
[Vision] Self-configured Entity Resolution with pyJedAI

Vasilis Efthymiou1, Ekaterini Ioannou2, Manos Karvounis3, Manolis Koubarakis4, Jakub Maciejewski4, Konstantinos
Nikoletos4, George Papadakis4, Dimitris Skoutas5, Yannis Velegrakis6, Alexandros Zeakis5 (alphabetical order)

1Foundation for Research and Technology - Hellas, Greece vefthym@ics.forth.gr
2Tilburg University, The Netherlands Ekaterini.Ioannou@tilburguniversity.edu

3Agroknow - Greece manos.karvounis@agroknow.com
4University of Athens, Greece {koubarak,sdi1700080,k.nikoletos,gpapadis}@di.uoa.gr

5Athena Research Center, Greece {dskoutas,azeakis}@athenarc.gr
6Utrecht University, The Netherlands i.velegrakis@uu.nl

Abstract—Entity Resolution has been an active research topic
for the last three decades, with numerous algorithms proposed
in the literature. However, putting them into practice is often a
complex task that requires implementing, combining and config-
uring complementary individual algorithms into comprehensive
end-to-end workflows. To facilitate this process, we are developing
pyJedAI, a novel system that provides a unifying framework
for any type of main works in the field (i.e., both unsupervised
and learning-based ones). Our vision is to facilitate both novice
and expert users to use and combine these algorithms through
a series of principled approaches for automatically configuring
and benchmarking end-to-end pipelines.

Index Terms—entity resolution, automatic configuration

I. INTRODUCTION

Entity Resolution (ER) has been an active area of research
for the last decades, as it constitutes a core data integration task
[1]. Most works on ER, though, focus on the development of
individual methods that pertain to a single step in end-to-end
ER pipelines [2]. As a result, many open challenges remain
towards building unified, holistic ER systems that are capable
of addressing modern data integration needs, especially as
organizations increasingly turn to data lakes to enable ad hoc,
self-service analytics [3].

In such contexts, ER has to face massive collections
of datasets from different sources, which may change au-
tonomously over time, and which are characterized by high
variety in terms of structure, format, content, metadata and
quality [4]. Examples of related ER challenges are given in
the following two use cases:

1) Agroknow (https://agroknow.com) maintains a data lake
with reports about food safety incidents (e.g., salmonella in
a particular poultry product) that are crawled from the web
sites of various regional, national or international authorities
from all over the world. Typically, every incident is reported
by multiple food safety authorities, as the problematic lots
are imported and distributed in various countries. The high
complexity of the food supply chain results in the same under-
lying issues being reported at different dates, from different
countries, or in different points in the overall supply chain
(e.g., at the market or at a distribution or processing level),
and might even involve multiple and distinct lot numbers, all
of which might be affected by the same higher-level issue.

A food safety expert needs to know as fast as possible if
a particular food incident is the same as an already seen
one, or is an entirely new incident that requires immediate
action. Currently, this process requires time-consuming human
involvement, archival search and cross-department or cross-
organisational communication and coordination. ER can auto-
mate this process, assisting the food safety experts to handle
urgent issues of public health more decisively and timely.

2) Marketplace platforms recently focused on gaining
a competitive advantage by adopting digital transformation
strategies, including the use of data lakes for various tasks.
Consider, for example, a platform that creates a network of
resources based on current market demands and information
that is then decomposed to determine its product prices and/or
discounts [5]. Constructing this network requires being able to
detect identical products from other platforms. Another exam-
ple is bidding on advertising slots for products through real-
time auctions. For instance, approaches have been suggested
to automatically determine the applications to bid as well as
the bid prices [6]. Relevant approaches are not restricted to
detecting identical products, but can actually benefit from a
loose form of matching between the products.

In such data lakes, pay-as-you-go entity-centric approaches
are necessary for modern data integration use cases in addition
to the traditional batch-based integration. The latter produce
results only after processing the entire input and thus are
inappropriate for ER applications with restricted computa-
tional or temporal resources (e.g., cloud-based applications
with a limited budget for AWS Lambda functions); these
are served by the former, which maximize the throughput
[7]. Besides tackling efficiency, scalability, accuracy and data
variety, modern ER systems also need to offer increased
automation, trustworthiness and ease of integration with other
widely used data science tools.

There exist numerous ER tools, both commercial and open-
source ones. However, the former encompass algorithms and
features that are largely unclear, as explained in the extended
version of [8]. The latter come from the database and the
Semantic Web communities, mainly focusing on structured
(e.g., Magellan [8]) and semi-structured (e.g., LIMES [9])
data, respectively. There exist also certain systems, namely

https://agroknow.com


MinoanER [3] and Machop [10], that bridge the gap between
the two groups by applying seamlessly to structured and
semi-structured data. However, all these tools implement a
few methods, which are typically crafted for batch ER, as
explained by the detailed comparisons in [11]. Thus, they
suffer from a narrow scope, while requiring expert users
to fine-tune and deploy them to practical use cases. This
means that they are not suitable for covering the modern ER
challenges, such as those arising in the context of data lakes.

To address these issues, we are developing pyJedAI, a
novel open-source system in Python that aims to become the
ultimate library of ER. Its goal is to unify all state-of-the-art
approaches into a common framework that facilitates their use
through ample documentation and principled approaches for
automatic configuration optimization. pyJedAI will also allow
for benchmarking individual methods and entire pipelines. In
what follows, we elaborate on our plan for pyJedAI.

II. PROBLEM DEFINITION

The main ER task can be formally defined as follows [3]:
Problem 1 (Clean-Clean ER): Given two duplicate-free

entity collections, E1 and E2, detect all the duplicate entity
profiles {(ei, ej)| ei ∈ E1∧ej ∈ E2∧ei ≡ ej}, where ei ≡ ej
indicates that ei and ej describe the same real-world object.

Clean-Clean ER is also called Record Linkage, in contrast
to Deduplication or Dirty ER, where a single entity collection
E is given as input with duplicates in itself [12], [1].

Typically, ER deals with entity profiles containing textual at-
tributes (e.g., names, descriptions, addresses). However, many
entities are also associated with a geolocation (e.g., entities
corresponding to physical objects). In that case, the geometries
(e.g., points, lines, polygons) of these entities need to be
taken into account. This may also lead to additional types
of relationships, besides equivalence, such as containment or
adjacency – e.g., a store may be located within a shopping
mall, or a parking lot may be adjacent to a building. Linking
these entities is often crucial for many applications, like
providing routing directions in a navigation application.

Geospatial Interlinking [13] is formally defined as [14]:
Problem 2 (Geospatial Interlinking): Given a source dataset

S, a target dataset T along with a set of topological relations
R, discover the set of links LR = {(s, r, t)|s ∈ S ∧ t ∈
T ∧ r(s, t) ∧ r ∈ R} as efficiently as possible.

Note that popular topological relations are those defined by
the DE-9IM model [14]: intersects, contains, within, covers,
covered-by, equals, touches, crosses, overlap and disjoint. Note
also that both ER and Geospatial Interlinking suffer from
a quadratic time complexity, as their brute-force solutions
have to consider all valid pairs of input profiles. Hence, both
tasks are solved through a filtering-verification framework
in practice: the filtering step, a.k.a., blocking, applies a quick
and approximate procedure that reduces the computational cost
to the candidate pairs, i.e., profiles that are most likely to
be true positives, while the verification step, a.k.a., matching,
performs a time-consuming process that examines the resulting
candidates in detail. Methods of these two steps are typically
combined in (complex) end-to-end workflows or pipelines.

0.0

0.2

0.4

0.6

0.8

1.0

D1 D2 D3 D4 D5 D6

F1

Conf1 Conf2 Conf3 Conf4 Conf5 Conf6

Fig. 1. Impact of parameter configuration on ER performance.

III. CHALLENGES

ER researchers and practitioners face the following chal-
lenges when implementing ER solutions:

• The internal parameters typically affect the performance
of individual methods and, thus, entire workflows to a large
extent. As an example, consider Figure 1. We have fine-
tuned pyJedAI on six different datasets from various do-
mains that are widely used in the literature: D1 (restaurants),
D2 (abt.com-buy.com), D3 (Amazon-Google Products), D4

(IMDB-TMDB), D5 (Walmart-Amazon) and D6 (Movies).
Confx denotes the fine-tuned pipeline for Dx.1 Applying
these pipelines on all datasets, we observe that the relative
difference in F-measure between Confx and the second best
pipeline on Dx, for x an integer in [1, 6], is rather high, fluc-
tuating between 16% (D2) and 36.5% (D5).2 In other words,
none of the pipelines approximates the optimal performance in
any dataset apart from the fine-tuned one. Note also that every
pipeline consists of at least five consecutive methods and,
thus, their configuration is non-trivial, especially for novice
users. This clearly demonstrates the critical role played by the
configuration parameters of end-to-end ER pipelines. Yet, fine-
tuning an entire ER pipeline or even one of its components is
a non-trivial task, as it requires knowledge of the domain of
each configuration parameter as well as principled techniques
for minimizing the search space.

• Similarly, benchmarking individual state-of-the-art algo-
rithms on the same task is another challenge, because their
relative performance depends heavily on their internal param-
eters, thus calling for configuration optimization.

• It is hard for users, especially the novice ones, to keep
up with the latest advancements in ER. For example, at least
six open-source matching algorithms based on deep learning
have been recently published [15]. Using a tool that timely
incorporates latest developments would alleviate this difficulty.

• Applying an existing ER technique to a task that is slightly
different from the one that it was originally crafted for is not
straightforward. Consider as an example a DL-based matching
algorithm for batch ER that is applied to streaming data.

1For more details about the performance and configuration per dataset,
please see: https://pyjedai.readthedocs.io/en/latest/pages/benchmarks.html.

2One could argue that a common, high-performing workflow for all datasets
can be determined by performing grid search on their union. This is not
practical, though, as ER practitioners want to reuse workflows fine-tuned on
one domain to another.

https://pyjedai.readthedocs.io/en/latest/pages/benchmarks.html


• To the best of our knowledge, none of the existing open-
source systems justifies its results, apart from providing a
similarity score between candidate pairs of entities. In many
applications, though, detailed explanations are required about
(non-)matching decisions, especially when processing sensi-
tive data, in order to ensure the absence of bias. Related to this
issue is the lack sufficient documentation, which can be used
for automatically generating explanations. The documentation
is also crucial for users, even experienced ones, who try to
build workflows, facilitating them to select the most suitable
techniques for the task(s) at hand. This pertains both to
the configuration of individual methods and to the resulting
performance in terms of effectiveness and time efficiency (e.g.,
‘the similarity threshold of matching algorithm X was set
high, to 0.8, in order to trade slightly lower F-measure for
significantly lower run-time’).

IV. PAST AND PRESENT

To address these challenges, we are developing pyJedAI,
which currently offers a comprehensive set of established,
learning-free methods for Clean-Clean ER and Geospatial In-
terlinking. pyJedAI has been under intense development since
2017 [11], [16], [17], with all versions publicly available3,
offering the following unique characteristics:

• It is released under the Apache License, Version 2.0, thus
supporting both academic and industrial applications.

• It is format-agnostic in the sense that it allows for resolving
datasets in any data format: structured (relational databases,
csv files), semi-structured (SPARQL endpoints, RDF dumps,
XML and OWL files) and unstructured (free text). Any
combination of these datasets is also possible. E.g., pyJedAI
supports scenarios of Problem 1, where E1 is a structured data
source, E2 an unstructured one, while their ground-truth is
expressed as semi-structured data. This versatility is achieved
through a simple, generic data model based on name-value
pairs, and through an inherently schema-agnostic functionality
in every step of every end-to-end workflow.

• It is extensible in the sense that it facilitates the integration
of any algorithm that targets specific workflow steps in the
available end-to-end pipelines. For example, every component
in Figure 2 specifies a concise interface, based on appropriate
data structures. Thus, any ER technique can be added to
this pipeline through a wrapper that receives the input of
the corresponding workflow step and transforms it into the
required format. The wrapper should also transform the output
of the technique into the data structure produced by the
corresponding workflow step. This adds new techniques in
a transparent way, without requiring heavy user involvement
– just routine data transformations. We have already applied
this approach to: (i) the state-of-the-art approximate nearest-
neighbor search techniques FAISS [18] and FALCONN [19],
(ii) DeepBlocker [20], which leverages deep learning without
requiring a training set, and (iii) the main language models,

3https://github.com/AI-team-UoA/pyJedAI

Data 
Reading

Schema
Matching

Block
Building

Block
Cleaning

Data Writing
& Evaluation

Entity
Matching

Comparison
Cleaning

Entity
Clustering

Data 
Reading

Data Writing
& Evaluation

Entity
MatchingQuerying Entity

ClusteringIndexingVectorization

Fig. 2. One of pyJedAI’s pipelines for batch ER. Gray rectangles indicate
optional steps. Self-loops show that multiple methods can be selected per step.

like the (Sentence)BERT-based ones, which can be used in the
schema matching, block building and/or entity matching steps
of the pipeline of Figure 2 [21].

• It is holistic in the sense that it supports end-to-end pipelines
of any type with respect to schema- and budget-awareness
for Problems 1 and 2. Schema-awareness distinguishes ER
pipelines into schema-based (leveraging similarity joins) and
schema-agnostic ones (leveraging blocking), while budget-
awareness distinguishes them into budget-agnostic (batch) and
budget-aware (progressive/pay-as-you-go) ones.

• It is efficient with respect to time and memory require-
ments, due to implementation optimizations (e.g., using na-
tive Python’s data structures) and the largest set of relevant
techniques than any other open-source ER tool [11].

• It is versatile in the sense that it supports all major execution
modes, i.e., stand-alone execution on a single CPU-core,
massively parallel execution on top of Apache Spark and
multi-core execution. These execution models are uniformly
provided to all methods addressing Problems 1 and 2.

• It is usable in the sense that it supports a wide variety
of user interfaces. These include a command-line interface,
a desktop application (based on JavaFX) with an intuitive
wizard-like interface4, a Web application based on ReactJS
and Spring (boot+ MVC) that can be easily installed and run
through Docker5 as well as Python notebooks and ready-to-use
interfaces that require no installation, as they are built on top
of Colab.6 Each type of interface demonstrates the relative per-
formance of evaluated pipelines in terms of effectiveness and
evaluation measures (i,e., recall, precision, F1 and run-times).
Most of them also provide more advanced visualizations that
allow for examining the input, the intermediate and the output
data of an end-to-end ER workflow as well as for comparing
the relative performance of two or more workflows in more
detail. Equally important is the documentation that accom-
pany pyJedAI’s interfaces. They include how-to guides and
examples for all available methods, explaining how to apply
them through each user interface7, but also how to use them
in code – the latter consists of a set of scripts that demonstrate
the application of highly performing pipelines on a series of
benchmark datasets. Note also that every method added to
pyJedAI implements the Documentation interface, which
provides a short description of its functionality, the role of its
configuration parameters and their domain. These interfaces
are available for methods addressing both Problems 1 and 2.

4See https://github.com/scify/jedai-ui for more details.
5See https://github.com/AI-team-UoA/JedAI-WebApp for more details.
6https://colab.research.google.com
7E.g., video tutorials like https://www.youtube.com/watch?v=

OJY1DUrUAe8&t=3s.

https://github.com/AI-team-UoA/pyJedAI
https://github.com/scify/jedai-ui
https://github.com/AI-team-UoA/JedAI-WebApp
https://colab.research.google.com
https://www.youtube.com/watch?v=OJY1DUrUAe8&t=3s
https://www.youtube.com/watch?v=OJY1DUrUAe8&t=3s


V. FUTURE OUTLOOK

Our vision is to turn pyJedAI into the ultimate community-
driven library for ER that addresses all challenges in Section
III through configuration optimization. To this end, we are
actively working towards integrating the state-of-the-art open-
source matching techniques that leverage machine and deep-
learning (see [15] for an overview). Special care is also taken
to make the most of the open-source large language models
that are publicly available through Hugging Face8, building
matching algorithms based on prompt engineering [22], [23].

With the existing methods and the ones that will be added
soon, pyJedAI can be used to creating millions of end-to-end
ER workflows, i.e., realizing any possible ER situation. Yet,
fine-tuning a particular pipeline is a non-trivial task, especially
for a novice user, who typically is not familiar with most
of the available techniques. Therefore, our main goal is to
equip pyJedAI with techniques that facilitate or even optimize
the configuration of any pipeline. More specifically, pyJedAI
should support the following five scenarios:

• Scenario 1: Known ground-truth and pipeline. In this case,
the goal is to fine-tune a specific end-to-end workflow over a
given dataset, which is accompanied by the golden standard
of real duplicates (ground-truth). Several techniques can be
leveraged, such as grid and random search, but the former
is too time-consuming and even impractical for complex
pipelines, while the latter is not guaranteed to identify the best
configuration for all workflow steps in an end-to-end pipeline.
Therefore, more advanced algorithms for configuration op-
timization are required to effectively reduce the extremely
large search space of configuration parameters. For higher
efficiency, the new algorithms should provide inherent support
to multi-core or MapReduce parallelization. They should also
apply to any possible pipeline generated by pyJedAI. To this
end, pyJedAI will adapt the idea of model cards for machine
learning models [24] to ER methods and pipelines: every
implemented method will be associated with a reasonable set
of values (e.g., q in q-grams blocking is usually defined in
[2, 6] with a step of 1), the appropriate metrics, its intended
use, factors affecting its performance etc.

• Scenario 2: Known ground-truth, but unknown pipeline. This
is a generalization of the previous task. Instead of trying to
optimize a specific ER pipeline, its goal is to identify the
best workflow for the data at hand among those supported
by pyJedAI based on its golden standard of duplicates. The
key in this process is to significantly curtail the search space
of possible end-to-end workflows. No relevant methods have
been proposed for ER in the literature. Inspiration will be
drawn from the AutoML literature [25] as well as from recent
works on meta-learning [26]. The final step in this process is
to optimize the configuration of the selected pipeline using the
methods of the previous scenario.

• Scenario 3: Unknown ground-truth, but known pipeline. In
these settings, the user tries to apply a specific pipeline that

8https://huggingface.co/models?pipeline tag=text-generation

is expected to yield high performance to a dataset that lacks a
golden standard of duplicates. Apparently, this requires fine-
tuning the configuration parameters of its constituent methods.
However, there is no relevant method in the literature at the
moment. We thus plan to develop new techniques that extract
generic features from the input data and are capable of pre-
dicting near-optimal parameter values for each workflow step
based on learning models that have been trained on instances
that capture the performance of state-of-the-art pipelines over
a series of established ER datasets.

• Scenario 4: Unknown ground-truth and pipeline. Given that
pyJedAI aims at a broad audience, its user base will primarily
comprise novice users who perform exploratory analyses.
As a result, most of its practical applications will involve
datasets with unknown ground-truth and unknown pipelines.
Unfortunately, the literature lacks any approaches for fine-
tuning end-to-end workflows under these settings. To address
this issue, we will develop and implement novel algorithms for
configuration recommendation. They receive as input a specific
dataset along with the performance of numerous pipelines
over established benchmark datasets. Based on generic dataset
profiles, they produce a ranking list of the most suitable
pipelines together with the corresponding parameters.

• Scenario 5: Type-specific configurations. Data lakes and
knowledge graphs typically involve a large number of entity
profiles that stem from a rich diversity of data sources and
domains, thus differing significantly in their characteristics.
For example, most product descriptions are usually associated
with a single long textual description, while music and person
profiles are associated with multiple, rather short attributes.
In these settings, applying a common end-to-end workflow to
all entity profiles is probably less effective and efficient than
applying a different pipeline to the entities of each type. Even
though several techniques have been proposed for automati-
cally detecting entity types [27], there is no relevant approach
for a-priori specifying the best workflow and configuration per
entity type in a data lake. We intend to equip pyJedAI with
novel algorithms for parameter fine-tuning based on generic
characteristics of the automatically detected entity types. The
goal of these configurations is to minimize the overall run-
time, while maximizing accuracy.

Seemingly, these tasks can be solved by existing approaches
for transfer learning or hyperparameters fine-tuning. In prac-
tice, though, the automatic configuration of end-to-end ER
pipelines differs substantially from these two approaches,
which focus on configuring individual methods. Instead, our
vision is to develop data-driven approaches that automatically
build effective pipelines by combining multiple methods, each
of which needs its own fine-tuning. Given that there is no clear
winner in any ER workflow step, this process is quite complex
even for a simple batch pipeline, especially when considering
the trade-offs between recall, precision and run-time.

Challenges: All methods addressing the above scenarios
should offer the following characteristics:

1) They should be self-configurable, i.e., they should be

https://huggingface.co/models?pipeline_tag=text-generation


carried out automatically, without any human intervention.
2) They should offer visualizations that demonstrate the effect

of every configuration parameter in any method.
3) They should support a step-wise as well as an holistic

functionality. The former operates in a local manner that
fine-tunes the methods in a pipeline one-by-one, starting
from the first, while the latter simultaneously fine-tunes all
pipeline methods at once.

4) They should consider the user requirements about perfor-
mance in terms of accuracy vs prediction time.

5) They should log all experimental results similar to MLflow
(https://mlflow.org) for ML pipelines. The recorded infor-
mation will allow for: (i) backtracking to fix the configura-
tion of a previous step before fine-tuning the current one,
and (ii) terminating the search for optimal configuration
early on, based on a continuous cost-benefit analysis.

6) They should should inherently support fairness and ex-
plainability. Existing works are crafted for batch matching
algorithms [28]. We plan to incorporate it into all methods
and pipelines implemented by pyJedAI, including blocking
methods and progressive pipelines. A critical issue in this
effort is to impose the fairness constraints as early as
possible so as to increase time efficiency.

7) New benchmark datasets should be developed, given that
current research is “overfitting” the existing ones [15].

At the moment, no existing approach for configuration op-
timization covers any of the above scenarios or requirements.

VI. CONCLUSIONS

We plan to democratize Entity Resolution in two ways: (i)
through a unified framework that implements the main existing
algorithms, and (ii) through the hands-off construction and
configuration of complex, end-to-end pipelines that can be
built by this framework. The first goal is served by pyJedAI,
which provides a solid foundation – starting from zero, or
any other open-source ER system would require much work
for bringing it to the maturity of pyJedAI. The second
goal constitutes the vision proposed in this work, i.e., the
development of algorithms that automatically synthesize and
fine-tune existing solutions into end-to-end pipelines of high
effectiveness and time efficiency.

This vision will be pursued in the next two years, within the
context of the STELAR research project9. After that, we plan
to turn pyJedAI into a public, community-driven project that
keeps pace with the latest development in the field, perhaps
through the Apache Incubator10. To this end, pyJedAI will
rely on a modular architecture, such that a new technique can
be seamlessly integrated into a workflow step as long as it
implements the corresponding interface. The community can
thus work on any of the scenarios described in Section V,
providing novel solutions that with little effort and curation
can be added to pyJedAI.

The success of our effort will be measured with respect
to: (i) The number of successfully supported scenarios from

9https://stelar-project.eu
10https://incubator.apache.org

those described in Section V. (ii) The number of imple-
mented techniques per scenario. (iii) The performance of auto-
configuration methods in terms of effectiveness (f-measure)
and time efficiency (run-time) in the real-world use cases of
Section I as well as in a series of benchmark datasets. (iv)
The number of downloads from PyPI. (v) The number of
endorsements/stars in pyJedAI’s repository.

Ackowledgements. This research was partially funded by
the EU Horizon Europe GA No 101070122 (STELAR) and
the Hellenic Foundation for Research and Innovation (Project
Number: HFRI-FM17-2351 GeoQA, and GA No 969).

REFERENCES

[1] P. Christen, Data Matching. Springer, 2012.
[2] X. Dong and D. Srivastava, “Big data integration,” PVLDB, vol. 6,

no. 11, pp. 1188–1189, 2013.
[3] V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis, and K. Ste-

fanidis, “An overview of end-to-end entity resolution for big data,” ACM
Comput. Surv., vol. 53, no. 6, pp. 127:1–127:42, 2021.

[4] F. Nargesian, E. Zhu, R. J. Miller, K. Q. Pu, and P. C. Arocena,
“Data lake management: Challenges and opportunities,” PVLDB, vol. 12,
no. 12, pp. 1986–1989, 2019.

[5] D. Zhang and Z. Lu, “Assessing the value of dynamic pricing in network
revenue management,” INFORMS J. Comput., vol. 25, no. 1, 2013.

[6] S. Adikari and K. Dutta, “Adaptive ad network selection for publisher-
return optimization in mobile-app advertising,” Decis. Sci., vol. 52, no. 4,
pp. 986–1017, 2021.

[7] S. E. Whang, D. Marmaros, and H. Garcia-Molina, “Pay-as-you-go
entity resolution,” TKDE, vol. 25, no. 5, pp. 1111–1124, 2013.

[8] P. Konda et al., “Magellan: Toward building entity matching manage-
ment systems,” PVLDB, vol. 9, no. 12, pp. 1197–1208, 2016.

[9] A. N. Ngomo et al., “LIMES: A framework for link discovery on the
semantic web,” Künstliche Intell., vol. 35, no. 3, pp. 413–423, 2021.

[10] J. Wang, Y. Li, W. Hirota, and E. Kandogan, “Machop: an end-to-end
generalized entity matching framework,” in aiDM, 2022, pp. 2:1–2:10.

[11] G. Papadakis et al., “Three-dimensional entity resolution with jedai,”
Inf. Syst., vol. 93, p. 101565, 2020.

[12] P. Christen, “A survey of indexing techniques for scalable record linkage
and deduplication,” TKDE, vol. 24, no. 9, pp. 1537–1555, 2012.

[13] M. A. Sherif, K. Dreßler, P. Smeros, and A. N. Ngomo, “Radon - rapid
discovery of topological relations,” in AAAI, 2017, pp. 175–181.

[14] G. Papadakis, G. Mandilaras, N. Mamoulis, and M. Koubarakis, “Pro-
gressive, holistic geospatial interlinking,” in WWW, 2021, pp. 833–844.

[15] G. Papadakis, N. Kirielle, P. Christen, and T. Palpanas, “A critical re-
evaluation of benchmark datasets for (deep) learning-based matching
algorithms,” CoRR, vol. abs/2307.01231, 2023.

[16] M. Papamichalopoulos et al., “Three-dimensional geospatial interlinking
with jedai-spatial,” CoRR, vol. abs/2205.01905, 2022.

[17] K. Nikoletos, G. Papadakis, and M. Koubarakis, “pyjedai: a lightsaber
for link discovery,” in Demo at ISWC, 2022.

[18] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” IEEE Trans. Big Data, vol. 7, no. 3, pp. 535–547, 2021.

[19] A. Andoni, P. Indyk, T. Laarhoven, I. P. Razenshteyn, and L. Schmidt,
“Practical and optimal LSH for angular distance,” in NIPS, 2015.

[20] S. Thirumuruganathan et al., “Deep learning for blocking in entity
matching: A design space exploration,” PVLDB, vol. 14, no. 11, pp.
2459–2472, 2021.

[21] A. Zeakis, G. Papadakis, D. Skoutas, and M. Koubarakis, “Pre-trained
embeddings for entity resolution: An experimental analysis,” PVLDB,
vol. 16, no. 9, pp. 2225–2238, 2023.

[22] R. Peeters and C. Bizer, “Using chatgpt for entity matching,” in ADBIS,
vol. 1850, 2023, pp. 221–230.

[23] A. Narayan, I. Chami, L. J. Orr, and C. Ré, “Can foundation models
wrangle your data?” PVLDB, vol. 16, no. 4, pp. 738–746, 2022.

[24] M. Mitchell et al., “Model cards for model reporting,” in FAT, 2019,
pp. 220–229.

[25] X. He, K. Zhao, and X. Chu, “Automl: A survey of the state-of-the-art,”
Knowl. Based Syst., vol. 212, p. 106622, 2021.

https://mlflow.org
https://stelar-project.eu
https://incubator.apache.org


[26] T. M. Hospedales et al., “Meta-learning in neural networks: A survey,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9, pp. 5149–5169,
2022.

[27] Y. Ma, T. Tran, and V. Bicer, “Typifier: Inferring the type semantics of
structured data,” in ICDE, 2013, pp. 206–217.

[28] V. Efthymiou, K. Stefanidis, E. Pitoura, and V. Christophides, “FairER:
Entity resolution with fairness constraints,” in CIKM, 2021.


	Introduction
	Problem Definition
	Challenges
	Past and Present
	Future Outlook
	Conclusions
	References

