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Abstract. We present Strabo 2, a distributed geospatial RDF store
able to process GeoSPARQL queries overmassive RDF datasets. Strabo
2 is based on robust technologies, able to scale on TBs of data distributed
on hundreds of nodes. Specifically, we use the Spark framework, enhanced
with the geospatial library SEDONA, for distributed in-memory process-
ing on Hadoop clusters, and Hive for compact persistent storage of RDF
data. Strabo 2 employs a flexible design that can store and partition
thematic RDF data using different relational schemas, and spatial data
in a separate Hive table, by taking into consideration the GeoSPARQL
vocabulary. Strabo 2 is cluster friendly both memory and disk-wise,
since it compresses triples using a partial encoding technique in addition
to Parquet data file format compression schemes. GeoSPARQL queries
are translated into the Spark SQL dialect, enhanced with the spatial
functions and predicates offered by SEDONA. During this process the
system takes into consideration SEDONA’s capabilities for both spatial
selections and spatial joins, in order to apply optimizations that result
in efficient query processing. We experimentally test Strabo 2 on an
award winning Hadoop based cluster environment and exhibit Strabo
2’s excellent scalability while handling massive synthetic and real world
datasets. We also show that Strabo 2 clearly outperforms state of
the art centralized engines in a single server setup, once the dataset size
increases beyond few GBs.

1 Introduction

As the spatial information in the web of linked data has been increasing steadily
over the past decade, many systems that perform geospatial processing over RDF
graphs have been developed, mainly targeting the GeoSPARQL vocabulary and
query language, an OGC standard for representing and querying spatial infor-
mation in RDF. At the same time, as large RDF datasets become available, the
need for distributed processing of SPARQL queries has lead to the development
of many RDF query engines that rely on big data tools and technologies for stor-
ing and processing massive RDF data. Some of the most prominent approaches
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rely on distributed in-memory big data frameworks, mainly Apache Spark, like
for example S2RDF [23] and PRoST [7].

However, despite the importance of the spatial dimension of these massive
datasets, to the best of our knowledge none of the distributed RDF engines sup-
ports execution of spatial queries. This leads to a lack of spatial RDF engines
able to scale to the continously increasing spatial information in the linked data
cloud. For example, the state-of-the art geospatial RDF store Strabon can only
handle up to 100GBs of point data and still be able to answer simple geospatial
queries (selections over a rectangular area) efficiently (in a few seconds). Com-
petitor systems like GraphDB perform similarly. If the complexity of geometries
in the dataset increases (i.e., we have multi-polygons), not even the aforemen-
tioned performance can be achieved for both Strabon and GraphDB.

Reviewing benchmarks with big geospatial semantic datasets [15] for mature
centralized RDF stores reveal the shortcomings of this category of systems han-
dling large datasets (range of few GBs of size). In sum, the main shortcomings
of such systems include: i) high bulk loading times, with mostly single threaded
reading, usually one file at a time, followed by single-thread re-indexing. ii) only
DBMS-based RDF stores seem to be able to marginally handle spatial selec-
tions and spatial joins against datasets of several GBs size and this depends very
much on the DMBS tuning and iii) mostly single-threaded implementations of al-
gorithms [18] and components, leaves unexploited the potential of these systems
to vertically scale to the maximum of their potential on a regular multi-core
server-grade single node. This is even more true for open source or free versions
of these systems. Some commercial systems offer limited parallelization only in
some of their components, i.e., bulk loaders in Ontotext GraphDB Free and offer
full multi-threaded capabilities in their licensed product versions.

To address the above limitations, the main contributions of this work are:

– We present Strabo 2, the first distributed system that is able to pro-
cess GeoSPARQL queries over massive geospatial RDF datasets on Spark
clusters.

– We present a flexible design that can store thematic RDF data using different
relational schemas, and spatial data in a separate Hive table, by taking into
consideration the GeoSPARQL vocabulary. We use the query translation
mechanism of Ontop-spatial in order to obtain the final set of spatial SQL
queries from the initial GeoSPARQL query.

– We optimize the translation process based on spatial joins and also use the
spatial partitioning and indexing capabilities of the Apache Sedona library
in order to achieve efficient query execution.

– We present an extensive experimental evaluation in order to examine the
scalability of the system with respect to different query characteristics, like
the spatial and thematic selectivities. We also compare the system with state
of the art centralized solutions for smaller datasets that can be ingested and
processed by single-node installations.
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2 Related Work

In this section we present related work. The examination of the capabilities and
design choices of the systems we presented were taken into consideration in the
definition of the architecture of the Strabo 2 distributed GeoSPARQL engine.

Centralized GeoSPARQL query processing. Strabon is one of the first systems of-
fering GeoSPARQL support. Strabon extends the well-known RDF store Sesame
and uses the PostGIS spatially-enabled DBMS as the backend. GraphDB3 is a
semantic graph database enhanced with geospatial capabilities. For its geospa-
tial capabilities, it relies on a uSeekM implementation and Lucene Spatial. The
spatial index mechanism is controlled through an optional GeoSPARQL plugin.
Other geospatial RDF stores include: Parliament [3] which uses a standard R-
tree as its spatial index and concentrates on optimizing query patterns (using
the Topology Vocabulary extension of GeoSPARQL) while it omits optimization
for functions in the filter clause of a query, Oracle Spatial and Graph which sup-
ports the GeoSPARQL standard and also uses an R-Tree and Stardog, a popular
knowledge graph platform that allows the use of custom connectors in order to
enable geospatial support.

A detailed comparative study of centralized geospatial RDF stores is [14],
where different systems were benchmarked and evaluated with datasets of up to
90GB size. Strabon [19] achieves the best overall score in most scenarios, such as
the macro and scalability, whereas GraphDB4 also performed very well on bulk
loading and certain types of queries. These results motivated us to use Strabon
and GraphDB as the baseline systems for the performance comparison with the
new distributed implementation we are presenting in Section 3.

Apart from triple stores that store and query RDF graphs, GeoSPARQL
querying is also supported in the context of Ontology-Based Data Access (OBDA),
where data are stored in a spatially-enabled RDBMS, and GeoSPARQL to SQL
translation is performed by the system in order to delegate query processing to
the underlying database. Ontop-spatial [4], a geospatial extension of Ontop [6],
was the first OBDA system able to answer GeoSPARQL queries on top of geospa-
tial relational databases, performing on-the-fly GeoSPARQL-to-SQL translation
using ontologies and mappings. The aim of Ontop-spatial is to allow integrating
multiple geospatial sources, without converting, materializing and persisting orig-
inal data as RDF. More recently, support for the GeoSPARQL query language
has also been added to the main Ontop branch since version 4.15.

SPARQL query processing in the cloud. The increasing size of available RDF
data has exceeded the capacity of single node systems. As a result, a large num-
ber of approaches for querying RDF graphs in the cloud rely on existing robust
and widely used distributed data processing frameworks [17]. Among these sys-
tems, in-memory distributed data processing frameworks, and especially Spark,

3 http://graphdb.ontotext.com/documentation/free/
4 http://graphdb.ontotext.com/documentation/free/
5 https://ontop-vkg.org/guide/releases.html# 4-1-0-february-28-2021
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are amongst the most prominent and fast solutions for SPARQL processing. For
example S2RDF [23] uses Spark to precompute specific semi-joins, PRoST [7]
explores different storage strategies for RDF data as tabular data used by Spark,
such as a single triples table, vertical partitioning and property tables. [2] extend
the work of PRoST by examining several processing option in Spark. SPAR-
QLGX [11] compiles triple patterns of a SPARQL query into operations over
Spark’s resilient distributed datasets (RDDs). S2RDF and PRoST are the more
relevant systems to our approach, as they employ query translation in order to
transform each SPARQL query into an SQL query that is executed using the
corresponding API offered by Spark.

Parallel and distributed geospatial query processing. The first systems for dis-
tributed spatial query processing on the Hadoop ecosystem were implemented
as extensions of the MapReduce paradigm, such as SpatialHadoop [9], Hadoop-
GIS [1], and Parallel Secondo [20]. Hadoop provides a fault tolerant environ-
ment for parallel execution, but storing intermediate results to disk according
to MapReduce increases the execution time for spatial operations. Hence, the
in-memory execution model of Spark became very popular as it reduces the
execution time drastically, compared to MapReduce jobs [12]. Following this
trend, many Spark-based systems included geospatial support, most notable of
which are the systems STARK [13], GeoSpark/Sedona [26, 27], Magellan [24] and
Spatial-Spark [25]. In the context of this work, we will only consider the Spark-
based systems as they reportedly achieve better performance [12, 13] than the
Hadoop-based systems. Eldawy and Mokbel have presented a survey paper and
tutorial on these systems [8, 10].

The above systems have also been compared regarding their functionality
in [22]. GeoSpark/Sedona is found to be the most complete system, both in terms
of functionality and performance, as it now offers support for spatial datatypes
such as points, rectangles, polygons and lines, and spatial operations such as
different kinds of spatial joins (e.g., contains, intersects, touches, overlaps) and
distance-based joins. It supports several partitioning techniques such as Equal-
grid, Hilbert, R-Tree, Voronoi and Quad-Tree. Spatial indexes like R-Tree or
Quad-Tree are provided in the Spatial Query Processing layer. Sedona’s index
can be persisted either in memory or in disk for later use from the same program.
It can be used via its Java or Scala API and also via an SQL interface that ex-
pands Spark SQL. Finally, Sedona is currently an Apache incubating project6

and it is actively maintained and enhanced7.
Finally, to the best of our knowledge, the only system that deals with a form

of distributed spatial RDF processing is the DiStRDF system [21]. DistRDF ac-
cepts SPARQL queries, along with a set of spatial and temporal constraints for
each query. DistRDDF does not support the GeoSPARQL language, it only con-
siders point geometries and the user can only express a spatial range query for a
given box or circle. In contrast, Strabo 2 accepts GeoSPARQL queries, sup-

6 https://sedona.apache.org/
7 https://github.com/apache/incubator-sedona/
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ports different kinds of geometries, and besides spatial range queries, it also sup-
ports spatial joins and distance-based joins queries defined in the GeoSPARQL
language.

3 The Strabo 2 System for Distributed GeoSPARQL
Processing

In this section we present the technical details of the Strabo 2 system, starting
with its architecture, which is shown in Figure 1.
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Fig. 1: Architectural overview of Strabo 2

The system consists of two main modules: the data loader and the query
executor. The data loader is shown in the right part of Figure 1 and is responsible
for reading and importing into a HIVE database the RDF files from the file
system. The query executor module accepts the input GeoSPARQL queries, and
it performs query translation. The result of this process is a series of Spark SQL
queries that also contain spatial functions provided by the Sedona library.

3.1 Data Loader

The Strabo 2 data loader imports RDF graphs encoded with N-Triples seri-
alization, in Text or Parquet files located in multiple folders. The tool works very
well with partitioned files (Text or Parquet) which further speeds up ingestion.
The output of the loading process is a set of tables in a Hive database.

The parameters of the data loader are the following: (i) The name of the
output Hive database. (ii) Selecting the relational schema for the thematic data.
Currently only vertical partitioning and a single triples table are supported. (iii)
Optional physical partitioning on the columns of the created tables. (iv) Using
HiveQL or Spark SQL dataframe API as the data definition language. (v) Hive
table format: Parquet is the default file format, as it is highly efficient and also
uses columnar compression, which results in decreased size. (vi) A JSON file
with common IRI namespace prefixes related to the ingested dataset.

The Common Prefixes JSON file is constructed manually per imported dataset.
This file guides the partial dictionary encoding of the IRIs at a later stage and,
at the very least, it should contain common namespace prefixes from XML, RDF,
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RDFS and GeoSPARQL vocabularies which are encountered in many datasets.
The data loader uses the common namespace prefixes in nsprefixes, it applies
partial dictionary encoding on all IRIs of thematic and spatial RDDs. This ef-
fectively simulates the main part of an N-Triples to Turtle conversion with the
emphasis being on achieving a substantial first-level compression of the ingested
dataset. After the initial parsing to Spark RDD, the data loader proceeds with the
inference of the geospatial WKT serialization predicates which are consequently
persisted to the aswktprops(value) Hive table. The process involves searching
for triples matching the triple pattern (?s rdfs:subPropertyOf geo:asWKT)

and using the matching subject ?s as a geospatial property. Finally, using the
common namespace prefixes in nsprefixes, the data loader applies partial dic-
tionary encoding on all IRIs.

After the initial loading, the data loader creates the geometry linking tables,
aiming to achieve efficient spatial processing during query execution. These ta-
bles take into consideration the GeoSPARQL vocabulary in order to store in
the same table information about the entities, the corresponding geometries and
the serialization of the geometries, so that during query execution joins between
the corresponding tables of the VP schema (or the corresponding self joins on
the single triples table) can be avoided. Also, during this step, for these tables,
the loader creates the binary geometry column from the serializations, using
the ST GeomFromText function of Sedona. The geometry linking tables are cre-
ated as follows. For each VP table that corresponds to some subproperty of
the GeoSPARQL hasGeometry property, we compute the object-subject join
with any other table that corresponds to some subroperty of the GeoSPARQL
hasSerialization property.

As an example consider the following triples, where we have omitted the full
IRIs for ease of presentation. The example comes from a sea ice mapping using
satellite images application that we have implemented using Strabo 2 in
the context of European project ExtremeEarth8. Drift ice is sea ice that is not
attached to the shoreline or any other fixed object (shoals, grounded icebergs,
etc.). Unlike fast ice, which is “fastened” to a fixed object, drift ice is carried
along by winds and sea currents, hence its name.9.

Ice1 type IceObservation . Ice1 hasCT "Drift Ice" .

Ice1 observationGeom Geo1 . Geo1 asWKT "POINT (10 10)" .

Img1 type SatelliteImage . Img1 imageGeom Geo2 .

Geo2 asWKT "POLYGON (8 8, 12 8, 12 12, 8 12, 8 8 )" .

According to the VP schema, a separate table corresponding to each distinct
predicate will be created in Hive. These are the first five tables shown in Figure 2.
Also, in this example, the properties imageGeom and observationGeom are sub-
properties of the GeoSPARQL hasGeometry property, and the property asWKT is
a GeoSPARQL property that is subproperty of hasSerialization. As a result,
the geometry linking tables observationGeom-asWKT and imageGeom-asWKT will
also be created.

8 https://earthanalytics.eu/
9 https://en.wikipedia.org/wiki/Drift ice
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type
Ice1 IceObservation
Img1 SatelliteImage

hasCT
Ice1 “Drift Ice”

observationGeom
Ice1 Geo1

imageGeom
Img1 Geo2

asWKT
Geo1 “POINT (10 10)”
Geo2 “POLYGON (8 8, 12 8, 12

12, 8 12, 8 8 )”

observationGeom-asWKT
Ice1 Geo1 0111100100...

imageGeom-asWKT
Img1 Geo2 00110100100...

Fig. 2: Tables created in Hive

After data loading, during system startup, we also create in-memory spatial
indexes on the geometry columns of the geometry linking tables. Due to the fact
that clustered indexes cannot be defined when accessing Sedona from the SQL
interface, we use the Scala/RDD interface. The following code is executed for
each geometry linking table:

var spatialDf = _sqlContext.sql("SELECT entity,

geometry, binary_geometry FROM observationGeom-asWKT")

spatialDf.registerTempTable(tableStat.tName)

spatialRDD = Adapter.toSpatialRdd(spatialDf, "binary_geometry")

spatialRDD.buildIndex(IndexType.QUADTREE, false)

spatialRDD.indexedRawRDD.persist(StorageLevel.MEMORY_AND_DISK);

3.2 Query Executor

The second module of Strabo 2 is the query executor shown in the left part
of Figure 1. The query executor accepts GeoSPARQL queries from the user, and
transforms them to a series of Spark SQL queries that access the Hive tables
(and in some cases the spatial RDD indexes) created by the loader. The spa-
tial operators of GeoSPARQL are translated to corresponding spatial functions
and predicates offered by the Apache Sedona library, which operates on top of
the Spark engine. The translation mechanism of the query executor depends on
the Ontop-spatial system [5]. Ontop-spatial is a system for GeoSPARQL-to-SQL
query translation over arbitrary relational schemas, through the means of map-
pings defined in the W3C recommendation mapping language R2RML10, that
construct RDF terms from the database values.

In order to use Ontop-spatial for query translation in the query executor mod-
ule of Strabo 2, we had to perform several modifications and improvements
in order to use Spark as a backend and work with the RDF data stored in Hive.
First of all, as in our case the data loader stores the data according to a specific
storage schema, we had to provide mappings that reconstruct the original RDF
triple for each tuple in the Hive tables. In the normal setup of Ontop-spatial, the
user has to manually construct the mappings. In our case, as the Hive schema
is predetermined from the loader, we can avoid this process and instead, during
system startup, automatically construct the mappings for the thematic and the

10 https://www.w3.org/TR/r2rml/
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geometry linking tables. As an example, consider the table hasCT of Figure 2 con-
structed from the data loader. The following mapping is generated and provided
as input to the Ontop-spatial translation mechanism:

{subject} hasCT "{object}"^^<http://www.w3.org/2001/XMLSchema#string> <-

SELECT subject, object FROM hasCT

The right-hand side of the mapping is a SQL query that can be executed by
Spark, whereas the left-hand side is a template that defines how triples should
be generated, using the output columns of the SQL query within curly brackets.
Ontop-spatial takes as input a set of such mappings and accesses the metadata of
the database in order to gather necessary information that will guide the query
translation. Again, as Spark is not compatible with the Ontop-spatial system,
we provide the specific metadata automatically, during system start-up, using
information from the Hive created tables. This information includes the tables
that reside in the database, the data types of each column and information about
primary keys. As in the case of the mappings, this information is constructed
automatically by Strabo 2.

Once Ontop-spatial has been provided with the set of mappings and the
metadata, it is ready to accept GeoSPARQL queries. The input GeoSPARQL
query is initially parsed and transformed in an intermediate form, based on logic
programs, and finally into SQL queries on the dialect of Spark SQL. During
this procedure, the spatial operators of GeoSPARQL are transformed to spa-
tial functions and predicates provided by Apache Sedona. Currently, we support
the translation of all simple features relations of GeoSPARQL, and also of the
GeoSPARQL functions, including the distance function, that corresponds to dis-
tance based joins in Sedona. In order to demonstrate query translation, consider
the following initial GeoSPARQL query:

SELECT ?img WHERE {

?observation type IceObservation .

?observation hasCT "Drift Ice"^^<http://www.w3.org/2001/XMLSchema#string> .

?observation observationGeom ?obsGeo . ?g1 geo:asWKT ?obsWKT .

?img type SatelliteImage . ?img imageGeom ?imgGeo . ?imgGeo asWKT ?imgWKT .

FILTER (geof:sfIntersects(?obsWKT, ?imgWKT)). }

This query asks for satellite images, such that the geometry of the image
intersects with the geometry of an observation that has class type drift ice. The
query uses the GeoSPARQL topological relation geof:sfIntersects with ar-
guments the corresponding geometries. Default query translation will produce
the following query that will be sent for execution to the Spark engine, where
function ST Intersects is defined in the Apache Sedona library:

SELECT qview5.subject AS img

FROM type qview1, hasCT qview2, observationGeom qview3, asWKT qview4,

type qview5, imageGeom qview6, asWKT qview7

WHERE

qview1.object = ’IceObservation’ AND qview2.object = ’Drift Ice’ AND
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qview1.subject = qview2.subject AND qview1.subject = qview3.subject AND

qview3.object = qview4.subject AND qview5.object = ’SatelliteImage’ AND

qview5.subject = qview6.subject AND qview6.object = qview7.subject AND

ST_Intersects(ST_GeoFromText(qview4.object),ST_GeoFromText(qview7.object))

Using Geometry Linking Tables. The default translation only uses the tables
of the VP schema. In order to obtain a more efficient query, during translation
we identify joins between subproperties of hasGeometry and hasSerialization.
According to the GeoSPARQL vocabulary, in order to access the geometry seri-
alization of an entity, the query needs to contain two triple patterns. The first
pattern relates the entity with its geometry though the hasGeometry property
(or a subproperty), and the second pattern relates the geometry with a serial-
ization through the hasSerialization property (or a subproperty). By taking
advantage of the fact that such joins between triple patterns usually occur in
GeoSPARQL queries, and having computed the corresponding geometry linking
tables during import, we can save one join if we replace the access to the two
tables, with access to the corresponding geometry linking table. In our example
query, we identify two such cases, one for the join between observationGeom

and asWKT, and the second one for the join between imageGeom and asWKT. The
optimized SQL query is shown below, and it contains two less joins from the
default translation.

SELECT qview4.subject AS img

FROM type qview1, hasCT qview2, observationGeom-asWKT qview3,

type qview4, imageGeom-asWKT qview5

WHERE

qview1.object = ’IceObservation’ AND qview2.object = ’Drift Ice’ AND

qview1.subject = qview2.subject AND qview1.subject = qview3.entity AND

qview4.object = ’SatelliteImage’ AND qview4.subject = qview5.entity AND

ST_Intersects(qview3.binary,qview5.binary)

Pushing Thematic Processing Before Spatial Joins. The query produced so far is
optimized in the sense that it avoids extra thematic joins between the geometry
related tables, but it still contains a spatial join that poses a potentially heavy
burden on the execution engine. The reason for that is that in order to perform
the spatial join, Sedona will either perform a distributed GSJoin algorithm, where
it will spatially partition the two input operands of the join, and also create a
local spatial index at each partition, or, if the datasets are small, it will perform
a broadcast join algorithm, where it will partition the larger input, and it will
replicate the smaller [27]. In any case, the spatial join will lead to data shuffling
and computationally heavy processing. Also, the Spark catalyst optimizer treats
the spatial UDF as a black box, as it does not take into consideration the cost
of the spatial partitioning and indexing, and in many cases it will not optimally
optimize the produced query with respect to the join order of the operators. For
this reason, in Strabo 2 query translator we follow a heuristic that aims at
minimizing the size of input operands of the spatial join. Specifically, we push
thematic processing before the spatial join operators in the final produced query.
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The rationale is that thematic processing on each side of the spatial join input will
limit the size of the intermediate result that has to be spatially partitioned and
indexed. In our example query, for the input that corresponds to ice observations,
we will first apply the filter that ensures that we only need resources about
ice observations, we will perform the thematic join corresponding to the hasCT

predicate and also the filter that ensures that the classification result is drift ice.
This will limit the number of geometries that need to be processed, in contrast
with a bad execution plan, where, for example, we first partition all geometries
and then perform the join corresponding to the hasCT predicate and filter out the
observations that correspond to drift ice. In order to ensure the execution plan
according to our heuristic, we identify spatial joins during the translation process,
and then we decompose the result in different subqueries, that are sequentially
sent for execution. In our example, we will first produce two subqueries that
create temporary views corresponding to the two inputs of the spatial join, and
one final query that performs the spatial join between these two intermediate
results:

CREATE TEMPORARY VIEW TEMP1 AS

SELECT qview3.binary as qview3_binary

FROM type qview1, hasCT qview2, observationGeom-asWKT qview3,

WHERE

qview1.object = ’IceObservation’ AND qview2.object = ’Drift Ice’ AND

qview1.subject = qview2.subject AND qview1.subject = qview3.entity

CREATE TEMPORARY VIEW TEMP2 AS

SELECT qview5.binary as qview5_binary, qview4.subject as qview4_subject

FROM type qview4, imageGeom-asWKT qview5

WHERE

qview4.object = ’SatelliteImage’ AND qview4.subject = qview5.entity

SELECT TEMP2.qview4_subject AS img

FROM TEMP1, TEMP2

WHERE ST_Intersects(TEMP1.qview3_binary,TEMP2.qview5_binary)

Using Persistent Spatial Indexing and Partitioning. As described in Section 3.1,
both thematic and spatial RDF data are stored in disk in a Hive database ac-
cording to the specified schema and the geometry linking tables of the dataset.
During query execution, the Spark execution engine loads the necessary frag-
ments of thematic data in memory. Geometries have the same treatment. In
case of spatial selection, we have to read the geometries from the disk, build an
in-memory spatial index and/or partitioning during query execution time and
discard this index/partitioning afterwards. If the next query is again a spatial
selection, this process has to be repeated. Unfortunately, this is an inherent issue
of Apache Sedona when we access it from the SQL interface, due to the fact that
clustered indexes cannot be defined in Spark SQL. In order to take advantage
of persistent spatial indexes and partitioning, we have implemented a hybrid
translation to both the SQL and RDD/Scala interface, that accesses the cached
spatial RDDs that have been created during import. Then, for each query, we
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modify the intermediate translation that is in the form of a logic program rule,
before the final translation into SQL, by identifying spatial FILTER clauses that
can be evaluated efficiently using the spatial index, and then by replacing the
atoms corresponding to the specific spatial operation by temporary atoms that
correspond to the intermediate result after accessing the persistent spatial struc-
ture. As an example, consider a query that asks for ice observations and the class
name assigned to them, such that their geometries intersect a given polygon:

SELECT ?x ?ctName

WHERE { ?x type IceObservation . ?x hasCT ?ctName .

?x hasGeometry ?geo1 . ?geo1 asWKT ?wkt .

FILTER(geof:sfIntersects(?wkt,"POLYGON((1 0,3 0,4 4,1 0))"^^geo:wktLiteral)).}

The translation result without using the spatial RDD that has been created
during import, is the following:

SELECT qview1.subject AS x, qview2.object AS ctName

FROM type qview1, hasCT qview2, observationGeom-asWKT qview3,

WHERE

qview1.object = ’IceObservation’ AND qview1.subject = qview2.subject AND

qview1.subject = qview3.entity AND

ST_Intersects(qview3.binary,POLYGON((1 0,3 0,4 4,1 0)))

By identifying the spatial filter during the transaltion, we can see that we can
use the spatialRDD for its evaluation. In order to do that, we are replacing access
to table observationGeom-asWKT with a new temporary table, that corresponds
to the result of the access to the spatial index. First, we access the spatial index
and take the result of the intersection with the given polygon, transform the
result into a dataframe and save it in the temporary table with name temp.

val rangeQueryWindow = wktReader.read("POLYGON((1 0,3 0,4 4,1 0))")

val considerBoundaryIntersection = true

val usingIndex = true

var queryResult = RangeQuery.SpatialRangeQuery(spatialRDD,

rangeQueryWindow,considerBoundaryIntersection, usingIndex)

Adapter.toDf(queryResult).createGlobalTempView("temp")

Finally, we issue the following SQL query, that accesses the temporary result
instead of the table observationGeom-asWKT:

SELECT qview1.subject AS x, qview2.object AS ctName

FROM type qview1, hasCT qview2, temp qview3,

WHERE qview1.object = ’IceObservation’

AND qview1.subject = qview2.subject AND qview1.subject = qview3.entity

4 Experimental Results

In this section we present the experimental evaluation of Strabo 2, with
three main objectives. First, we evaluate the system as a whole, including the
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ability to scale with respect to the cluster and dataset size. Second, we evaluate
specific aspects of the system, and importantly the impact of the improvements
and optimizations. Last, as Strabo 2 is the first distributed system able
to handle geospatial queries on RDF graphs, we compare the performance of
Strabo 2 with that of existing centralized GeoSPARQL processing systems
in a single server environment.

4.1 Datasets and Queries

We have used the following datasets and queries: (i) Scalability Workload. This is
a real-world dataset based on Open Street Maps from the Geographica 2 bench-
mark, which features a set of increasingly larger datasets (up tom 500M triples)
and a queryset of 3 queries: 1 spatial selection (SC1) and 2 spatial joins (SC2,
SC3). (ii) PregenSynthetic Workload. This is based on the synthetic workload of
the Geographica 2 benchmark, but it has been modified so that it now uses a
distributed Spark-based generator. (iii) ExtremeEarth Workload. This is a real-
world dataset accompanied by 12 GeoSPARQL queries that were produced after
analyzing end-user needs from the use cases of the project. The queries use a
combination of spatial selections and spatial joins (including distance joins). The
dataset has a size of 32 GB in N-Triples format.

4.2 Results in Distributed Environment

The experiments were carried out in a cluster provided by CREODIAS11 con-
sisting of 53 virtual processing cores and 164 GB of RAM. The Hopsworks
platform v. 2.1.0 was used as the execution environment12 providing access
to an underlying Hadoop v. 3.2.0 installation with Spark v. 2.4.3 and Hive v.
3.0.0. Hopsworks is an open-source platform that provides an execution envi-
ronment for distributed data science and data engineering tasks and extends
Hadoop with an optimized distributed metadata architecture [16]. In the experi-
ments, we set the number of shuffle partitions in Strabo 2 (Spark parameter
spark.sql.shuffle.partitions) to be 5x the number of virtual cores in each
setting.

As a first experiment, we determined the largest possible PregenSynthetic
dataset that can be generated and imported in Strabo 2 using the aforemen-
tioned cluster, in order to stress the system given the available resources. As a
result, we have generated the dataset for scaling factor 16384 and we have gen-
erated all the thematic tags. The size of the dataset is 156 GB in compressed
Parquet format, which corresponds to an initial size of 1.16 TB in N-Triples
text format. We have also generated 72 queries with spatial selectivities of 1%,
0.1% and 0.01% and thematic selectivities corresponding to values 4096, 8192
and 16384 (a thematic selectivity with value M means that one every M entitites
is annotated with a thematic tag that has the corresponding value). We have

11 https://creodias.eu/
12 https://www.hopsworks.ai/
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used 22 executors with 6120 MB of memory and 2 virtual cores per executor. The
data loader finished import in 4.5 hours. It is worth mentioning that, according
to our experiments, this size of input datasets is much larger from what central-
ized geospatial RDF stores can ingest using a setup similar to the one described
in Section 4.3. The total execution time for the 72 queries is 7711 seconds, which
gives an average execution time of 107 seconds per query. The queries and the
execution time for each query can be found in the supplemental material. We
have also used 12 executors with 2 virtual cores with 4096 MB memory each, in
order to execute the 12 queries from the ExtremeEarth dataset. The data loader
in this case executed the import in 34 minutes. The average execution time was
122 seconds.

In further experiments, and in order to evaluate the specific aspects and
improvements in query execution we have used the PregenSynthetic generator
to generate a dataset with scale factor 1024 and queries for spatial selectivities of
1%, 0.1% and 0.01% and thematic selectivities corresponding to values 256, 512
and 1024. As before, we generate all thematic tags. In total we have generated
72 queries. We use 4 worker nodes, each one with 2 virtual cores and 4096 MB
of memory. First, in order to evaluate the impact of the hybrid translation with
persistent spatial index and partitioning, as described in Section 3.2, we have
executed the 18 queries that contain a spatial selection with and without the
spatial index. The total execution time when using the persistent spatial index
and partitioning, drops from 111 seconds to 54 seconds, leading to a reduction
in execution time of more than 50%. The exact execution times are included in
the supplemental material.

We also executed the spatial join queries using the default translation, in
order to compare it with the optimized translation that pushes the thematic
processing before spatial joins. In all cases the optimized translation was much
faster, in some cases, especially for queries with few results, more than 10x. The
reason for that is that the Spark catalyst optimizer, when it takes as input the
default translation query, it chooses to partition and index all the geometries
on the geometry linking tables for the left side of the spatial join. We have also
executed queries with thematic selectivity equal to 1. In this case the thematic
processing does not filter out any values. In this extreme scenario, the default
translation performs similarly with the optimized one.

Number of Executors (1, 2, 4, 8 and 16)
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varying dataset size (right)
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Regarding the ability of the system to scale in the distributed setting, we used
the Scalability Workload and the results are presented in Figure 3. In the left
side of the picture we have used the 500M dataset and executed the three queries
with 1, 2, 4, 8 and 16 executors. In the right side we use 8 executors with the
datasets from 100K to 500M triples. In both cases each executor had two cores
and 6600 MB of memory. In the plots we also show the ideal speedup/linear
scalability. In both experiments Strabo 2 exhibits very good behavior for
both spatial selection and spatial join queries as in both scenarios, the spatial
selection and the low selectivity join exhibit scaling very close to linear. The
most difficult query to scale is the high selectivity join where large intermediate
results needs to be saved, but even in this case the improvement as we add more
executors is substantial.

4.3 Results in Centralized Environment

In order to perform a comparison between centralized RDF stores and Strabo
2, we selected the two most competitive systems from the Geographica 2 bench-
mark, namely Strabon and GraphDB. For Strabon we used v3.3.2-SNAPSHOT
and for GraphDB v9.10.3. The test server was a Dell Inc PowerEdge R820 with
128 GB, with an Intel(R) Xeon(R) CPU E5-4603 v2 @ 2.20GHz with 32 execution
threads, running Ubuntu 18.04.6 LTS. The system also features a PostgreSQL
v12.10 installation as it is required by Strabon and was appropriately tuned.
For disk-based centralized systems we report both warm cache and cold cache
times. For GraphDB the Preload loading tool was used for all repositories. For
Strabo 2 we used Spark 2.4.5 and Hive 2.3.6. We also used all available pro-
cessing threads and we set 116 GB of memory available to Spark, although even
for the 500M dataset half of this amount was enough.

In this set of experiments we have used the Scalability Workload and the
PregenSynthetic workload. For the latter, four increasingly bigger datasets were
generated, with scaling factor N in {512, 768, 1024, 2048}. For each dataset the
corresponding query set had two thematic tags to help achieve the least and max-
imum thematic selectivity and the spatial selectivity list was fixed to (100%, 10%,
1%). The execution results for the scalability workload are shown in Figure 4.
From the two centralized systems, Strabon exhibits better performance. In com-
parison with Strabon, Strabo 2 performs worse for the small datasets, but
once the datasets size is increased, especially for the 100M and 500M, Strabo
2 in most cases outperforms the centralized solutions. An important point is
that both centralized systems scale poorly when we increase the dataset size
beyond 10M triples. As an example, even in the warm cache setting for spatial
join 1, where Strabon performs faster than Strabo 2 with execution time
of 133.29 seconds, we have an increase of 10x in execution time from the 100M
case, whereas the corresponding increase for Strabo 2 is 6x. Due to space
limitation we omit the full results for the PregenSynthetic workload, which are
available at the supplemental material, but the systems exhibit similar behaviour.
Especially for the dataset with scaling factor of 2048, from the total 28 queries,
GraphDB had 12 timeouts and an average time of 82 and 45 seconds (cold
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and warm cache) for the 16 succeeded queries, whereas Strabon and Strabo
2 had no timeouts with average execution time of 134 and 105 seconds (cold
and warm cache) from Strabon and only 28 seconds for Strabo 2.

Fig. 4: Execution Results for Scalability Workload

5 Conclusions and Future Work

We presented Strabo 2, the first distributed geosaptial RDF store, able to
handle massive datasets beyond the capabilities of centralized systems. Through
experimental evaluation, we showed that Strabo 2 is faster even in a single
server environment, once the dataset size reaches several GBs, by taking advan-
tage the parallel multi-threaded execution carried out by Spark. For future work
we plan to cover the GeoSPARQL RCC8 and Egenhofer topological relations
and the Query Rewrite Extension.
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