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ABSTRACT
We present a fire risk management system which takes input data
from various sources (e.g., meteorological data, satellite indicators
for vegetation, historical burned areas), produces a harmonized
spatio-temporal data cube to compute fire risk and enables seman-
tic querying to assist fire risk management. The distinguishing
implementation features of the system is the use of data cubes,
machine learning algorithms and, most importantly, geospatial
ontology-based data access technologies. The system has been im-
plemented in the European project DeepCube for the geographic
area of Greece and can be used operationally to assist authorities
to determine fire risk during the summer fire season.
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1 INTRODUCTION
Wildfires pose a significant global natural hazard, disturbing nat-
ural ecosystems, leading to loss of life, property, and infrastruc-
ture, while also contributing to the emission of carbon dioxide.
Climate change is progressively influencing wildfire patterns and
is projected to intensify wildfires across a majority of the globe, ex-
panding the risk of wildfires to higher latitudes, evergreen tropical
forests, and notably in the broader Mediterranean region. Particu-
larly, scenarios for global warming greater than 1.5°C could lead
to a 40% increase in Mediterranean burned area [14]. To address
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the new challenges, it is important to make use of multifaceted
sources of data and develop new technologies for timely and accu-
rate fire hazard forecasting. In this demo paper, we present a fire
risk management system that utilizes data cubes, machine learn-
ing algorithms and geospatial ontology-based data access (OBDA)
technologies to compute fire risk.

A data cube is a multidimensional array of values, serving as a
natural data structure for storing Earth observation (EO) data and
various other forms of multidimensional data for analysis purposes.
Several data cube infrastructures have emerged specifically target-
ing EO data, such as the Open Data Cube infrastructure in Australia,
and the Euro Data Cube and the Earth System Data Cube funded by
the European Space Agency. These infrastructures provide libraries
and APIs, such as xarray and YAXArrays, designed for efficient
storage and querying of multidimensional data. However, prior to
the widespread adoption of data cube infrastructures, extensive
research and development had already taken place on array data-
base management systems (DBMS) like Rasdaman [2], SciDB [13],
and MonetDB SciQL [17]. These DBMS, in contrast to data cube
infrastructures, offer declarative query languages tailored to model
and query multidimensional data.

The system Plato used in the fire risk management system of
this paper goes beyond data cube infrastructures and array data-
base management systems, and it is the first semantic data cube
system implemented using geospatial ontology-based data access
technologies [3]. The idea of semantic data cube systems was ini-
tially introduced in [1] but, in our opinion, it did not receive the
attention it deserved. The term semantic was employed in [1] to
distinguish semantic data cubes from regular ones constructed us-
ing the aforementioned infrastructures and array DBMS, which
primarily contain numerical values (e.g., 10-day average land sur-
face temperature above 35°C). In semantic data cubes, these values
are associated with symbolic high-level concepts (e.g., a heat wave).
Beyond providing knowledge through interpretations (as in the
example just given), semantic data cube systems facilitate the in-
corporation of external datasets, enabling combined analyses. For
instance, demographic data published by a government organiza-
tion can be utilized to identify major cities located within a certain
distance from areas where the risk of a wildfire is significant during
a particular time of the year.

Plato is a pioneering semantic data cube system utilizing geospa-
tial OBDA technologies. OBDA serves as a methodology for con-
necting an ontology, which captures geospatial knowledge about
entity classes and properties within a specific application domain,
to underlying data sources. These data sources, managed by spe-
cialized systems, exist in various formats and typically reside in
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pre-existing repositories (e.g., a geospatial relational DBMS or a
shapefile). To establish the connection, declarative mappings are
employed, enabling the generation of ontology terms based on infor-
mation extracted from the data sources. Rather than materializing
all ontology terms, in OBDA systems users can pose queries directly
on the ontology. Subsequently, a process of query transformation
takes place, converting the user’s query into the native language
understood by the underlying data sources (e,g., GeoSPARQL). This
transformed query is executed, and the results are then converted
back into ontology terms for presentation to the user. This approach,
often referred to as the virtual knowledge graph approach, offers the
advantage of providing users with a familiar vocabulary to articu-
late queries while abstracting the complexities of the underlying
data sources, including intricate schemas and storage nuances.

Plato is implemented using the OBDA system Ontop [16], one
of the pioneer OBDA systems capable of performing SPARQL to
SQL query translation. The process involves several inputs: (i) an
ontology expressed in the OWL2 QL subset of the OWL2 ontology
language [15], (ii) a database schema, (iii) a set of mapping asser-
tions that generate virtual RDF triples from database values, and
(iv) an initial SPARQL query targeting the ontology. As a result, an
SQL query is generated, which can be executed on any database
instance conforming to the input schema, providing comprehensive
answers consistent with the ontology axioms.

In 2016, the University of Athens team leading this paper intro-
duced Ontop-spatial [3, 4] as the first geospatial OBDA system. It
was developed as a geospatial extension of Ontop. Within Ontop-
spatial, a GeoSPARQL query is transformed into an intermediate
representation based on Datalog. This query is then rewritten, tak-
ing into account the ontology andmappings from ontology concepts
to data sources. The final outcome is an SQL query that utilizes
spatial SQL functions, corresponding to the GeoSPARQL functions
and operators in the initial query. This SQL query can be executed
within a spatially-enabled relational system, such as PostGIS (the
spatial extension of PostgreSQL) or Spatial-Lite (the spatial exten-
sion of SQLite). Starting from version 4.1.0, the functionalities of
Ontop-spatial have been fully integrated into Ontop.

2 SYSTEM ARCHITECTURE
In this section we present the different components of the fire
risk management system as it has been developed in the context
of European project DeepCube (https://deepcube-h2020.eu/). The
architecture of the system is shown in Figure 1.

Figure 1: System architecture

The system takes as input several sources of satellite and vector
data, as shown in Table 1, to produce a data cube that is used to cal-
culate fire risk using machine learning (ML) models. Since the input
consists of satellite images/products, the resulting cube contains
cells with geospatial coordinates, corresponding to a pixel from the
input image, along with their attributes. This allows us to calculate
fire risk for specific areas and visualize the results as interactive
maps. Fire risk information is then combined with other vector
sources (e.g., Natura areas, OpenStreetMap) and allows the user to
pose semantic queries using the query language GeoSPARQL, with
the use of Plato.

The data cube, named FireCube [11], is populated with data
collected for the area of Greece, for the years 2009-2021. It contains
90 variables related to the drivers of fire occurrence and spread.
Weather data are extracted from the dataset ERA-5 Land1, satellite
variables as proxies of vegetation status and dynamics are extracted
from the Moderate Resolution Imaging Spectroradiometer (MODIS)
aboard the Terra and Aqua satellites, and human activity proxies are
collected from the WorldPop dataset2. The data cube is annotated
with the historical burned areas3 from the European Forest Fire
Information System (EFFIS) product and further augmented with
the EFFIS active fires product3 in order to extract the actual wildfire
ignition date. Finally, all the data is harmonized into a 1km x 1km x
1day spatio-temporal data cube, which covers the whole of Greece
(1253km x 983km); see [8] for more details.

Training Data. From the above data cube we extract four differ-
ent datasets [8] that are used to train four differentmodels presented
below. For a given pixel (i.e., a cell representing a 1km x 1km square
region) and a given day, we extract input-target pairs for 4 different
modeling modalities:

• A pixel dataset, where we extract the input attributes and
their last 10-day average.

• A temporal dataset, where we extract the last 10-day time-
series of the input attributes.

• A spatial dataset, where we extract 25km x 25km patches
spatially centered around the given pixel.

• A spatio-temporal dataset, where we extract 25km x 25km x
10days blocks centered spatially around the given pixel.

Machine Learning Models. The complexity of the interactions
of the input variables and the stochastic nature of wildfire behaviour
motivate us to use machine learning methods which are known for
their ability to leverage this complexity and to identify information
hidden in the data. These ML methods can assist in wildfire danger
prediction for assessing the conditions that allow a fire to ignite
and spread. We train a different model for each type of the above-
mentioned machine learning datasets.

For the pixel dataset, we consider a Random Forest baseline
model. Its hyperparameters are chosen based on the validation
Area Under the Receiver Operating Characteristic (AUROC). For
the temporal dataset, we use a Long Short-Term Memory (LSTM)
architecture that is able to capture temporal dynamics. For the
spatial dataset, we use a CNN architecture, known to effectively
capture spatial features. For the spatio-temporal dataset, we use a

1https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
2https://hub.worldpop.org/project/categories?id=18
3https://effis.jrc.ec.europa.eu/applications/data-and-services
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Dataset Description
Spatial
Resolution

Temporal
Resolution

MOD11

Land Surface
Temperature and
Emissivity (Land Surface
Temperature Day &
Night)

1km daily

MOD13

Vegetation Index
Products (Normalized
Difference Vegetation
Index, Enhanced
Vegetation Index)

1km 16-day

MOD15 Radiation, Leaf Area
Index 500m 8-day

MOD16 Evapotranspiration 500m 8-day

ERA5-Land

Wind speed & direction,
precipitation,
temperature, surface
pressure, dew point
temperature

9km 5 hours/
daily

EDO Soil Moisture Index, Soil
Moisture Anomaly 5km 10-day

CLC Corine Land Cover 100m 2006/2012/
2018

EU-DEM Digital Elevation Model 25m -
Aspect Aspect 25m -
Slope Slope 25m -
WorldPop Population Density 1km 2009-2020

OSM Road Distance,
Waterway Distance vector -

EFFIS
Burned
Areas

Burned Areas provided
by EFFIS vector 2009-2021

MODIS
Active Fire
Data

Fire Hotspots points 2009-2021

Table 1: Data cube input sources.

ConvLSTM, which is known to capture spatiotemporal features of
the input, combining the strengths of the LSTM and CNN compo-
nents. We compare the predictive skill of these four models over
two distinct test sets for years 2020 and 2021, vis-à-vis the base-
line of the empirical Fire Weather Index which relies solely on
meteorological conditions and disregards the status of other fire
drivers related to vegetation and human factors. Our experimental
analysis shows that the ConvLSTM model that considers the spatio-
temproal context leading to a wildfire performs best in forecasting
fire danger [8].

The Semantic Data Cube System Plato. Plato consists of two
main components, the OBDA system Ontop and a PostGIS backend.
To initialize the Ontop engine, we provide an ontology in the OWL2
ontology language, along with a specified set of mappings. Ontolo-
gies provide a familiar vocabulary for the user in terms of classes
and properties, while mappings define the way the ontology terms
are related to the data residing in the backend. After initialization,
Ontop is ready to accept GeoSPARQL queries and translate them
into SQL enhanced with spatial operators. The PostGIS backend
contains the virtual tables that are used to communicate with local
or remote data cubes. To implement this communication, we utilize
foreign data wrappers (FDWs) that are based on the Xarray [7]

library and the Multicorn package [6]. To handle large volumes of
data and the heavy computations in spatial joins between raster
and vector data, Plato implements two optimization techniques:
data caching and Raptor Join [12].

The idea behind caching raster data is to optimize the retrieval
of large data cubes by pre-computing and storing relevant portions.
This approach ensures that the required data is readily accessi-
ble, thereby enhancing query efficiency. During the translation
of queries from GeoSPARQL to SQL, Plato identifies the specific
sections of raster data that need to be accessed and converted into
geometries. These identified portions are then stored in an inter-
mediate cache table within the database. This streamlined access
to “hot” data is the key advantage of this implementation, enabling
more efficient joins and other operations between dense data cubes
and other materialized (non-EO) data.

The second optimization of Plato is the use of Raptor Join [12]
to overcome the bottleneck of joining large amounts of raster data
that are part of the data cube and vector data that need to be com-
bined with the cube for the purposes of our application. Raptor
Join does this by selectively reading only the parts of the raster
that intersect with a set of vector geometries using scanlines. This
method eliminates the need for conversions between raster and
vector representations for join operations. In Plato, we have imple-
mented the Raptor Join as a Python FDW that computes the output
of spatial operations.

The implementation of Plato and its performance evaluation is
presented in [5].

3 PRESENTATION AND DEMONSTRATION
Our presentation will first introduce the main ideas of the fire risk
management system as they have been discussed in this paper. Then,
our demonstration will focus on the use of Plato and showcase how
GeoSPARQL queries can be used to combine information from data
cubes and vector data to provide valuable insight for authorities (e.g.,
the Greek fire brigade) so that they can assess the risk of fire and
act accordingly. These queries essentially formalize “golden rules”
that operational fire risk managers have developed over the years
and use them to take decisions regarding fire risk. The queries to be
demonstrated combine fire risk information for a specific area, as it
has been computed by the ML models and stored in the data cube,
with other sources (such as protected areas, POIs, nearby water
sources, road network, land use/cover, etc.). Four such queries are
given below:

• Q1. Which Natura areas are surrounded by mountainous
areas (use elevation to find mountainous) and experience
extreme fire danger (>0.9 risk) for a specific time period?

• Q2. Find OpenStreetMap POIs that are less than a specified
distance away from areas with fire prediction greater than a
given value.

• Q3. Which forests of type X that have already been burnt at
least once in the past 10 years, are in high danger tomorrow?

• Q4. Which areas (or assets: population, industrial zones,
natura areas, etc.) are in high danger due to forecasted strong
winds and which due to dry conditions (low relative humidiy,
low soi moisture, etc.) that are persistent for the last 10 days?
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To formulate the queries in Plato, we have designed an ontology4
and made it publicly available on zenodo. During the demonstra-
tion, the ontology will be shown to the users using Protégé [9]. The
three main classes in the ontology are Observation, Prediction
and SpatialObject. The subclasses of class Observation (Daily
Land Surface Temperature, Daily Surface Temperature, etc.)
correspond to variables of the data cube. The subclass of class
Prediction, FirePred corresponds to the daily fire predictions.
Each observation and each prediction has a specific acquisition
date and is related to a specific RasterCell, which is a subclass
of SpatialObject. Each RasterCell has a point geometry cor-
responding to the latitude and longitude dimensions of the data
cube. The data cube is accessed using an FDW in PostGIS. The sub-
classes of Feature (AdministrativeUnit, NaturaArea, etc.) cor-
respond to information that is integrated from other data sources
(such as shapefiles and TIFF images). These data sources can be
imported in PostGIS. During the demonstration, the necessary
datasets will be imported from 11 shapefiles and 10 TIFF files.
These include two layers of the administrative units of Greece
(regions and municipalities), OpenStreetMap data that correspond
to particular classes of the ontology like Roads (road network, rail-
ways), Settlements (different buildings), Water (bodies of water,
streams) and FireProneStructure (power stations, fuel stations),
Natura protected areas of Greece represented by the ontology class
NaturaArea, and a total of ten TIFF files with daytime and night-
time fire prediction indices for five days (two TIFF files for each
day) that correspond to the ontology class FirePred.

In order to perform query answering, we will provide a file with
all the mappings from the ontology to the underlying database
for the above-mentioned sources. As an example, the mapping in
Figure 2 is used to connect the RasterCell class to information
coming from the data cube. Each mapping has a source SQL query,
and a target triples template. The specific source query selects the
latitude, longitude and time dimension for each cell in the data
cube. The target triples template dictates how triples are (virtually)
generated from the results of the source query. Mappings like the
ones in Figure 2 will be shown using Protégé.

Figure 2: RasterCell Ontology Class mapping

Plato takes as input the ontology and mappings and provides a
SPARQL endpoint to pose queries and retrieve the results. In our
demonstration users will also be able to pose their own queries,
utilizing the presented ontology and mappings, view the query
translation step and check how data are accessed from the data
cube through the FDW and combined with the imported data in
PostGIS. In Figure 3 we showcase a map in the tool Sextant [10],

4https://zenodo.org/record/7657265/files/UC3-Ontology.owl?download=1

that presents layers on the map with the results of the queries
for this demo. Sextant will be used during the demonstration to
visualize the results of GeoSPARQL queries such as the ones above.

Figure 3: Fire risk management map in Sextant
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