
THE SEMANTIC DATA CUBE SYSTEM PLATO AND ITS APPLICATIONS∗

Dimitris Bilidas1, Anastasios Mantas1, Filippos Yfantis1, George Stamoulis1, Manolis Koubarakis1,
José Marı́a Tárraga Habas2, Eva Sevillano Marco2, Fabien Castel3, Camille Laine3

1Dept. of Informatics and Telecommunications,
National and Kapodistrian University of Athens, Greece

2Image Processing Laboratory, Universitat de València, Spain
3Murmuration SAS, France

ABSTRACT
We present Plato, the first semantic data cube implementation
that utilizes ontology-based data access technologies. Plato
is demonstrated in two use cases of the Horizon 2020 project
DeepCube, introducing a semantic approach that allows com-
bining information from data cubes and other sources to
tackle climate induced migration in Africa and a sustainable
tourism service based on Copernicus data.

Index Terms— Semantic data cubes, ontologies, ontol-
ogy based data access, earth observation

1. INTRODUCTION

A data cube is a multidimensional array of values, inherently
serving as a fundamental data structure for the storage of
Earth observation (EO) data and other multidimensional data
for analysis purposes. Various data cube infrastructures have
arisen with a primary focus on EO data, including the Open
Data Cube infrastructure in Australia, the Euro Data Cube,
and the Earth System Data Cube. These infrastructures come
equipped with libraries and APIs, such as xarray and YAXAr-
rays, meticulously designed to facilitate the efficient storage
and querying of multidimensional data.

Plato is a pioneering semantic data cube system utiliz-
ing geospatial ontology-based data access (OBDA) technolo-
gies. Using the OBDA approach, we design an ontology that
captures the geospatial knowledge about entity classes and
properties within a specific application domain, and introduce
mappings to the underlying data cubes and sources. This
task proved to be very challenging, due to the impedance
mismatch between the concepts of an ontology language (di-
rected graphs of classes, instances, properties and values) and
the concepts of data cubes (multidimensional arrays of val-
ues).

∗THIS WORK WAS SUPPORTED BY THE HORIZON 2020 PROJECT
DEEPCUBE (GA NO. 101004188), THE HORIZON EUROPE PROJECT
STELAR (GA NO. 101070122) AND THE ESA PROJECT DA4DTE (SUB-
CONTRACT 202320239).

The system Plato is demonstrated in two real world sce-
narios: (i) climate induced migration in Africa and (ii) sus-
tainable tourism. Both applications utilize data cubes to store
various sources of information and implement machine learn-
ing models to produce displacement causal graphs and an in-
teractive sustainable tourism dashboard respectively.

2. SEMANTIC DATA CUBE SYSTEMS

The concept of semantic EO data cubes (or semantic data
cubes for simplicity) was first presented by Augustin et al.
in [1]. The term semantic was used to distinguish them from
regular EO data cubes that contain numbers without high-
level meaning for the user (e.g., reflectance values). In se-
mantic data cubes, these values are intricately connected to
symbolic high-level concepts, allowing users to not only gain
insights into the specified concepts but also establish associ-
ations with the original values. Beyond imparting knowledge
through interpretations, a semantic data cube has the potential
to streamline the integration of external knowledge (datasets)
and enable the linking of such information with the original
values, fostering a comprehensive combined analysis. Uti-
lization of such systems becomes evident in numerous scenar-
ios involving geospatial data. For instance, demographic data
released by a governmental organization can be leveraged to
pinpoint major cities situated within a specified distance from
regions designated as pine forests.

In their work [2], Sudmanns et al. demonstrate that
this combined analysis is possible, through an infrastructure
which supports users to transform geodata into information.
Their system, called Sen2Cube.at [3], utilizes computer vi-
sion (CV) to automate semantic enrichment on a big EO data
scale (all Sentinel-2 MSI images covering Austria; however,
the approach is transferable to other geographical regions
and sensors), while an interactive web-based graphical user
interface (GUI) allows users to create, save and share queries
in a knowledgebase, without the need of technical expertise.
More specifically, a user first defines an area and a timeframe



of interest for the generic factbase, where multiple data cubes
can be accessed. Then, by combining spectral categories,
continuous variables and additional geographic information,
they can build a semantic model in the knowledgebase (the
model is translated into a query against the factbase using an
inference engine [4]). These spectral categories (e.g., types of
vegetation, landforms, water depth, etc.) are generated using
the Satellite Image Automatic Mapper (SIAM) [5] software,
which is responsible for the base-level semantic enrichment
by performing categorization of optical multi-spectral EO
imagery from multiple sensors in an automated manner. This
methodology is also present in a more recent publication [6]
by Sudmanns et al., where the greenness of Austria is mea-
sured by combining three information layers (i.e., density,
change, and lifespan of vegetation) in one semantic model.

Following a different approach, the system Plato [7] goes
beyond the work of Augustin et al. by designing a seman-
tic data cube system focusing on techniques from the area of
geospatial ontology-based data access and utilizing optimiza-
tions on the data access side. Performance evaluation of the
system [7] consists of experiments with different query types
over data cubes varying in size and complexity, along with
vector datasets and the results of our optimization techniques.
The five different data cubes we used contain time, latitude
and longitude as the primary dimensions, along with several
data variables. Alongside those, we used vector data concern-
ing fire prediction data for Greece (point geometries), Natura-
protected areas for Europe (multipolygon geometries), and
administrative data for Brazil (polygon geometries). We show
that utilizing a cache table allows us to overcome the overhead
introduced by FDWs when retrieving requested data from a
foreign table. This is more apparent in queries that concern
a range of dates, where the cache implementation shows the
best results. Regarding joins between raster and vector data,
we show the benefits of our join optimizations instead of let-
ting PostGIS handle the joins by making the necessary pixel-
to-point transformations. Finally, caching data for specific
observations and timeframes, when combined with Raptor
Join, provide the best speedup (for data of substantial size).

3. THE SYSTEM PLATO

The architecture of Plato is shown in Figure 1. The two main
components of Plato are the OBDA system Ontop [8] and
the PostGIS backend. During initialization of the Ontop en-
gine, an ontology in the OWL2 ontology language is defined,
alongside a specified set of mappings.

The PostGIS backend contains virtual tables used to com-
municate with data cubes (stored locally or remotely). This
communication is achieved through Python scripts utilizing
the Xarray [9] library and the Multicorn package [10], to
implement Foreign Data Wrappers (FDW). Cache tables of
raster data and efficient joins of raster and vector data are also
implemented at the PostGIS level. These techniques optimize

Fig. 1. The architecture of Plato

the handling of large volumes of data through caching, as
well as joining of raster and vector data with Raptor Join.

Caching raster data in PostGIS through modifications to
the Ontop plugin, allows us to efficiently query large vol-
umes of data cubes by materializing and readily storing var-
ious portions of them. To achieve this, during the transla-
tion of queries from GeoSPARQL to SQL, Plato identifies
chunks of raster data that require access and transformation
into geometries, saving them in an intermediate cache table
within the database. To verify the presence of the requested
data in the cache table, we implemented data structures as in-
dices within the Ontop plugin. Currently, a fully implemented
hash table handles the time dimension of the datasets, while
similar functionality for latitude and longitude dimensions is
in progress using R-trees. If the requested data is identified
in the cache table, the query translation process into SQL is
modified to access the cache rather than a FDW virtual table.

Following extensive testing of various GeoSPARQL
queries on large data cubes, it became evident that accessing
significant portions of data cubes and transforming each pixel
into a vector point created a bottleneck in our system. The
Raptor Join method, as outlined in [11], addresses this issue
by selectively reading parts of the raster that overlap with
a set of vector geometries. Notably, this method eliminates
the need for conversions between raster and vector forms to
execute a join. Implemented in Plato as a FDW, the Raptor
Join method computes the result of a spatial operation as out-
put. The necessary inputs include a set of vector geometries,
an EO variable name (raster), an aggregate function name
(e.g., sum, max, count, etc.), and a specific time frame. By
introducing properties that represent these parameters to a
designated ontology, a single mapping suffices to connect
Ontop with the FDW operator.

In Plato, data cubes are stored either in a .zarr directory
format or as .nc (netCDF) files. Despite employing com-
pressed formats, numerous data cubes prove to be excessively
large for unpacking and materialization within a PostgreSQL
database. To address this challenge, we employ FDWs and
the Xarray package, enabling us to conveniently handle la-
beled multi-dimensional arrays. Employing FDWs and Xar-
ray may prove to be resource-intensive, both in terms of time



and memory, and is not a practical approach for handling
large data cubes. Consequently, we opted to explore paral-
lelization modules in Python. Since FDW applications are
not IO-bound, multi-threading did not yield significant bene-
fits. On the contrary, multiprocessing led to substantial speed
improvements by leveraging data chunking and dispatching
reading tasks to multiple spawned processes whenever feasi-
ble.

In order to facilitate testing and a successful deployment
of the entire pipeline, we have developed a dockerfile to build
an image that installs all necessary components (PostgreSQL,
Python3, Multicorn, Xarray, Zarr) and exposes a port to ac-
cess the database within the created container.

4. APPLICATIONS

The system Plato was developed and tested for three use cases
in the context of the H2020 project DeepCube: (i) climate in-
duced migration in Africa, (ii) sustainable tourism and (iii)
fire risk management. In [12] we presented a pipeline that
utilizes EO data to produce fire risk maps for the Mediter-
ranean region. In this paper we present Plato in two different
application domains, showing the versatility of the system.

The approach we follow for each application involves
domain experts in order to understand the input sources and
design an appropriate ontology to capture the knowledge.
The ontology terms are then used to produce the appropriate
mappings that our system requires to translate our SPARQL
queries to SQL. This process allows us to enhance our orig-
inal input sources with semantic interpretations, interlink
them and provide a way to query them using terms from the
ontology.

Based on the requirements of each application, we can
then formulate appropriate GeoSPARQL queries and present
the results to our end-users. Plato allows us to express the
following classes of queries:

1. Queries on satellite image attributes (EO data).

2. Semantic queries on the low-level content (raw values
of data cube variables).

3. Semantic queries on the high-level content (values con-
cerning classes and their properties).

4. Any of the above query classes together with a spatial
and temporal extent.

5. Any of the above query classes together with a refer-
ence to an external data source.

In current data cubes, queries of Classes 1 through 4 are
able to be answered in some manner. In Plato, implemented
in DeepCube, all of the above classes of queries are possible,
with an emphasis on Class 5. Using the OWL 2 Web On-
tology Language, an ontology has been created for each of

the use cases, based on their EO and non-EO datasets. For
the EO datasets the notion of observation from the RDF Data
Cube Vocabulary was adopted, that has been a W3C recom-
mendation since 2014. Each observation has an acquisition
time, coordinates and attributes. For the non-EO datasets, dif-
ferent classes with object and data properties to represent the
various attributes were created.

4.1. Climate induced migration in Africa

This use case focuses on how the biosphere and anthro-
posphere are affected by extreme weather events, such as
heatwaves, droughts, and floods, as well as changing climatic
circumstances. The climate issue is both caused and impacted
by humans, and mitigation and adaptation strategies greatly
depend on a knowledge of both effects. The overarching
goal of the use case is to model, anticipate, and understand
climate-induced migration flows in Africa from reliable data.
We aim to offer insights into drought-induced displacement
trends by utilizing causal time series analysis to identify dis-
placement triggers and quantify their causal relationships and
time lags. Additionally, the use case products aim to antic-
ipate and follow-up displacement and provide narratives for
these displacements. To achieve this, we need to combine
different data sources in order to (i) identify the main en-
vironmental and socioeconomic drivers of human mobility
and develop models able to reproduce and forecast migration
flows, (ii) apply causal discovery methods to gain a deeper
understanding of the characteristics of the climate-induced
migration flows, and (iii) establish the causal relationships
of environmental and socioeconomic drivers with human
mobility in sub-Saharan Africa.

To this purpose, we compiled and structured a data cube
integrating socioeconomic, environmental and climatic vari-
ables and the longest drought displacement time-series ex-
isting (covering the 2006-2022 period in Somalia). Through
them, causal graphs are derived, applying causal inference at
district level. The data we utilized include socioeconomic in-
dexes, displacement data, ERA5 land observations and pre-
cipitation from the Climate Hazards Group InfraRed Precipi-
tation with Station.

With the flexibility of FDWs, concepts like the aforemen-
tioned variables can be expressed in our ontology [13] as data
properties of broader classes, which categorize diverse user
requirements. An example query regarding the Causality class
is the following:

SELECT ?district ?causal variable ?causal link ?mean ?total mean
?geometry

WHERE {
?cs a geo:Causality ;

uc2:hasDistrictName ?district ;
uc2:causalVariable ?causal variable ;
uc2:causalLink ?causal link ;
uc2:hasMean ?mean ;
uc2:hasTotalMean ?total mean ;



uc2:hasAcquisitionDate ?date ;
uc2:hasDistrictGeometry ?geometry .

FILTER(?causal variable = ”IDP Drought”)
FILTER(?date > ”2010−01−01T00:00:00” && ?date < ”

2013−01−01T00:00:00”)
}

In this query we request the districts of Somalia that have
a causal link between drought and any other index available.
Alongside those, two averages of the drought variable for
each district are calculated and returned: ?total mean, which
spans the entire 2006-2022 period, and ?mean, which spans a
user-defined 3-year interval (start of 2010 - end of 2012).

Fig. 2. Data quality layer in Sextant, for the Internally Dis-
placed Persons (IDP) Drought index. The color map shows
districts in Somalia that pass the quality check threshold,
along with their quality value.

In this use case, Plato is used to allow integration of EO
(raster) and non-EO (vector) datasets in a unified manner and
formulate GeoSPARQL queries that are used to produce the-
matic maps with the visualization tool Sextant, as narratives
for displacements. There are three types of semantic queries
that were implemented based on the use case needs: (i) data
quality queries to check the quality of variable’s values for
each district, (ii) early warning queries over the different vari-
ables for a specific district and (iii) queries over the causal
graphs.

4.2. Copernicus services for sustainable tourism

The main objective of this application is to produce a pricing
tool for hotels and package tours, which is independent of the
current major booking platforms and which incorporates an
environmental and sustainable tourism dimension. Our moti-
vation is to reduce the impact of tourism on planet Earth by
implementing a business system based on supply, demand,
but also environmental impact. The objectives of this use
case are: (i) to characterize the present tourism environmen-
tal footprint, tourism demand and tourism offer on the areas of
interest, (ii) to develop an engine evaluating the environmen-
tal footprint of tourism on a given destination and at a given

period, (iii) to develop a pricing engine evaluating downward
or upward trend to be applied to a tourism package depending
on its destinations and travel periods.

The data cubes used to produce the services, combine air
quality information from the Copernicus Atmosphere Service
(CAMS) along with weather conditions from the ERA5-Land
hourly dataset. We also rely on tourism visit data provided
by the Orange FluxVision service and tourism pricing infor-
mation. FluxVision data is obtained by processing a mix
of mobile phone network events and socio-demographic cus-
tomer data, allowing after data adjustment processes to pro-
vide a statistical estimate of a number of people present in an
area. The tourism pricing information are extracted from the
Amadeus API1.

For this application, we use Plato to integrate air quality
data with tourism data. In order to access the different input
sources, we designed an ontology [13] to capture the domain,
that allows us to pose GeoSPARQL queries that combine all
our sources to analyse the data. A query showcasing links be-
tween air quality and tourism frequentation is presented be-
low:

SELECT ?area ?avg no2 ?total excursionists ?wktAOI
WHERE {
?tf a uc5:Tourism ;

uc5:hasArea ?area ;
uc5:hasDate ?date ;
uc5:hasExcursionists ?total excursionists .

?aoi a uc5:AOI ;
uc5:hasName ?area ;
geo:asWKT ?wktAOI .

?join a uc5:Raptor ;
uc5:hasResult ?avg no2 ;
uc5:hasVariable ”cams no2 conc”ˆˆxsd:string ;
uc5:hasAggregateFunction ”avg”ˆˆxsd:string ;
uc5:hasAcquisitionDate ?date ;
uc5:hasGeometry ?wktAOI .

FILTER(?date = ”2022−01−01T00:00:00”)
}

This query utilizes the Raptor Join technique in order to
calculate the average nitrogen dioxide value for several areas
of France, in a particular day. For the same spatiotemporal
input, the total number of day-trippers is also requested. We
could alternatively ask for different types of visitors, and/or
different CAMS variables. The returned results can be viewed
as a thematic map with the areas of interest using Sextant, to
provide a visual interpretation for our end-users.

1https://developers.amadeus.com/

https://developers.amadeus.com/


5. REFERENCES

[1] H. Augustin, M. Sudmanns, D. Tiede, S. Lang, and
A. Baraldi, “Semantic Earth observation data cubes,”
Data, vol. 4, no. 3, 2019.

[2] Martin Sudmanns, Hannah Augustin, Lucas van der
Meer, Andrea Baraldi, and Dirk Tiede, “The austrian
semantic eo data cube infrastructure,” Remote Sensing,
vol. 13, no. 23, 2021.

[3] M. Sudmanns M. Belgiu D. Tiede, A. Baraldi and
S. Lang, “Sen2cube.at: Semantic earth observation data
cube analysis,” 2021.

[4] L. van der Meer, M. Sudmanns, H. Augustin, A. Baraldi,
and D. Tiede, “Semantic querying in earth observation
data cubes,” The International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information
Sciences, vol. XLVIII-4/W1-2022, pp. 503–510, 2022.

[5] A. Baraldi, “Satellite image automatic mapper -
SIAM™,” 2001.

[6] European Commission, Joint Research Centre, P Soille,
S Lumnitz, and S Albani, Proceedings of the 2023 con-
ference on Big Data from Space (BiDS’23) – From fore-
sight to impact – 6-9 November 2023, Austrian Cen-
ter, Vienna, Publications Office of the European Union,
2023.

[7] Dimitris Bilidas, Anastasios Mantas, Filippos Yfantis,
George Stamoulis, and Manolis Koubarakis, “Plato:
A semantic data cube implementation using ontology-
based data access technologies,” in BiDS, 2023.

[8] G. Xiao et al., “The virtual knowledge graph system
ontop,” in ISWC, 2020.

[9] S. Hoyer and J. Hamman, “xarray: N-D labeled arrays
and datasets in Python,” Open Research Software, vol.
5, no. 1, 2017.

[10] R. Dunklau and F. Mounier, “Multicorn - PostgreSQL
extension,” 2015.

[11] S. Singla, A. Eldawy, T. Diao, A. Mukhopadhyay, and
E. Scudiero, “The Raptor Join operator for processing
big raster + vector data,” in ACM SIGSPATIAL, 2021.

[12] Dimitris Bilidas, Anastasios Mantas, Filippos Yfantis,
George Stamoulis, Manolis Koubarakis, Spyros Kondy-
latos, Ioannis Prapas, and Ioannis Papoutsis, “Fire risk
management using data cubes, machine learning and
OBDA systems,” in ACM SIGSPATIAL, 2023.

[13] George Stamoulis, “Deepcube: Ontologies for semantic
data cubes,” Feb. 2023.


	 Introduction
	 Semantic Data Cube Systems
	 The System Plato
	 Applications
	 Climate induced migration in Africa
	 Copernicus services for sustainable tourism

	 References

