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Abstract. We present the geospatial question answering engine GeoQA2
which is the most recent version of the engine GeoQA, originally proposed
by Punjani et al. GeoQA2 has been designed to work over the geospatial
knowledge graph YAGO2geo. GeoQA2 improves GeoQA by being able
to answer more complex geospatial questions (e.g., questions involving
aggregates and arithmetic comparisons), having more effective individ-
ual components (e.g., for named entity recognition and disambiguation),
supporting more templates for generating GeoSPARQL queries, and ex-
ecuting these queries more efficiently by using a technique based on ma-
terializing topological relations.
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1 Introduction

Users are often interested in posing questions or information requests with a
geospatial dimension to search engines, chatbots, and virtual personal assis-
tants. Examples of such geospatial questions are: “Which rivers cross London?”,
“Is there a Levi’s store in Hannover?”, “Which countries border Greece?”. An-
swering such questions or information requests requires structured data enriched
with a geospatial dimension. There is plenty of such data available today in the
form of geospatial knowledge graphs (KGs) (e.g., YAGO2 [4] YAGO2geo [6],
WorldKG [1] and KnowWhereGraph [5]) or linked geospatial data [8].

The standard way to retrieve knowledge from geospatial KGs (or RDF stores
storing linked geospatial data) is by using the query language SPARQL and its
geospatial extensions GeoSPARQL and stSPARQL. However, to better serve
the needs of non-technical end users, a system that will enable posing geospatial
questions in natural language is needed. Although the developments in question
answering (QA) over structured or unstructured data have been significant dur-
ing the last few years, the geospatial dimension introduces additional challenges
[9]: i) the QA system has to automatically identify the spatial representation
(e.g., point, polygon) of the entities to choose, depending on the context of the
question; ii) the interpretation of spatial operations and relations is subject to



2 Punjani et al.

the map scale tied to the question (e.g., the word “near” is interpreted differently
for the questions “Which countries are near Greece?” and “Which POIs are near
Acropolis?”); iii) the problem of spatial relation recognition can be difficult due
to the variability of the spatial language (north of Greece vs. northern Greece);
iv) calculations among the geometries of the entities mentioned in the question
may be required, a process that can be computationally very expensive.

In this paper we address the above challenges by developing the geospatial
QA system GeoQA2 which answers questions over the KG YAGO2geo. GeoQA2
is based on GeoQA, the first geospatial QA engine proposed by [10] and in a
revised version in [11]. GeoQA2 is available as open source at https://github.
com/AI-team-UoA/GeoQA2. The differences between GeoQA2 and GeoQA can
be summarized as follows. First, GeoQA was targeting DBpedia, and the parts
of the Global Administrative Areas dataset (GADM, https://gadm.org/) and
OpenStreetMap (OSM) for the United Kingdom and Ireland. The targeted KG
of GeoQA2 is YAGO2geo [6], which is a large geospatial KG based on YAGO2,
GADM, official geospatial data sources for some countries of Europe and the
USA, and a subset of OSM. Targeting a single KG makes the step of query gen-
eration easier, and hence the QA process faster. Second, GeoQA2 can answer a
greater variety of questions with respect to their complexity, including questions
with quantities and aggregates (e.g., “What is the area of the city of London?”
and “How many lakes are in Greece?”), superlatives (e.g., “Which municipality
is the largest by population in Greece?”) and comparatives (e.g., “Is Lake Baikal
bigger than the Ioannina Lake?”). Finally, GeoQA2 is implemented utilizing
optimized versions of the individual modules of the original GeoQA pipeline.

In recent work [7], we have also developed the dataset GeoQuestions1089
and used it to evaluate GeoQA2 and compare its accuracy with the geospatial
question answering engine of Hamzei et al. [3]. GeoQuestions1089 contains
simple but also semantically complex questions that require a sophisticated un-
derstanding of both natural language and GeoSPARQL to be answered. [7] ar-
gues that although GeoQA2 outperforms the engine of Hamzei et al., mainly
because of its disambiguation component, neither engine is able to process com-
plex questions caused by both a limited vocabulary of geospatial relations and
a template-based approach to query generation. [7] also shows that the pre-
computation and materialization of entailed, but not stored explicitly, topologi-
cal relations between entities in geospatial KGs, as done in the implementation
of GeoQA2, can lead to substantial savings in geospatial query processing time.

2 The GeoQA2 pipeline

In this section we present the engine GeoQA2. Note that this is the first paper
that presents this engine in detail; the recent paper [7] gives only a brief summary
of GeoQA2’s pipeline and capabilities.

GeoQA2 takes as input a question in natural language (English), the KG
YAGO2geo and produces one or more answers. Question answering is performed
by translating the input question into a set of SPARQL/GeoSPARQL queries,

https://github.com/AI-team-UoA/GeoQA2
https://github.com/AI-team-UoA/GeoQA2
https://gadm.org/
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Fig. 1: The conceptual architecture of the GeoQA2 system

ranking these queries, and executing the top ranked query over a YAGO2geo
endpoint. GeoQA2 has been implemented using Frankenstein platform which
uses lightweight component-based QA methodology for efficient engineering of
QA systems. In Figure 1, we illustrate the conceptual view of the GeoQA2
pipeline, which contains the six components described below.

Dependency and constituency parse tree generator. This component car-
ries out part-of-speech tagging and generates a dependency and a constituency
parse tree for the input question using the Stanford CoreNLP toolkit. The de-
pendency parse tree is produced in CoNLL-U format and will be annotated by
components coming next in the pipeline. The constituency parse tree is utilized
in the query generator module.

Concept identifier. This component identifies the types of features (concepts)
present in the input question and maps them to the corresponding classes of
the YAGO2geo ontology. These concepts are identified by the elements of the
question that are tagged as nouns (NN, NNS, NNP, NNPS) by the dependency
parse tree generator. Then, these elements are mapped to the ontology classes
using n-grams. As an example, let us consider the user question Q: “Which
bays intersect with county councils that border with County Mayo?” and use
it to illustrate the details of various components of the pipeline. For question
Q, the concept identifier identifies the concepts “county councils” (as well as
“county” and “councils”) and “bays”, as they are tagged as NN, NNS, NNP and
maps them to the class yago2geoo:OSI County Council and yago2geoo:OSM
bay, respectively. To simplify the process, we have added labels to the YAGO2geo
classes, for instance, “Bay” corresponds to the class yago2geoo:OSM bay. Hence,
the concept identifier iterates through this list of class labels from the ontology,
it generates the n-grams (where n is the number of words present in each class
label) for Q, and compares the n-grams with the respective class labels. In the
running example, the 2-gram “county councils”, which has string similarity 0.998

yago2geoo:OSI_County_Council
yago2geoo:OSM_bay
yago2geoo:OSM_bay
yago2geoo:OSM_bay
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with the class label “county council” (all letters of the class labels are converted
to lowercase at the pre-processing phase), is mapped to the class yago2geoo:
OSI County Council. If the n-grams contain more than one word then the Jaro-
Winkler string similarity measure is used, otherwise we use the Levenshtein
distance instead.

Instance identifier. This component identifies the features (instances) present
in the input question. These can be, for example, the Corfu island or County
Mayo. The features are identified by the elements of the question that are tagged
as (NN, NNS, NNP) by the dependency parse tree generator. Then, these ele-
ments are mapped to YAGO2geo resources using an entity recognition and dis-
ambiguation tool. In previous work [11] we tested a set of well-known tools for
named entity recognition and/or disambiguation over GeoQuestions201 [10]
and concluded in TagMeDisambiguate [2], which had the best performance.
As TagMeDisambiguate links the identified instances with instances only from
Wikipedia (hence, from YAGO2 as well [4]), we, also, query YAGO2geo to disam-
biguate the instances that are contained in YAGO2geo, but not in YAGO2 (e.g.,
instances in GADM), along with the total number of YAGO2geo triples that con-
tain these instances. In the running example, once the term “County Mayo” is
identified from TagMeDiambiguate, it is mapped to yago2geor:geoentity Mayo
3302545, which is found by executing the SPARQL query SELECT DINSTICT ?x

WHERE{?x yago: hasName "County Mayo"@en} over the YAGO2geo endpoint.

Geospatial relation identifier. Geospatial questions often include some qual-
itative geospatial relation, such as “borders”, or some quantitative ones, such
as “at most 2km”. GeoQA2 supports various geospatial relations and their syn-
onyms (not listed here due to space) including topological, distance and cardinal
direction relations. Similarly to the previous modules, this module first identifies
the geospatial relations in the input question, based on the POS tags {VB, IN,
VP, VBP, VBZ}, generated by the dependency parse tree. Then, it maps them
(or their synonyms) to the respective spatial function of the GeoSPARQL or
stSPARQL vocabulary using the handcrafted Geospatial Relation Dictionary. In
the running example question, the geospatial relations “intersect” and “border”
are identified from their POS tag (VBP) in the dependency tree, and they are
mapped to the spatial functions geof:sfIntersects and geof:sfTouches of
the GeoSPARQL vocabulary. Strabon is used as the back-end grospatial RDF
store [8] (GeoSPARQL does not support any cardinal direction functions or re-
lations, therefore stSPARQL is used instead) similar to previous work [11].

Property Identifier. The property identifier module identifies attributes of
types of features and attributes of features specified by the user in input questions
and maps them to the corresponding properties in YAGO2geo. For instance,
for the question “Which village in Rhodes has the biggest population?”, the
“population” attribute of the type of feature “village” is required.

This module first identifies the properties in the input question, based on the
POS tags {NN, JJ, NNP, NP}, generated by the dependency parse tree. Addi-
tionally, from the concepts identified by the concept identifier it performs pattern
matching between the filtered terms and the labels of the 1-hop connected re-

yago2geoo:OSI_County_Council
yago2geoo:OSI_County_Council
yago2geor:geoentity_Mayo_3302545
yago2geor:geoentity_Mayo_3302545
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lations of the YAGO2geo classes. For instance, for the question “Which village in
Rhodes has the biggest population?”, the terms T = {village,Rhodes, population}
are filtered. Also, the 1-hop relations connected to the class yago2geoo:OSM
village, returned by the concept identifier are selected. Finally, the property
identifier performs pattern matching between these relations and the terms in T .
This way, the YAGO2geo property yago2geop:hasGAG Population is retrieved.

For two cases, though, this process is not straightforward: first, when the
property is not explicitly mentioned in the question and, second, when the KG
does not explicitly contain the implied property. Consider the question “Which
is the largest lake in Greece?”. Here, the qualification “by area” is not clearly
stated but implied. For such cases, we have defined the rules (not listed here
due to space limit) to identify the implied properties. It is to be noted that the
list of rules can be extended further without having any impact on the process
as required. In particular, the implied property is specified from the classes
participating in the question (returned by the concept identifier), the JJS or
NN POS tags of the edges of the dependency parse and the implied properties.
Hence, in the previous example, to capture the property “area”, after identifying
with the concept identifier the class yago2geoo:OSM lake, the property identifier
checks if the POS tags of the edges of the dependency parse are annotated as JJS
(adjective, superlative, e.g. “biggest”) or NN (noun, singular, e.g. “lake”) and if
so, it then checks if any of the keywords {smallest, biggest, largest} appears in
the question. If this is the case, according to the table of implied properties, the
question is annotated with the “area” property. Supposing, now, that YAGO2geo
does not contain any property related to the term “area” for the class yago2geoo:
OSM lake, then the areas of the lakes in Greece will be calculated by applying
the stSPARQL function strdf:area() on their geometries.

Query generator. This module generates the formal query using handcrafted
query patterns, templates, and the outputs of the previous modules. In particu-
lar, the query generator reformulates the annotated (by the previous components
of the pipeline) dependency parse tree and parses it with inorder traversal. From
this process, it identifies the pattern of the question and, then, the respective
template. Finally, the GeoSPARQL or SPARQL queries are generated from the
templates and the resources identified from the previous modules of the pipeline.
If the user question does not match any of the patterns, a message is passed to
the query executor that no query has been generated.

We utilized the question patterns defined by [11], which we extended with
one more question pattern (PCRCRI). These patterns contain different elements
where “C” stands for “concept”, “I” for “instance”, “R” for “geospatial relation”,
“P” for “property” and “N” for “Count of”, following the terminology introduced
above. Notice that the identification of the intent of the question is implicitly
executed through the identification of the proper query template. The query
templates contain slots (strings starting with an underscore), which are replaced
by the query generator with the outputs of the previous modules.

For instance, the question pattern of the running example question is CR-
CRI. The dependency parse tree is annotated with the concepts (C) yago2geoo:

yago2geoo:OSM_village
yago2geoo:OSM_village
yago2geop:hasGAG_Population
yago2geoo:OSM_lake
yago2geoo:OSM_lake
yago2geoo:OSM_lake
strdf:area()
yago2geoo:OSM_bay
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OSM bay and yago2geoo:OSI County Council, the geospatial relations (R) geof:
sfIntersects and geof:sfTouches and the instance (I) yago2:County Mayo. The
question pattern is extracted by traversing the tree in the in-order traversal.

To capture more complex questions, containing superlatives, comparatives,
or counts, the query generator uses, also, the constituency parse tree of the
input question generated by the constituency parse tree generator module. Con-
sider the question “Which civil parishes in Ireland have more than 10 town-
lands?”. The identified templates are reformulated based on its dependency and
constituency parse tree, and on the handcrafted rules. This way, for instance,
the query generator will detect that the question contains the quantifier phrase
(QP) “more than 10”. Hence, it will automatically replace the “SELECT ?x” with
“SELECT ?x (COUNT(?y) AS ?total)” and it will add GROUP BY(?x) HAVING

(?total > 10) at the end of the query generated by the template-based ap-
proach.

For superlative questions (e.g., “Which county of England has the most
parks?”), the query generator checks if there is an edge in the dependency
parse tree which contains the set of POStags {RBS, JJS/DT} and does not
contain QP from the constituency parse tree. In this case, the “GROUP BY(?x)

ORDER BY DESC(?total) LIMIT 1” is added at the end of the query generated
by the template-based approach. As the query contains “GROUP BY(?x)”, the
“SELECT DISTINCT ?x” appearing in the query is appended with “(COUNT(?y)
AS ?total)”. The reformulation of the queries for the rest of the aggregates is
based on the keyword in question.

Lastly, the query generator ranks the generated queries. The ranking system
employed is based on the estimated selectivity of the generated queries. It com-
putes the selectivity of a SPARQL or GeoSPARQL query taking into account
only the triple patterns present in the query. The generated query with the low-
est selectivity is selected to be executed; in this way, it expects to generate more
results to the user question. It is to be noted that preference to the generated
GeoSPARQL query is given over the generated SPARQL query for the question.
Materialization of topological relations. We have found through experi-
ments that some of the queries generated by the query generator of GeoQA2
have a significant execution overhead due to expensive computations of topo-
logical functions over complicated geometries. To alleviate this situation we pre-
compute some topological relations (“within”, “crosses”, “intersects”, “touches”,
“overlaps”, “covers” and “equals”) between any pair of geometries and store the
result as a triple in the KG. Although this consumes space, it is very effective
during query processing time. Detailed results are given in [7].

3 Evaluation

In [7] we present the benchmark GeoQuestions1089, which contains 1089
triples of geospatial questions, their answers, and the respective SPARQL or
GeoSPARQL queries. GeoQuestions1089 is currently the largest geospatial
QA benchmark and it is publicly available. GeoQuestions1089 follows the

yago2geoo:OSM_bay
yago2geoo:OSM_bay
yago2geoo:OSI_County_Council
geof:sfIntersects
geof:sfIntersects
geof:sfTouches
yago2:County_Mayo
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same file structure and question categorization as GeoQuestions201 intro-
duced in [10], but is a much larger and more varied dataset. GeoQuestions1089
includes numerous complex questions that require both solid natural language
understanding and advanced SPARQL features (nested queries, not-exists fil-
ters, arithmetic calculations) to be answered. For our evaluation we compare
the results returned by each engine to the gold-result included in GeoQues-
tions1089. To accept an answer as correct, it must match the gold result ex-
actly. We do not consider partially correct answers (e.g., when computed answers
are a proper subset of the ones in the gold set) as correct. Likewise, we do not
consider a superset of the answers in the gold set as correct.

Table 1: Evaluation of GeoQA2 and the engine of Hamzei et al. [3] over Geo-
Questions1089.

Category
Hamzei et al. GeoQA2

Generated
Queries

Correct
Answers

Correct
Answers*

Generated
Queries

Correct
Answers

Correct
Answers*

Type-A 89.71% 10.85% 12.10% 84% 47.42% 56.45%
Type-B 95.68% 53.23% 55.63% 76.25% 58.99% 77.35%
Type-C 97.75% 30.33% 31.03% 79.21% 44.38% 56.02%
Type-D 100% 12% 12.00% 56% 12% 21.42%
Type-E 99.25% 7.40% 7.46% 80% 31.85% 39.81%
Type-F 79.16% 4.10% 5% 66.66% 16.66% 25%
Type-G 98.27% 11.49% 11.69% 74.13% 32.18% 43.41%
Type-H 97.18% 7.74% 7.97% 71.12% 26.05% 36.63%
Type-I 92% 0% 0.00% 84% 20% 23.80%
Total 95.77% 18.97% 19.81% 76.99% 38.54% 50.06%

Engine comparison. The results of our evaluation show that GeoQA2 signif-
icantly outperforms the QA engine of [3] (the only other geospatial QA engine
working on YAGO2geo) by generating twice the amount of correct queries. The
main factor of this performance gap is the existence of a dedicated named entity
disambiguation step in GeoQA2 (instance identifier). Other than this main dif-
ference, the two engines are similar in a number of ways. Both utilize dependency
and constituency parsing to understand the structure of the input question and
the relations that exist among its tokens. Likewise, both engines have a rule-
based query generator that uses a set of predefined templates that are filled in
with instances and concepts to generate the final GeoSPARQL queries, although
the engine of [3] uses a more of a dynamic approach of combining smaller tem-
plates which allows it to generate queries for a significantly larger portion of the
dataset. Considering these similarities, it follows that the engines must share
some weaknesses. That is the case, with the inability of either engine to reliably
answer complex questions being their most important weakness.
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4 Conclusions and Future Work

We have addressed the challenge of providing access to the YAGO2geo KG for
non-expert users using the question answering engine GeoQA2. The effectiveness
of our previous engine GeoQA has been greatly improved and now GeoQA2 can
also answer much more complex questions containing e.g., aggregations, superla-
tives and comparatives. In related work [7], we showed that GeoQA2 outperforms
the QA engine of [3] over the dataset GeoQuestions1089. However, there is
still plenty of room for improvement for both engines; this is the topic on which
we now concentrate our attention using ideas from deep learning and, especially,
large language models.
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