the information they need. Only
in this way are they able to combine API data with the RDF
data in the triplestore, formulating accurate queries that extend
SPARQL with JSON patterns [1]. In contrast, Ontop4theWeb
creates virtual semantic graphs on top of APIs using mappings,
thus allowing users to pose standard SPARQL queries as if the
contents of the APIs were transformed into RDF. The trade-
off for not having to convert, materialise and store the data

into an RDF store is the use of mappings. For any virtual
Ontop4theWeb RDF repository, a mapping file should be
provided. Writing these mappings can be an overhead, but
they need to be written once, unless the schema changes. Note,
though, that the mapping language R2RML is W3C standard,
just as the SPARQL query language, ensuring compatibility
with applications built on top of SPARQL. Also, materialisa-
tion is not avoided in SERVICE-to-API, as the data should be
partially stored in a triplestore.

2) Both systems use a caching mechanism, but every API
call in Ontop4theWeb retrieves an entire virtual table, which
is mapped to a virtual RDF graph. Instead, SERVICE-to-API
merely retrieves one entry of this table per API call, which has
a significant impact on time efficiency, as explained below.

2) Quantitative comparison: To compare the performance
of the two systems, we use data retrieved from the REST API
of Yelp, the only data source for which both systems offer the
same functionality However, the findings of this experiment
are representative of the general behaviour of the two systems.

For Ontop4theWeb, we implemented a virtual table op-
erator of Yelp and pose the SPARQL query Q1 to retrieve
business names and ids from the Yelp API. For SERVICE-
to-API, we used the original implementation of SERVICE-
to-API [1]. For the corresponding SERVICE-to-API query,
we stored data about burger joints in Chicago in an RDF
repository, because this system does not support API calls
without triple patterns included in the query. Then, we used
the SERVICE keyword to join them with their names and IDs
that are retrieved from the REST API of Yelp. In SERVICE-to-
API query Q2, we want to retrieve the names of businesses and
their ids from the Yelp API, but it returns many false positives
that were produced because the values that are bound to the
variables of the query do not get joined, as in the case when
the names are materialised in SERVICE-to-API query Q1.

SPARQL Query Q2 contains one more triple pattern (i.e.,
it also retrieves the rating of businesses). There are different
ways to express this query in the SERVICE-to-API, depending
on the configuration of the repository. The closest definition
seems to be the SERVICE-to-API query Q3. However, the
query actually returned the Cartesian product of all different
burger businesses and all different rating values.

To compare the two systems on an equal basis, we consider

(a) Execution time in warm
cache

(b) Execution time in cold cache

(c) API calls in warm cache (d) API calls in cold cache
Fig. 3: Execution times for Yelp queries.

all different variations of the standard SPARQL query Q2.
Having at least one triple for each entity stored, we retrieve
only the missing values using the SERVICE-to-API query
Q4. In this way, SERVICE-to-API returns the correct results,
since the underlying triple store is forced to perform a JOIN
between the materialized and the values that are returned from
the API, instead of a Cartesian product. The trade-off, on the
other hand, is that SERVICE-to-API cannot pose a query to
retrieve the results directly through the API, as some form
of materialization needs to be performed in order to retrieve
correct results. In SERVICE-to-API query Q3, we stored the
names in the triple store and retrieved the ratings and IDs from
the API producing a Cartesian product N×S. SERVICE-to-
API query Q6 differs from query Q5 only in that it uses the
BIND operator instead of triple pattern (i.e., instead of storing
the respective triple in a triple store). This allows for executing
a materialised-nothing query, such as the one that is performed
in Ontop4theWeb query. The results of this query are the same
as those of SERVICE-to-API query Q5.

Response time. Figures 3(a) and (b) depict the query exe-
cution times of the above queries, while Figures 3(c) and
(d) illustrate the number of API calls invoked. In both
cases, we consider warm and cold caches (on the left and
right, respectively). We observe that Ontop4theWeb is three
times faster than SERVICE-to-API because Ontop4theWeb
retrieves a set of tuples for each API call while SERVICE-
to-API retrieves one entry for each API call, yielding more
API calls. Ontop4theWeb by design also benefits more from
caching than the system in comparison. We cache the entire
table for each API call, while SERVICE-to-API performs an
API call for each tuple, which means that only one tuple is
cached each time.

Accuracy. Table I shows the accuracy of the results re-
turned by the two systems. Ontop4TheWeb consistently

SPARQL SERVICE-to-API SPARQL SERVICE-to-API
Q1 Q1 Q2 Q2 Q3 Q4 Q5 Q6

Precision 1.00 1.00 0.05 1.00 0.05 1.00 0.02 0.02
Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F-score 1.00 1.00 0.09 1.00 0.10 1.00 0.03 0.03
Accuracy 1.00 1.00 0.05 1.00 0.05 1.00 0.02 0.02

TABLE I: Ontop4theWeb vs SERVICE-to-API effectiveness.

achieves perfect accuracy and F1-score7, unlike SERVICE-to-
API, which produces false positives that reduce the system’s
precision and accuracy and, inevitably, its F1-score. The
reason is that it returns the Cartesian product of the bindings
of all variables involved in an API call.

V. CONCLUSIONS

This paper presents our extension to the OBDA paradigm
implemented in the system Ontop4theWeb, an open-source
system for querying Web data on-the-fly using SPARQL.
Ontop4theWeb extends SQL with virtual table operators,
embeds them into mappings and makes an OBDA system
compliant with them. Our extensive experimental evaluation
verified that Ontop4theWeb goes beyond the state of the art
with respect to functionality and performance. In the future,
we will apply our system to more applications that include
data analysis tasks and make the results available as virtual
RDF triples on-the-fly.

REFERENCES

[1] M. Mosser, F. Pieressa, J. L. Reutter, and A. Soto, “Querying apis with
SPARQL: language and worst-case optimal algorithms,” in ESWC, 2018,
pp. 639–654.

[2] F. Michel, C. Faron-Zucker, and F. Gandon, “Sparql micro-services:
Lightweight integration of web apis and linked data,” in Workshop on
Linked Data on the Web co-located with WWW, 2018.

[3] A. Chortaras and G. Stamou, “Mapping diverse data to RDF in practice,”
in ISWC, 2018, pp. 441–457.

[4] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and
R. Rosati, “Linking data to ontologies,” in Journal on Data Semantics,
vol. 10, 2008, pp. 133–173.

[5] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi,
M. Rodriguez-Muro, R. Rosati, M. Ruzzi, and D. F. Savo, “The MAS-
TRO System for Ontology-based Data Access,” Semant. Web journal,
vol. 2, no. 1, 2011.

[6] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti,
M. Rezk, M. Rodriguez-Muro, and G. Xiao, “Ontop: Answering
SPARQL queries over relational databases,” Semantic Web, vol. 8, no. 3,
pp. 471–487, 2017.

[7] J. F. Sequeda and D. P. Miranker, “Ultrawrap: SPARQL execution on
relational data,” J. Web Sem., vol. 22, pp. 19–39, 2013.

[8] F. Priyatna, Ó. Corcho, and J. F. Sequeda, “Formalisation and ex-
periences of R2RML-based SPARQL to SQL query translation using
Morph,” in WWW14, pp. 479–490.

[9] Y. Chronis, Y. Foufoulas, V. Nikolopoulos, and et al, “A Relational
Approach to Complex Dataflows,” in EDBT/ICDT Workshops, 2016.

[10] K. Bereta and M. Koubarakis, “Ontop of Geospatial Databases,” in
Proceedings of the 15th International Semantic Web Conference, 2016.

7https://github.com/ConstantB/Ontop4TheWeb/tree/experiments

