
PLATO: A SEMANTIC DATA CUBE IMPLEMENTATION USING ONTOLOGY-BASED DATA
ACCESS TECHNOLOGIES

Dimitris Bilidas, Anastasios Mantas, Filippos Yfantis, George Stamoulis and Manolis Koubarakis

Dept. of Informatics and Telecommunications
National and Kapodistrian University of Athens, Greece

ABSTRACT

We present Plato, the first semantic data cube implementation
which uses ontology-based data access technologies and, in
particular, the system Ontop. We present the architecture of
Plato and an evaluation of its performance using datasets from
the use cases of the Horizon 2020 project DeepCube.

Index Terms— semantic data cubes, ontologies, ontology
based data access, Ontop

1. INTRODUCTION

A data cube is a multidimensional array of values. It is a natu-
ral data structure for storing analysis-ready Earth observation
(EO) data and other kinds of multidimensional data. Due to
this, a number of data cube infrastructures targeting EO data
have been developed recently (e.g., the Open Data Cube in-
frastructure in Australia, the Euro Data Cube and Earth Sys-
tem Data Cube funded by ESA etc.). These data cube infras-
tructures offer libraries and APIs (e.g., xarray, YAXArrays) to
store and query multidimensional data. However, before data
cube infrastructures became a trend, there had already been
lots of research and development on array data base man-
agement systems (DBMS) (e.g., Rasdaman [7], SciDB [6] and
MonetDB SciQL [9]) that offer declarative query languages
for modeling and querying multidimensional data.

The concept of semantic EO data cubes (or semantic data
cubes for simplicity) was first presented by Augustin et al.
in [4]. The term semantic was used in order to distinguish
them from regular EO data cubes, like the ones that can be
constructed using the above infrastructures, that contain num-
bers without high-level meaning for the user (e.g., reflectance
values). In semantic data cubes these values are related to
symbolic high-level concepts based on an interpretation. We
can define low-level semantic concepts (e.g., the colour of a
pixel) or high-level ones (e.g., the land cover/use of an area).

This work was supported by the first call for H.F.R.I. Research Projects
to support faculty members and researchers and the procurement of high-
cost research equipment grant (HFRI-FM17-2351). It was also partially sup-
ported by the ESA project DA4DTE (subcontract 202320239), the Horizon
2020 projects AI4Copernicus (GA No. 101016798) and DeepCube (GA No.
101004188), and Horizon Europe project STELAR (GA No. 101070122).

Users can then obtain information about these concepts, but
also relate them to the original values. Apart from provid-
ing knowledge based on interpretations, a semantic data cube
could also facilitate the use of external knowledge (datasets)
and allow interlinking with the original values for carrying
out a combined analysis. For example, demographic data
published by some governmental organization can be used to
identify big cities located within some distance from areas
that have been classified as pine forests. In their paper [4],
Augustin et al. use the Rasdaman array DBMS to implement
the idea of a semantic EO data cube. In this paper we go
beyond the work of Augustin et al. and make the following
original contributions.

We bring the concept of semantic data cubes to its full
realization by designing a semantic data cube system us-
ing techniques from the area of geospatial ontology-based
data access [5]. Geospatial ontology-based data access tech-
niques allow one to model geospatial data using ontologies
and mappings from the ontology concepts to the underlying
data sources. They also offer the declarative query language
GeoSPARQL for querying the underlying data sources us-
ing concepts of the ontology (e.g., surface temperature), that
provide a semantic layer over data cube data. We believe
that this is an important extension of the work of Augustin
et al. since ontologies, mappings and query languages such
as GeoSPARQL are more appropriate for modeling/querying
at the level of semantics, than modeling/querying the corre-
sponding concepts of an array DBMS. At the same time, due
to the impedance mismatch between the concepts of an ontol-
ogy language (directed graphs of classes, instances, properties
and values) and the concepts of data cubes (multidimensional
arrays of values) make our task very challenging.

We show how to face the “impedance mismatch” chal-
lenges by implementing the semantic data cube system Plato
using the well-known ontology-based data access system
Ontop [3], Python xarray scripts and PostgreSQL Foreign
Data Wrappers (FDWs). During initialization of the Ontop
engine, we provide an ontology in the OWL2 QL language
and a set of mappings. The mappings define the way that
ontology terms are related to the data residing in the backend.
After initialization, Ontop is ready to accept GeoSPARQL
queries and translate them into SQL enhanced with spa-



tial operators. The PostGIS backend contains virtual tables
based on FDWs. The data cubes are stored in “.zarr” direc-
tory format or as .nc (netCDF) files, and we utilize Python
scripts for efficient access. This is possible through the use
of the Python xarray package that allows us to work with
labelled multi-dimensional arrays conveniently. To handle
access to the local or remote data cubes we use Multicorn,
a PostgreSQL 9.1+ extension meant to make FDW devel-
opment easy though the use of Python. Finally, to reduce
execution time of queries over large cubes, we implemented
a caching mechanism to minimize on-the-fly transformation
from GeoSPARQL to SQL, and Raptor Join to efficiently
compute spatial join operations.

We evaluate the performance of Plato with data cubes
from the use cases of European Horizon 2020 project Deep-
Cube (https://deepcube-h2020.eu/). Our experi-
ments demonstrate that the optimizations we have developed
allow us to process complicated GeoSPARQL queries target-
ing GBs of data very efficiently.

2. RELATED WORK

Plato is the first implementation of a semantic data cube sys-
tem based on OBDA technologies. Since background on se-
mantic data cubes was covered in the introduction, now we
introduce only OBDA. OBDA is a method for linking an on-
tology that encodes knowledge about the classes and proper-
ties of entities for a given application domain, to underlying
data sources. The linking is accomplished through declarative
mappings, which are used to generate ontology terms from
information in the data sources. Instead of materializing all
the ontology terms, users can pose a query over the ontology,
and then a process of query transformation is carried out to
produce a new query in the native language of the underly-
ing data sources. This query is then executed and the results
are transformed as ontology terms to be presented to the user.
This approach, also known as virtual knowledge graph ap-
proach, has the advantage of providing a familiar vocabulary
to the user to pose queries, concealing details about the un-
derlying data sources, such as complex schemas and storage
particularities. On the other hand, the process of transform-
ing the initial query over the ontology into a query over the
underlying sources, may lead to complex and large queries.

Ontop [3] (https://ontop-vkg.org/) is one of the
first OBDA systems able to perform SPARQL to SQL query
translation. The inputs for this process are: (i) an ontology in
the subset OWL2 QL of the ontology language OWL2 [11],
(ii) a database schema, (iii) a set of mapping assertions that
generate virtual RDF triples from database values and (iv) an
initial SPARQL query over the ontology. The result is an SQL
query that is executed on any database instance that follows
the input schema, and provides the complete answers with
respect to the ontology axioms. Ontop has been successfully
deployed in several demanding use cases and has an active

community of users and developers, with 154 forks and 549
stars in Github. It has also been commercialized by the Italian
company Ontopic (https://ontopic.ai/en/).

Ontop-spatial was developed by our group in 2016 [1, 5]
(https://ontop-spatial.di.uoa.gr/). It is the
first geospatial OBDA system and it was implemented as
a geospatial extension of Ontop. In Ontop-spatial, the in-
put GeoSPARQL query is transformed into an intermediate
form based on Datalog, and this query is rewritten by taking
into consideration the ontology and the mappings from the
ontology-concepts to the data sources. The final result is an
SQL query that uses spatial SQL functions, which correspond
to the GeoSPARQL functions and operators of the initial
query. This SQL query can be executed in a spatially-enabled
relational system, like PostGIS (the spatial extension of Post-
greSQL) or Spatial-Lite (the spatial extension of SQLite).
The functionalities of Ontop-spatial has been integrated fully
into Ontop as of version 4.1.0.

3. THE ARCHITECTURE OF PLATO

The architecture of Plato is shown in Figure 1. To facilitate
our discussion, we assume that a data cube consists of anal-
ysis ready data in four dimensions: latitude, longitude, time
and variable of interest. Further dimensions can be added as
a result of an analysis.

The two main components of Plato are the OBDA system
Ontop and the PostGIS backend. During initialization of the
Ontop engine, an ontology in the OWL2 ontology language is
defined, alongside a specified set of mappings.

The PostGIS backend contains virtual tables used to com-
municate with data cubes (stored locally or remotely). This
communication is achieved through Python scripts utilizing
the Xarray [10] library and the Multicorn package [2], to im-
plement FDWs.

In Plato, data cubes are stored either in a .zarr directory
format or as .nc (netCDF) files. Even with a compressed for-
mat like these two, many data cubes are very large to unpack
and materialize in a PostgreSQL database. For that matter, we
utilize FDWs and the Xarray package in order to work with
labelled multi-dimensional arrays conveniently.

Using FDWs and Xarray can turn out to be an intensive
operation, both time and memory-wise, and is by no means
a realistic approach for large data cubes. For that reason, we
decided to also look into parallelization modules of Python.
As the FDW applications are not IO bound, multi-threading
was not of much benefit, which was confirmed from brief ex-
perimentation. Multiprocessing, on the other hand, resulted
in massive speedups, through the exploitation of data chunk-
ing and dispatched reading by multiple spawned processes,
wherever possible.

In order to facilitate testing and a successful deployment
of the entire pipeline, we have developed a dockerfile to build
an image that installs all the necessary components (Post-

https://deepcube-h2020.eu/
https://ontop-vkg.org/
https://ontopic.ai/en/
https://ontop-spatial.di.uoa.gr/


greSQL, Python3, Multicorn, Xarray, Zarr) and exposes a
port to access the database within the created container.

Figure 1 also shows two optimization techniques that we
have implemented at the PostGIS level. These techniques op-
timize the handling of large volumes of data (caching) as well
the joining of raster and vector data (Raptor Join).

The main idea behind caching raster data in PostGIS by
modifying the Ontop plugin is to efficiently query large vol-
umes of data cubes by having various parts of them be ma-
terialized and readily available. To achieve this, during On-
top’s query translation from GeoSPARQL to SQL, Plato rec-
ognizes the portions of raster data that need to be accessed and
transformed to geometries, and saves them in an intermediate
cache table in the database. In order to check if the requested
data is already in the cache table, we have implemented data
structures as indices inside the Ontop plugin. Currently, a
hash table is fully implemented for the time dimension of the
datasets, with similar functionality for latitude and longitude
dimensions being under development using R-trees. If the re-
quested data is found to be available in the cache table, the
query translation process into SQL is modified, in order to
access the cache and not a FDW (virtual table). This ease of
access to “hot” data is the main benefit of the implementation,
as it allows more efficient joins and other operations between
dense data cubes and other materialized (non-EO) data.

After testing various GeoSPARQL queries on large data
cubes, we have discovered that accessing large portions of
data cubes and transforming each pixel to a vector point (the
obvious implementation) created a bottleneck in our system.
The idea behind Raptor Join [8] alleviates this problem by
reading only parts of the raster that overlap a set of vector ge-
ometries (using scanlines), without the need for conversions
between the two forms in order to perform a join. The Rap-
tor Join method is implemented in Plato as a Python FDW
and calculates the result of a spatial operation as output. The
requirements are: a set of vector geometries, an EO vari-
able name (raster), an aggregate function name (e.g., sum,
max, count, etc.), a spatial relation (intersection currently sup-
ported), and a specific time frame as input. Just by adding the
properties reflecting these parameters to a given ontology, we
are able to create a single mapping to connect Ontop with the
FDW operator.

4. PERFORMANCE EVALUATION

The experiments were run using Ontop 4.2, on a 64-bit ma-
chine with 32 logical processors (2.20 GHz), and 128GB of
RAM (DDR3, 1600 MHz). Five different data cubes are used
in the experiments, with time, latitude and longitude as the
primary dimensions, along with several data variables:

• DC-GR-1 (4314×562×700). NDVI data for Greece for the
period 2009-2020.

Fig. 1. The architecture of Plato

• DC-GR-2 (1×940×1328). Daily relative humidity for
Greece for the year 2022.

• DC-BR (2160×200×200). NDVI data for Brazil for the
year 2019.

• DC-SI (8762×150×310). Hourly total precipitation data for
Slovenia for the year 2021.

• DC-FR (8760×334×636). Hourly total precipitation data
for France for the year 2022.

Alongside those, we have imported vector data concerning
fire prediction data for Greece (point geometries; 2022),
Natura-protected areas for Europe (multipolygon geome-
tries), and administrative data for Brazil (polygon geome-
tries). The sizes for all of the datasets are displayed in table 1.

Table 1. Raster and Vector datasets
Raster (GB)

Data cube Size
DC-GR-1 10
DC-GR-2 0.5
DC-BR 5.9
DC-SI 15.5
DC-FR 35.5

Vector (MB)
Dataset Size

Fire Prediction Data 25
Natura Areas (GR) 7
Natura Areas (EU) 78
Brazil Admin. Data 0.5

Since Plato is the only existing semantic data cube system
to our knowledge, the evaluation consists of experiments with
different query types over the presented data sources, and the
results of our optimization techniques. We start with the eval-
uation of the cache implementation. The different query types
selected to evaluate the performance of our queries when us-
ing a cache table are as follows: (A): Requested variable for
one day, (B): Requested variable for a range of dates, (C):
Requested variable & join with Natura areas (historical) or
predictions (daily), for one day, (D): Requested variable &
join with Natura areas (historical) or predictions (daily), for a
range of dates. The range of dates for our tests was 3-5 days.
The results for the cache implementation on queries posed to



all the data cubes are shown in table 2. We can see that by
utilizing a cache table we can overcome the overhead of re-
trieving the requested data from a foreign table through the
use of FDWs. This is more apparent in queries that concern a
range of dates (Types B and D), where the cache implemen-
tation shows by far the best results. In this way, it is clear
that having readily available ”hot” data for multiple requested
dates by materializing them, improves the overall user expe-
rience.

Table 2. Query execution times with cache implementation
Cache (sec)

Data Cube Type Default Cache
DC-GR-1 A 72.3 20.2
DC-GR-1 B 243 60.6
DC-GR-1 C 1038 953
DC-GR-1 D >18000 2221
DC-GR-2 A 28.6 1.06
DC-GR-2 B 96.8 7.65
DC-GR-2 C 29.7 1.26
DC-GR-2 D 90.2 2.38
DC-BR A 6.83 2.22
DC-BR C 13.6 10.8
DC-SI A 5.61 2.51
DC-SI C 72.9 8.31
DC-FR A 26.5 11.1
DC-FR C 5121 168

We continue with the evaluation of the join queries. For
benchmarking needs, a method simpler than Raptor Join is
also implemented, which checks if the pixels within the Min-
imum Bounding Rectangle (MBR) of input vectors coincide
with the actual geometries (requires pixel-to-point transfor-
mations). We can also evaluate the performance of our entire
pipeline by allowing the Raptor Join implementation to uti-
lize the available data found in the cache table for each of the
data cubes and posing the same queries as before. The perfor-
mance results for those queries for all the different techniques
are shown in table 3.

Table 3. Query execution times with Raptor join and Raptor-
Cache combined

Join Results (sec)
Data Cube Default MBR Raptor Raptor–Cache
DC-GR-1 1038 139 54 40.2
DC-BR 15.1 21.6 20.9 25.8
DC-SI 72.3 90.4 46.5 17.9
DC-FR 5121 299 137 75.2

The table shows the benefits of using the various join op-
timizations that we implemented instead of using the default
FDWs for data retrieval and letting PostGIS handle the joins
by making the necessary pixel-to-point transformations. First
of all, the available data (both raster and vector) for Brazil is

not very big, so the extra parsing/preprocessing in such cases
seems to have an inverse effect on the total time efficiency.
Furthermore, the vector data for France has geometries spread
around the area of the entire country, while DC-FR is lim-
ited to the region of Occitanie. Hence, MBRs are calculated
for many non-overlapping geometries, in which case Cache
availability allows for the better handling of transformations
by PostGIS rather than the use of the MBR technique’s FDW.
Finally, it is clear that both the simpler MBR method as well
as the Raptor Join method generally offer a more efficient ap-
proach than handling join queries using standard PostGIS and
the default FDWs. Caching data for specific observations and
timeframes, when combined with Raptor Join, provide the
best speedup (for data of substantial size).

5. SUMMARY

We presented Plato, the first semantic data cube system imple-
mentation using OBDA technologies. We evaluated Plato us-
ing data from the use cases of project DeepCube and showed
that the optimizations of caching and Raptor Join allowed us
to process GeoSPARQL queries very efficiently.

REFERENCES

[1] K. Bereta and M. Koubarakis. Ontop of geospatial
databases. In ISWC, 2016.

[2] R. Dunklau and F. Mounier. Multicorn - PostgreSQL ex-
tension, 2015. URL https://multicorn.org/.

[3] G. Xiao et al. The virtual knowledge graph system on-
top. In ISWC, 2020.

[4] H. Augustin et al. Semantic Earth observation data
cubes. Data, 4(3), 2019.

[5] K. Bereta et al. Ontop-spatial: Ontop of geospatial
databases. J. Web Semant., 58, 2019.

[6] M. Stonebraker et al. The architecture of SciDB. In
SSDBM, 2011.

[7] P. Baumann et al. The RasDaMan approach to multidi-
mensional database management. In ACM SAC, 1997.

[8] S. Singla et al. The Raptor Join operator for processing
big raster + vector data. In ACM SIGSPATIAL, 2021.

[9] Y. Zhang et al. SciQL: array data processing inside an
RDBMS. In ACM SIGMOD, 2013.

[10] S. Hoyer and J. Hamman. xarray: N-D labeled arrays
and datasets in Python. Open Research Software, 5(1),
2017.

[11] W3C. OWL 2 web ontology language profiles (sec-
ond edition), 2012. URL http://www.w3.org/
TR/owl2-profiles/.

https://multicorn.org/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/

	 Introduction
	 Related work
	 The architecture of Plato
	 Performance evaluation
	 Summary

