
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

PhD THESIS

Database Techniques for Ontology-based Data Access

Dimitris S. Bilidas

ATHENS

DECEMBER 2020

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Τεχνικές Βάσεων Δεδομένων με Εφαρμογή στην
Ανάκτηση Δεδομένων Βάσει Οντολογιών

Δημήτριος Σ. Μπηλίδας

ΑΘΗΝΑ

ΔΕΚΕΜΒΡΙΟΣ 2020

PhD THESIS

Database Techniques for Ontology-based Data Access

Dimitris S. Bilidas

SUPERVISOR: Manolis Koubarakis, Professor UoA

THREE-MEMBER ADVISORY COMMITTEE:
Manolis Koubarakis, Professor UoA
Yiannis Ioannidis, Professor UoA
Vassilis Christophides, Professor Un. of Crete

SEVEN-MEMBER EXAMINATION COMMITTEE

Manolis Koubarakis, Yiannis Ioannidis,
Professor UoA Professor UoA

Vassilis Christophides, Dimitris Plexousakis,
Professor Un. of Crete Professor Un. of Crete

Giorgos Stamou, Ian Horrocks,
Associate Professor NTUA Professor Un. of Oxford

Martin Giese,
Professor Un. of Oslo

Examination Date: 15/12/2020

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Τεχνικές Βάσεων Δεδομένων με Εφαρμογή στην Ανάκτηση Δεδομένων Βάσει
Οντολογιών

Δημήτριος Σ. Μπηλίδας

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Εμμανουήλ Κουμπαράκης, Καθηγητής ΕΚΠΑ

ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ:
Εμμανουήλ Κουμπαράκης, Καθηγητής ΕΚΠΑ
Γιάννης Ιωαννίδης, Καθηγητής ΕΚΠΑ
Βασίλης Χριστοφίδης, Καθηγητής Παν. Κρήτης

ΕΠΤΑΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

Εμμανουήλ Κουμπαράκης, Γιάννης Ιωαννίδης,
Καθηγητής ΕΚΠΑ Καθηγητής ΕΚΠΑ

Βασίλης Χριστοφίδης, Δημήτρης Πλεξουσάκης,
Καθηγητής Παν. Κρήτης Καθηγητής Παν. Κρήτης

Γιώργος Στάμου, Ian Horrocks,
Αναπληρωτής Καθηγητής ΕΜΠ Καθηγητής Παν. Οξφόρδης

Martin Giese,
Καθηγητής Παν. Όσλο

Ημερομηνία Εξέτασης: 15/12/2020

ABSTRACT

Ontology-based Data Acess (OBDA) is a method for linking an ontology, which encodes
knowledge about the classes and properties of entities for a given application domain,
to underlying data sources. These data sources, managed by specialized systems, can
be in various forms and usually reside in pre-existing repositories. The linking is accom-
plished through declarative mappings, which are used to generate ontology terms from
information in the data sources. Instead of materializing all the ontology terms, the user
of the relevant application can pose a query over the ontology, and then a process of
query transformation is carried out, which has as a result a query in the native language
of the underlying data sources. This resulted query is then executed, and the results are
presented to the user, transformed as ontology terms. This approach, also known as vir-
tual knowledge graph approach, has the advantage that provides the user with a familiar
vocabulary over which he can pose a query, concealing details about the underlying data
sources, such as complex schemas and storage particularities. On the other hand, the
process of transforming the initial query over the ontology into a query over the underlying
sources, leads in many cases to complex and large queries.

In this thesis, we study the problem of efficient query answering for OBDA systems from
a database perspective, concentrating on the ontology language OWL 2 QL, which is a
dialect of the OWL family specifically tailored for the case where massive data are stored
in an external data source. We are also concentrating on the case where the initial query
posed over the ontology is in the form of a union of conjunctive queries. As expected,
this issue heavily depends on the exact kind of the underlying data source. For this rea-
son we make a distinction between three different commonly encountered scenarios. In
the first scenario we consider that the underlying system is a single relational database
management system. In the second scenario we consider that we have a federation of
different relational systems. Finally, in the third scenario we consider the case where data
are stored in a specialized triple store in the form of RDF statements.

For the first scenario, we identify redundant processing as a key problem in OBDA query
execution over a relational system. Examples of such processing are duplicate answers
obtained during query evaluation, which must finally be discarded, or common expres-
sions evaluated multiple times from different parts of the same complex query. Many
optimizations that aim to minimize this problem have been proposed and implemented,
mostly based on semantic query optimization techniques, by exploiting ontological axioms
and constraints defined in the database schema. However, operations that introduce re-
dundant processing are still generated in many practical settings, and this is a factor that
impacts query execution. To handle this issue, we propose a cost-based method for query
translation, which starts from an initial default translation and uses information about re-
dundant processing in order to come up with an equivalent, more efficient translation. The
method operates in a number of steps, by relying on certain heuristics indicating that we
obtain a more efficient query in each step. Through experimental evaluation using the

Ontop system for ontology-based data access, we exhibit the benefits of our method.

For the second scenario we have developed a system that acts as a mediator between
the OBDA system and the federated databases. This system, built using the Exareme en-
gine, decomoses the produced query into different fragments, sends these fragments for
evaluation in the external databases and imports the intermediate results that correspond
to these fragments. Finally, these intermediate results are combined in order to produce
the final query result. During this process, we have adapted techniques and methods from
database literature for usage in the context of OBDA. These methods cover areas such
as data integration, common subexpression identification, caching of intermediate query
results and distributed processing. The developed mediator system has been integrated
into the platform of the Optique reseacrh project and has been successfully deployed in
a demanding real world use case, federating seven different databases which contain
geological data.

For the last scenario, we have developed PARJ, a specialized in-memory RDF store which
takes into consideration ontological hierarchies during join processing with very low per-
formance overhead, using on-the-fly computation of the inferences regarding class and
property hierarchies. In the spirit of the OBDA apporach, PARJ avoids expensive pre-
processing and materialization of implications. PARJ is also amenable to straightforward
parallelization. Specifically, we present a join implementation that allows to achieve any
desired degree of parallelism on arbitrary join queries and RDF graphs stored in mem-
ory using compact vertical partitioning. We use an adaptive join processing approach,
such that we take advantage of complete or even partial ordering of RDF data, which is
compactly stored in order to increase spatial locality and keep memory consumption low,
coupled with an ID-to-Position vector index used when ordering does not allow for effi-
cient scanning of the input relation. Finally, we experimentally show the efficiency and
scalability of our proposal.

SUBJECT AREA: Databases

KEYWORDS: OBDA, Query Optimization, Semantic Web, Knowledge Graphs, Data In-
tegration

ΠΕΡΙΛΗΨΗ

Στην επιστημονική περιοχή της Αναπαράστασης Γνώσης και Συλλογιστικής, οι οντολογίες
διαδραματίζουν καθοριστικό ρόλο στη μοντελοποίηση γνώσης για έναν τομέα εφαρμογών.
Μια οντολογία κωδικοποιεί πληροφορίες σχετικά με τις κατηγορίες αντικειμένων του
τομέα και τις σχέσεις μεταξύ τους, παρέχοντας στους χρήστες της εφαρμογής με μια
οικεία μοντελοποίηση του τομέα. Επιπλέον, αξιώματα εκφρασμένα σε λογική και
κωδικοποιημένα στην οντολογία, μπορούν να χρησιμοποιηθούν για την απόκτηση νέας
γνώσης μέσω συμπερασμού. Η Κοινοπραξία του παγκόσμιου ιστού (World Wide Web
Consortium-W3C) συνιστά τη χρήση της γλώσσας οντολογιών OWL, ως την οικογένεια
γλωσσών για αναπαράσταση γνώσης στον παγκόσμιο ιστό.

Η ανάκτηση δεδομένων βάσει οντολογιών (Ontology-based Data Access-ΟBDA) είναι
μια μέθοδος διασύνδεσης οντολογιών με υποκείμενες εξωτερικές πηγές δεδομένων
μέσω δηλωτικών αντιστοιχίσεων (mappings). Οι συγκεκριμένες αντιστοιχίσεις μπορούν
να θεωρηθούν ως κανόνες που δημιουργούν αντικείμενα της οντολογίας βάσει
επερωτήσεων στα εξωτερικά δεδομένα. Στη συνέχεια, ένας χρήστης μπορεί να θέσει
μια επερώτηση στην οντολογία και αυτή η επερώτηση μπορεί να μεταφραστεί στη
γλώσσα επερωτήσεων του υποκείμενου συστήματος διαχείρισης δεδομένων, ή αλλιώς
της εξωτερικής πηγής δεδομένων, χρησιμοποιώντας τις αντιστοιχίσεις και αποστέλλεται
για εκτέλεση, παρέχοντας στο χρήστη τα επιθυμητά αποτελέσματα, σαν τα δεδομένα να
αποτελούσαν εξαρχής μέρος της οντολογίας. Παρά το ότι από άποψη πολυπλοκότητας
υπάρχουν αποτελεσματικοί αλγόριθμοι για απάντηση επερωτήσεων σε συστήματα που
πραγματοποιούν ανάκτηση δεδομένων βάσει οντολογιών (ΟBDA-συστήματα), το τελικό
ερώτημα που προκύπτει και που πρέπει να εκτελεστεί στις εξωτερικές βάσεις δεδομένων
είναι σε πολλές πρακτικές περιπτώσεις πολύπλοκο και μεγάλο. Για παράδειγμα, δεν είναι
ασυνήθιστο σε ένα τυπικό OBDA σενάριο, σε περίπτωση που στην οντολογία ορίζονται
μεγάλες ιεραρχίες κλάσεων και ιδιοτήτων, μια αρχική συζευκτική επερώτηση πάνω στην
οντολογία να μεταφραστεί σε μια ένωση συζευκτικών επερωτήσεων, που μπορεί να
περιέχει εκατοντάδες ή χιλιάδες υποερωτήματα.

Η παρούσα διδακτορική διατριβή προσφέρει τεχνικές για την αντιμετώπιση του
προαναφερθέντος ζητήματος από την πλευρά των βάσεων δεδομένων. Συγκεκριμένα,
επικεντρωνόμαστε στην διάλεκτο OWL 2 QL της οικογένειας γλωσσών για οντολογίες
OWL, η οποία διάλεκτος είναι ειδικά προσαρμοσμένη για την περίπτωση μεταγραφής
επερωτήσεων όταν έχουμε μαζικά δεδομένα σε εξωτερικές πηγές. Σε σχέση με τις
αντιστοιχίσεις ανάμεσα στην οντολογία και τις εξωτερικές πηγές, επικεντρωνόμαστε στην
γλώσσα αντιστοιχήσεων R2RML, η οποία αποτελεί επίσημη σύσταση του W3C, ή άλλες
γλώσσες παρόμοιας εκφραστικότητας. Σε αυτό το πλαίσιο, κάνουμε μια διάκριση μεταξύ
τριών διαφορετικών σεναρίων OBDA, ανάλογα με το είδος του υποκείμενου συστήματος
διαχείρισης δεδομένων, και υλοποιούμε αποδοτικές τεχνικές για κάθε ένα από τρία αυτά
σενάρια. Συγκεκριμένα, κατά το πρώτο σενάριο θεωρούμε ότι τα δεδομένα αποθηκεύονται
σε μια εξωτερική σχεσιακή βάση δεδομένων με αυθαίρετο σχεσιακό σχήμα. Κατά το

δεύτερο σενάριο τα δεδομένα αποθηκεύονται σε πολλές εξωτερικές βάσεις δεδομένων,
όπου η καθεμία έχει το δικό της σχήμα και μπορεί να βρίσκεται σε διαφορετική τοποθεσία.
Τέλος, στο τρίτο σενάριο τα υποκείμενα δεδομένα βρίσκονται υπό την μορφή γράφου,
ακολουθώντας το μοντέλο RDF, και είναι αποθηκευμένα σε ένα εξειδικευμένο σύστημα
διαχείρισης αυτού του είδους των δεδομένων. Το RDF είναι ένα μοντέλο δεδομένων
ευρέως χρησιμοποιούμενο για την ενσωμάτωση δεδομένων από διαφορετικές πηγές,
ακολουθώντας ένα απλό σχήμα γράφου κατά το οποίο τα δεδομένα μοντελοποιούνται
ως τριπλέτες που έχουν τη μορφή υποκείμενο-κατηγόρημα-αντικείμενο. Σε κάθε ένα από
αυτά τα σενάρια προτείνονται λύσεις και αναπτύσσονται συστήματα τα οποία βελτιώνουν
τους χρόνους εκτέλεσης επερωτήσεων, ενώ η συνεισφορά της παρούσας διατριβής
επιβεβαιώνεται εμπειρικά με την διεξαγωγή εκτεταμένων πειραμάτων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Βάσεις Δεδομένων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ανάκτηση Δεδομένων Βάσει Οντολογιών, Βελτιστοποίηση
Επερωτήσεων, Σημασιολογικός Ιστός, Γράφοι Γνώσης, Ενοποίηση Δεδομένων

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

Εισαγωγή

Στην επιστημονική περιοχή της Τεχνητής Νοημοσύνης οι οντολογίες αποτελούν ένα
φορμαλισμό με στόχο την εννοιολογική αναπαράσταση γνώσης για κάποιο πεδίο
ενδιαφέροντος. Σε μία οντολογία τα αντικείμενα του πεδίου καταχωρούνται σε κλάσεις
αντικειμένων. Για παράδειγμα, αν θέλουμε να μοντελοποιήσουμε την πληροφορία
σχετικά με ένα σχολείο, θα μπορούσαμε να ορίσουμε σαν κλάσεις αντικειμένων τις εξής:
ΚΑΘΗΓΗΤΗΣ, ΜΑΘΗΤΗΣ, ΜΑΘΗΜΑ, ΑΝΘΡΩΠΟΣ. Έτσι θα μπορούσαμε να πούμε ότι ο
Γιώργος είναι μαθητής, ο κύριος Γερασίμου είναι καθηγητής και η Μουσική είναι μάθημα.
Έπειτα, στην οντολογία ορίζονται ιδιότητες (ή ρόλοι) μέσω των οποίο συσχετίζονται
συγκεκριμένα αντικείμενα του πεδίου. Για παράδειγμα, θα μπορούσαμε μεταξύ άλλων να
έχουμε την ιδιότητα ΔΙΔΑΣΚΕΙ, για να πούμε ότι ο κύριος Γερασίμου διδάσκει μουσική. Η
οργάνωση των κλάσεων και των ιδιοτήτων σε μια οντολογία συνήθως έχει ιεραρχική δομή.
Για παράδειγμα μπορούμε να πούμε ότι η κλάσεις KAΘΗΓΗΤΗΣ και ΜΑΘΗΤΗΣ είναι
υποκλάσεις της κλάσης ΑΝΘΡΩΠΟΣ, με την έννοια ότι κάθε καθηγητής είναι επίσης και
άνθρωπος, και το ίδιο ισχύει για κάθε μαθητή. Ένα ακόμα σημαντικό χαρακτηριστικό των
οντολογιών είναι ότι χρησιμοποιούνται για την εξαγωγή συμπερασμών, δηλαδή γνώσης
η οποία δεν έχει αναπαρασταθεί ρητά, αλλά μπορεί να εξαχθεί από τους κανόνες της
οντολογίας. Για παράδειγμα, με βάση όσα αναφέραμε προηγουμένως, μπορούμε να
εξάγουμε ως συμπερασμό το γεγονός ότι ο Γιώργος και ο κύριος Γερασίμου ανήκουν στην
κλάση ΑΝΘΡΩΠΟΣ.

Για το σκοπό της αναπαράστασης γνώσης, κατά τη δεκαετία του 1970 χρησιμοποιήθηκαν
συστήματα όπως τα Πλαίσια (Frames) και τα Σημασιολογικά Δίκτυα (Semantic Networks),
τα οποία δεν όριζαν κάποιο τυπικό σύστημα για συμπερασμό. Αργότερα, κατά τη δεκαετία
του 1980 η έρευνα επικεντρώθηκε σε συστήματα βασισμένα στη μαθηματική λογική, και
γρήγορα έγινε αντιληπτό ότι υπήρχε άμεση αντιστοιχία ανάμεσα στο πόσο εκφραστική
είναι η χρησιμοποιούμενη λογική και στο πόσο υπολογιστικά αποδοτικές είναι οι τεχνικές
συμπερασμού. Αυτή η διαπίστωση οδήγησε από τα τέλη της δεκαετίας του 1980
στην ανάπτυξη των Περιγραφικών Λογικών, οι οποίες εξετάζουν αυτές τις λογικές από
άποψη εκφραστικότητας σε σχέση με την υπολογιστική πολυπλοκότητα των διαδικασιών
συμπερασμού. Ως βασικό εγχειρίδιο για τη μελέτη των Περιγραφικών Λογικών έχει
καθιερωθεί το [9]. Σχετικά με την εκφραστικότητα της εκάστοτε λογικής, σαν παράδειγμα
μπορούμε να θεωρήσουμε το κατά πόσο μπορεί κάποιος κατά τη μοντελοποίηση του
πεδίου να χρησιμοποιήσει αξιώματα που αναφέρουν ότι κάποια ιδιότητα είναι μεταβατική ή
συναρτησιακή, ή ότι μια ιδιότητα είναι η αντίστροφη μιας άλλης ιδιότητας, ή ότι μια κλάση
είναι η ένωση κάποιων άλλων ξένων μεταξύ τους κλάσεων. Έτσι για παράδειγμα, σε
κάποιες Περιγραφικές Λογικές μπορούμε να μοντελοποιήσουμε το γεγονός ότι κάποιος
είναι μετεξεταστέος αν και μόνο αν έχει πάρει σε ένα τουλάχιστον μάθημα κάτω από τη
βάση, ενώ σε άλλες όχι. Τέλος, στις Περιγραφικές Λογικές γίνεται μια διάκριση ανάμεσα

στα αξιώματα, όπως αυτα που αναφέραμε ή αυτά που ορίζουν την ιεραρχία των κλάσεων
και των ιδιοτήτων, και στα απλά γεγονότα που δηλώνουν ότι ένα αντικείμενο του πεδίου
ανήκει σε μια κλάση ή ότι ένα αντικείμενο συνδέεται μέσω μιας ιδιότητας με ένα άλλο
αντικείμενο. Το μέρος το οποίο περιλαμβάνει τα αξιώματα ονομάζεται T -box (terminology),
ενώ το μέρος που περιλαμβάνει τα γεγονότα ονομάζεται A-box (assertional knowledge).

Κατά τη δεκαετία του 2000 η Κοινοπραξία του Παγκοσμίου Ιστού (WWW Consortium,
συντ. W3C) ανέπτυξε την οικογένεια γλωσσών OWL για αναπαράσταση γνώσης στον
παγκόσμιο ιστό. Η συγκεκριμένη οικογένεια γλωσσών βασίζεται στις περιγραφικές
λογικές, και χρησιμοποιεί το μοντέλο δεδομένων RDF (Resource Description Frame-
work). Το μοντέλο RDF προσφέρει έναν απλό τρόπο για την αναπαράσταση πληροφορίας
με βάση τριπλέτες της μορφής υποκείμενο-κατηγόρημα-αντικείμενο, κατασκευάζοντας
έτσι ουσιαστικά ένα γράφο γνώσης. Σε αυτόν το γράφο ορίζονται επίσης αξιώματα
μέσω της OWL και μπορούν να χρησιμοποιηθούν τεχνικές συμπερασμού. Η τελευταία
έκδοση της οικογένειας γλωσσών OWL ονομάζεται OWL 2 και περιλαμβάνει 3 προφίλ με
διαφορετική εκφραστικότητα. Ένα από αυτά τα προφίλ, το OWL 2 QL, βασίζεται στην
οικογένεια περιγραφικών λογικών DL-Lite [22, 23], έχει σχεδιαστεί έτσι ώστε να είναι
υπολογιστικά αποδοτική η απάντηση συζευκτικών επερωτήσεων. Έτσι για παράδειγμα,
το συγκεκριμένο προφίλ είναι πρακτικό να χρησιμοποιηθεί όταν έχουμε μεγάλο όγκο
δεδομένων, τα οποία μπορεί να είναι αποθηκευμένα σε μια εξωτερική σχεσιακή βάση
δεδομένων, η οποία έχει δημιουργηθεί ανεξάρτητα από την οντολογία. Η συγκεκριμένη
μέθοδος για εκτέλεση επερωτήσεων ονομάζεται ανάκτηση δεδομένων βάσει οντολογιών
(Ontology-based Data Access, συντ. OBDA), ενώ χρησιμοποιείται και ο όρος εικονικός
γράφος γνώσης (virtual knowledge graph) για να περιγράψει την προσέγγιση.

Ανάκτηση Δεδομένων Βάσει Οντολογιών

Στο [77] μελετάται ανάκτηση δεδομένων βάσει οντολογιών για την περίπτωση που τα
δεδομένα βρίσκονται αποθηκευμένα σε μία εξωτερική σχεσιακή βάση δεδομένων και για
οντολογίες της οικογένειας DL-Lite. Κατά τη συγκεκριμένη διαδικασία δημιουργούνται
δηλωτικές αντιστοιχίσεις (mappings) για τη δημιουργία γεγονότων της οντολογίας με βάση
τα δεδομένα που είναι αποθηκευμένα στη βάση δεδομένων και μελετάται η διαδικασία
μετάφρασης μίας αρχικής συζευκτικής επερώτησης πάνω στην οντολογία σε μία τελική
επερώτηση εκφρασμένη στη γλώσσα SQL, έτοιμη να εκτελεστεί στη βάση δεδομένων. Η
συγκεκριμένη διαδικασία χωρίζεται σε δύο διακριτά βήματα. Πρώτα έχουμε τη μεταγραφή
(rewriting) ή αναδιαμόρφωση (reformulation) της επερώτησης λαμβάνοντας υπόψιν τα
αξιώματα της οντολογίας, και έπειτα την ανάπτυξη (unfolding) της επερώτησης με βάση
τις αντιστοιχίσεις. Το πρώτο βήμα βασίζεται στον αλγόριθμο PerfetRef[23] και έχει σαν
αποτέλεσμα μια ένωση συζευκτικών επερωτήσεων πάνω στην οντολογία, ενώ το δεύτερο
βήμα βασίζεται σε μερική αποτίμηση (partial evaluation)[61] λογικών προγραμμάτων.

Σύντομα παρατηρήθηκε ότι η ένωση συζευκτικών επερωτήσεων που παράγεται κατά την
παραπάνω διαδικασία είναι σε πολλές περιπτώσεις απαγορευτικά μεγάλη προκειμένου
να γίνει αποτελεσματική εκτέλεση του αποτελέσματος της μετάφρασης από την εξωτερική
βάση δεδομένων. Για παράδειγμα, σε πολλές πρακτικές περιπτώσεις μπορεί να περιέχει

χιλιάδες συζευκτικές υποερωτήσεις. Σαν συνέπεια της συγκεκριμένης παρατήρησης
προτάθηκαν βελτιστοποιημένες μέθοδοι που παράγουν επερωτήσεις με λιγότερα
υποερωτημάτα, βασιζόμενες σε σημασιολογική βελτιστοποίηση [66, 27], οι οποίες σε
πολλές περιπτώσεις παράγουν καλύτερο αποτέλεσμα, ωστόσο η αποδοτική αποτίμηση
από την εξωτερική βάση δεδομένων παραμένει ένα πρόβλημα. Προκειμένου να επιλυθεί
αυτό το πρόβλημα, προτάθηκαν ορισμένες μέθοδοι μεταγραφής με στόχο την παραγωγή
πιο συμπαγούς μεταγραφής υπό τη μορφή μη αναδρομικού προγράμματος Datalog, αντί
για ένωση συζευκτικών επερωτήσεων[86, 52], όμως η αποτελεσματική αποτίμηση τέτοιου
είδους προγραμμάτων από τα υπάρχοντα συστήματα διαχείρισης βάσεων δεδομένων
παραμένει ένα ανοιχτό ζήτημα. Στο [20] πραγματοποιείται σύγκριση διαφορετικών
μεταγραφών με βάση το κόστος και στη γενική περίπτωση η τελική μεταγραφή θα
είναι πάλι μια ένωση συζευκτικών επερωτήσεων. Το Semantic Index [82] περιέχει μια
αριθμητική κωδικοποίηση των ιεραρχιών κλάσεων και ιδιοτήτων και αποθηκεύει δεδομένα
RDF σε σχεσιακές βάσεις με συγκεκριμένο σχήμα, χρησιμοποιώντας κατάλληλα ευρετήρια
B-tree, έτσι ώστε η ιδιότητα μέλους κλάσης και ιδιότητας να μπορεί να προσδιοριστεί
από ερωτήματα εύρους για αυτά τα ευρετήρια, αποφεύγοντας ένα μεγάλο αριθμό
υποερωτημάτων.

Σχετικά με την υλοποίηση συστημάτων που πραγματοποιούν ανάκτηση δεδομένων βάσει
οντολογιών, έχει παρατηρηθεί ότι στην πράξη είναι πιο αποδοτικό να κωδικοποιείται η
πληροφορία που αφορά τις ιεραρχίες κλάσεων και ιδιοτήτων στις αντιστοιχίσεις. Με
αυτό τον τρόπο, οι συγκεκριμένες ιεραρχίες μπορούν να αγνοηθούν κατά το βήμα της
αναδιαμόρφωσης, και να ληφθούν υπόψιν μόνο κατά το βήμα της ανάπτυξης. Έτσι,
για παράδειγμα το σύστημα Ontop [21], χρησιμοποιεί τα λεγόμενα T -Mappings που
ακολουθούν αυτήν ακριβώς την πρακτική, ενώ με παρόμοια λογική χρησιμοποιούνται οι
κορεσμένες αντιστοιχίσεις (saturated mappings) από το σύστημα Ultrawrap-OBDA [92].
Σχετικά με την αρχιτεκτονική του συστήματος Ontop, όπως αυτή περιγράφεται στο [82],
χρησιμοποιεί τη μέθοδος tree-witness [52] για το βήμα της αναδιαμόρφωσης, και τη μερική
αποτίμηση λογικών προγραμμάτων για το βήμα της ανάπτυξης μέσω των T -Mappings.
Πρόσφατα ωστόσο[105], έχει εισαχθεί η έννοια του ενδιάμεσου επερωτήματος (intermedi-
ate query) για να πραγματοποιηθεί η μετάφραση, εγκαταλείποντας τη μέθοδο ανάπτυξης
μέσω μερικής αποτίμησης. Όσον αφορά την αρχική επερώτηση πάνω στην οντολογία,
δεδομένου ότι το Ontop παρουσιάζει τα δεδομένα ως έναν εικονικό RDF γράφο, αυτή
εκφράζεται στη γλώσσα SPARQL[37], μία γλώσσα επερωτήσεων για το μοντέλο RDF.

Στην παρούσα διατριβή μελετάμε το πρόβλημα της αποδοτικής αποτίμησης επερωτήσεων
που παράγονται από συστήματα που επιτελούν ανάκτηση δεδομένων βάσει οντολογιών
κυρίως από τη σκοπιά των βάσεων δεδομένων, βασιζόμενοι σε μοντέλα κόστους
εκτέλεσης. Επικεντρωνόμαστε στην περίπτωση που η αρχική οντολογία είναι εκφρασμένη
στη γλώσσα OWL 2 QL και μελετάμε τη μετάφραση αρχικών επερωτήσεων πάνω
στην οντολογία που έχουν τη μορφή της ένωσης συζευκτικών επερωτήσεων. Καθώς
το συγκεκριμένο πρόβλημα εξαρτάται άμεσα από το είδος των εξωτερικών πηγών
δεδομένων, κάνουμε μια διάκριση σε τρία διαφορετικά σενάρια εφαρμογής. Κατά το
πρώτο σενάριο θεωρούμε ότι τα δεδομένα είναι αποθηκευμένα σε μία σχεσιακή βάση
δεδομένων. Κατά το δεύτερο σενάριο θεωρούμε ότι υπάρχουν πολλές διαφορετικές

σχεσιακές βάσεις δεδομένων, και τέλος στο τρίτο σενάριο θεωρούμε ότι τα δεδομένα
είναι αποθηκευμένα στη μορφή RDF και τα διαχειρίζεται ένα εξειδικευμένο σύστημα
αποθήκευσης και διαχείρισης τέτοιου είδους δεδομένων. Επίσης, κατά τη συγκεκριμένη
διατριβή χρησιμοποιούμε το Ontop ως το σύστημα που επιτελεί την ανάκτηση δεδομένων
βάσει οντολογιών, και τροποποιούμε διάφορα χαρακτηριστικά του όπου αυτό χρειάζεται
από τις μεθόδους που προτείνουμε, ώστε να επιτύχουμε βελτιωμένη απόδοση για την
κάθε περίπτωση. Το σύστημα Ontop έχει αναπτυχθεί από το Ανοιχτό Πανεπιστήμιο του
Μπόζεν-Μπολζάνο και θεωρείται από τα πλέον εξελιγμένα και αξιόπιστα συστήματα για
τη συγκεκριμένη εργασία τόσο από άποψη λειτουργικότητας, όσο και αποδοτικότητας.
Στη συνέχεια παρουσιάζουμε τη συνεισφορά της διατριβής σε κάθε ένα από τα
προαναφερθέντα σενάρια.

Διαχείριση της περιττής επεξεργασίας κατά την εκτέλεση επερωτήσεων

Κατά το πρώτο σενάριο, μελετάμε την περίπτωση κατά την οποία τα δεδομένα
αποθηκεύονται σε μια εξωτερική σχεσιακή βάση δεδομένων με αυθαίρετο σχεσιακό
σχήμα, κατά την οποία η αρχική επερώτηση πρέπει να μεταγραφεί σε μία επερώτηση
εκφρασμένη στη γλώσσα επερωτήσεων σχεσιακών βάσεων SQL. Σε αυτό το
σενάριο, η περιττή επεξεργασία εντοπίζεται ως το βασικό πρόβλημα το οποίο
καθιστά αναποτελεσματική την εκτέλεση. Ως περιττή επεξεργασία εννοούμε i)
διπλότυπες απαντήσεις και ii) επαναλαμβανόμενη πρόσβαση στα ίδια δεδομένα από
διαφορετικά σημεία μίας πολύπλοκης επερώτησης ακόμα και ελλέιψει διπλότυπων
απαντήσεων. Σχετικά με τις διπλότυπες απαντήσεις, αυτές προέρχονται από
διαφορετικούς τρόπους που κάποιο γεγονός της οντολογίας μπορεί να προκύψει από τα
δεδομένα. Για παράδειγμα, μπορεί ένα διπλότυπο να προκύψει από δύο διαφορετικά
υποερωτήματα (συζευκτικά υποερωτήματα) μίας ένωσης συζευκτικών ερωτημάτων.
Η επαναλαμβανόμενη πρόσβαση στα ίδια δεδομένα ακόμα και ελλείψει διπλότυπων
απαντήσεων αναφέρεται σε ανάγνωση του ίδιου σχεσιακού πίνακα πολλές φορές σε μία
επερώτηση, όπως για παράδειγμα από διαφορετικά υποερωτήματα.

Για την αντιμετώπιση του συγκεκριμένου ζητήματος διερευνώνται διαφορετικές
μεταγραφές των επερωτήσεων χρησιμοποιώντας έναν αλγόριθμο βασισμένο στο
κόστος εκτέλεσης, για να επιτευχθεί μία ισοδύναμη, αλλά πιο αποτελεσματική μεταγραφή,
σε σύγκριση με την προκαθορισμένη μεταγραφή που λαμβάνεται μέσω της μερικής
αποτίμησης λογικών προγραμμάτων. Συγκεκριμένα, αρχικά εκτελείται ο αλγόριθμος
της μερικής αποτίμησης για τη λήψη της προκαθορισμένης μεταγραφής. Κατά τη
συγκεκριμένη εκτέλεση κρατώνται πληροφορίες που αφορούν τις αντιστοιχίσεις που
χρησιμοποιήθηκαν. Έπειτα, οι αντιστοιχίσεις που αφορούν το ίδιο στοιχείο της
οντολογίας εξετάζονται σχετικά με το αν θα είναι προτιμότερο από άποψη κόστους
να δημιουργήσουμε μια αντιστοίχιση που να περιλαμβάνει όλες τις υπόλοιπες που
αφορούν το ίδιο στοιχείο της οντολογίας. Για αυτό το λόγο χρησιμοποιούμε την έννοια της
συνδυασμένης αντιστοίχισης (combined mapping) και δείχνουμε ότι το λογικό πρόγραμμα
που χρησιμοποιεί τη συνδυασμένη αντιστοίχιση είναι ισοδύναμο με το αρχικό, και το
αποτέλεσμα της μετάφρασης είναι σωστό. Έτσι, μπορούμε να υπολογίζουμε και να

σώσουμε σε ένα προσωρινό αποτέλεσμα τις επερωτήσεις που αφορά η συνδυασμένη
αντιστοίχιση και να εξετάσουμε ποια από τις δύο επιλογές είναι προτιμότερη από άποψη
κόστους. Για το σκοπό αυτό εισάγουμε συγκεκριμένες ευρετικές σχετικά με την απαλοιφή
διπλότυπων και την επαναλαμβανόμενη πρόσβαση σε πίνακες. Έπειτα εκτελούμε μια
άπληστη αναζήτηση όσον αφορά τις επιλογές για το ποιες συνδυασμένες αντιστοιχίσεις
θα χρησιμοποιηθούν, επιλέγοντας σε κάθε βήμα όποια δίνει το μεγαλύτερο κέρδος.
Έπειτα υπολογίζουμε τη μερική αποτίμηση με την επιλεχθείσα συνδυασμένη αντιστοίχιση
και εξετάζουμε τις υπόλοιπες, έως ότου δεν υπάρχει κάποια που να δίνει κέρδος.

Η προτεινόμενη μέθοδος έχει ως στόχο να ελαχιστοποιήσει την περιττή επεξεργασία
από την πλευρά του σχεσιακού συστήματος βάσεων δεδομένων σχετικά με διπλότυπες
απαντήσεις που προκύπτουν κατά την εκτέλεση, καθώς και σχετικά με επαναλαμβανόμενη
πρόσβαση στα ίδια δεδομένα πολλαπλές φορές κατά την εκτέλεση της επερώτησης.
Κατά τη διδακτορική διατριβή, η συγκεκριμένη μέθοδος υλοποιήθηκε ως μια επέκταση
του OBDA-συστήματος Ontop, και επιβεβαιώθηκε πειραματικά ότι προσφέρει καλύτερους
χρόνους εκτέλεσης σε διαφορετικές ομάδες δεδομένων και επερωτήσεων, σε σύγκριση
με άλλες πλέον πρόσφατα δημοσιευμένες μεθόδους μεταγραφής.

Συνοπτικά, η συνεισφορά του συγκεκριμένου μέρους της διατριβής έχει ως εξής:

• Προτείνουμε μια καινοτόμο επέκταση πάνω σε προηγουμένως δημοσιευμένη
μέθοδο για μετάφραση επερωτήσεων όπως αυτή πραγματοποιείται από συστήματα
που πραγματοποιούν ανάκτηση δεδομένων βάσει οντολογιών. Η επέκταση
βασίζεται σε μερική αποτίμηση λογικών προγραμμάτων και παρέχει μία πλήρη
διαδικασία βασισμένη στο κόστος εκτέλεσης για τη μετάφραση των συγκεκριμένων
επερωτήσεων

• Προτείνουμε συγκεκριμένες εκτιμήσεις κόστους για την προαναφερθείσα επέκταση,
οι οποίες στοχεύουν στην ελαχιστοποίηση της περιττής επεξεργασίας, τόσο
υπό τη μορφή των διπλότυπων απαντήσεων, όσο και υπό τη μορφή της
επαναλαμβανόμενης πρόσβασης στα σχεσιακά δεδομένα.

• Υλοποίηση των συγκεκριμένων επεκτάσεων στο σύστημα Ontop και εκτενής
πειραματική αξιολόγηση που επιβεβαιώνει την αποτελεσματικότητα της
προσέγγισής μας.

Ανάπτυξη Συστήματος-Διαμεσολαβητή

Στο δεύτερο σενάριο, τα δεδομένα αποθηκεύονται σε πολλές εξωτερικές βάσεις
δεδομένων, όπου η καθεμία έχει το δικό της σχήμα και μπορεί να βρίσκεται σε διαφορετική
τοποθεσία. Σε αυτήν την περίπτωση αναπτύξαμε ένα σύστημα-μεσολαβητή, το οποίο
είναι σε θέση να εκτελέσει την επερώτηση που προέκυψε από το αρχικό OBDA-
σύστημα, έχοντας πρόσβαση σε όλες αυτές τις βάσεις δεδομένων. Κατά την ανάπτυξη
του συστήματος επεκτάθηκαν και προσαρμόστηκαν δημοσιευμένες τεχνικές βάσεων
δεδομένων σε θέματα σχετικά με ταυτοποίηση κοινών υποεκφράσεων (common subex-
pression identification), την αποθήκευση και ανάκτηση επί μέρους αποτελεσμάτων από

προσωρινή μνήμη (query caching), τη βελτιστοποίηση επερωτήσεων για ενοποίηση
δεδομένων (data integration) και την κατανεμημένη επεξεργασία επερωτήσεων. Το
συγκεκριμένο σύστημα που αναπτύχθηκε σε αυτό το μέρος της διδακτορικής διατριβής
βασίζεται στο Exareme, ένα σύστημα για κατανεμημένη επεξεργασία ελαστικών ροών
δεδομένων [55] και είναι το πρώτο δημοσιευμένο σύστημα που χρησιμοποιεί ταυτόχρονα
όλες αυτές τις τεχνικές και δρα ως μεσολαβητής για την εκτέλεση OBDA επερωτήσεων σε
ένα τέτοιο περιβάλλον.

Συγκεκριμένα, ακολουθώντας τη μέθοδο που παρουσιάζεται στο [87], αναπαριστούμε
τους τελεστές κάθε ενός υποερωτήματος που περιλαμβάνεται στην ένωση συζευκτικών
επερωτησεων που παράγεται από τη μετάφραση της αρχικής επερώτησης πάνω στην
οντολογία σε ένα γράφο AND-OR. Σε αυτό το γράφο οι κόμβοι AND αναπαριστούν
τελεστές (όπως για παράδειγμα μια ζεύξη) με τις ακμές που καταλήγουν στον κόμβο
να αναπαριστούν τις εισόδους του αντίστοιχου τελεστή. Οι κόμβοι OR αναπαριστούν
ενδιάμεσα αποτελέσματα, τα οποία μπορούν είτε να αποθηκευτούν σε ένα προσωρινό
πίνακα στο δίσκο, είτε να προωθηθούν ως είσοδος στον επόμενο AND τελεστή ανά
πλειάδα καθώς παράγονται. Οι είσοδοι ενός OR κόμβου είναι διαφορετικοί τρόποι
με τους οποίους μπορεί να παραχθεί ένα ενδιάμεσο αποτέλεσμα, όπου στο τέλος
ένας από αυτούς τους τρόπους πρέπει να επιλεχθεί. Έτσι, κάθε AND κόμβος έχει
σαν εισόδους ακμές προερχόμενες από OR κόμβους, και κάθε OR κόμβος έχεις σαν
εισόδους ακμές προερχόμενες από AND κόμβους. Αφού αναπαραστήσουμε όλα τα
υποερωτήματα στο γράφο, εφαρμόζουμε μετασχηματισμούς, όπως αντιμεταθετικότητα και
προσεταιριστικότητα των ζεύξεων, για να εξερευνήσουμε διαφορετικά πλάνα εκτέλεσης
[35]. Κατά τη συγκεκριμένη διαδικασία οι κόμβοι OR που αναπαριστούν λογικά το ίδιο
ενδιάμεσο αποτέλεσμα αναγνωρίζονται και ενοποιούνται, μέσω χρήσης μιας συνάρτησης
κατακερματισμού για κάθε κόμβο.

Επίσης, εισάγονται φυσικοί τελεστές που αφορούν τη διαμέριση των πινάκων στο
κατανεμημένο περιβάλλον εκτέλεσης, και εκτελείται αναζήτηση στο χώρο των πιθανών
πλάνων εκτέλεσης, με χρήση τακτικών κλαδέματος πλάνων που δε θεωρείται ότι
θα οδηγήσουν σε καλό πλάνο με βάση ευρετικές μεθόδους. Κατά την αναζήτηση,
υποστηρίζεται η ανάκτηση ενδιάμεσων αποτελεσμάτων από προσωρινή μνήμη (cache)
στην οποία αποθηκεύονται αποτελέσματα από προηγούμενες επερωτήσεις. Εφόσον
κάποιο αποτέλεσμα βρεθεί στην προσωρινή μνήμη, μπορούμε να αποφύγουμε το
κόστος του να το ξαναυπολογίσουμε στο τρέχον ερώτημα, έχοντας απλά το κόστος της
ανάγνωσης του. Αφού οριστεί το τελικό πλάνο εκτέλεσης, όσα ενδιάμεσα αποτελέσματα
αφορούν δεδομένα που βρίσκονται στις εξωτερικές βάσεις δεδομένων στέλνονται για
εκτέλεση εκεί, μέσω ειδικών τελεστών που χειρίζονται την εισαγωγή των συγκεκριμένων
ενδιάμεσων αποτελεσμάτων στο Exareme, επιλέγοντας να γίνει εκεί η επεξεργασία
διαφόρων τελεστών όπου είναι δυνατόν.

Το σύστημα που αναπτύχθηκε στο συγκεκριμένο μέρος της διατριβής χρησιμοποιήθηκε
με επιτυχία κατά το ευρωπαϊκό ερευνητικό έργο Optique [50] για την εκτέλεση απαιτητικών
επερωτήσεων σε μεγάλο όγκο γεωλογικών δεδομένων από επτά διαφορετικές σχεσιακές
βάσεις με πολύπλοκα σχήματα [49].

Συνοπτικά, η συνεισφορά του συγκεκριμένου μέρους της διατριβής έχει ώς εξής:

• Έχουμε αναπτύξει ένα σύστημα-διαμεσολαβητή για ανάκτηση δεδομένων βάσει
οντολογιών πάνω από ένα σύνολο ανεξάρτητων μεταξύ τους σχεσιακών βάσεων
δεδομένων, προσαρμόζοντας τεχνικές βάσεων δεδομένων για ταυτοποίηση
κοινών υποεκφράσεων, χρήση προσωρινής μνήμης για ενδιάμεσα αποτελέσματα,
βελτιστοποίηση επερωτήσεων για ενοποίηση δεδομένων και κατανεμημένη
επεξεργασία δεδομένων.

• Εγκαταστήσαμε και λειτουργήσαμε επιτυχώς το σύστημα-διαμεσολαβητή σε ένα
πραγματικό περιβάλλον εκτέλεσης στο πλαίσιο του ερευνητικού έργου Optique,
στις υπολογιστικές εγκαταστάσεις της εταιρείας Statoil, πάνω από ένα σύνολο επτά
διαφορετικών σχεσιακών βάσεων εγκατεστημένων σε διαφορετικούς εξυπηρετητές,
με ετερογενή πολύπλοκα σχεσιακά σχήματα. Εκτελέσαμε τις περισσότερες από τις
απαιτητικές επερωτήσεις που είχαν προκύψει από την ανάλυση των απαιτήσεων
των χρηστών με μέσο χρόνο εκτέλεσης περίπου 100 δευτερόλεπτα.

Παραλληλοποίηση ζεύξεων πάνω σε γράφους RDF που περιέχουν οντολογικές
ιεραρχίες

Στο τρίτο και τελευταίο σενάριο μελετάμε την περίπτωση που έχουμε RDF δεδομένα
αποθηκευμένα σε ένα εξειδικευμένο σύστημα διαχείρισης αυτού του είδους των
δεδομένων. Το RDF είναι ένα μοντέλο δεδομένων ευρέως χρησιμοποιούμενο για την
ενσωμάτωση δεδομένων από διαφορετικές πηγές, ακολουθώντας ένα απλό σχήμα
γράφου κατά το οποίο τα δεδομένα μοντελοποιούνται ως τριπλέτες που έχουν τη
μορφή υποκείμενο-κατηγόρημα-αντικείμενο. Για αυτό το τρίτο σενάριο, αναπτύχθηκε ένα
σύστημα διαχείρισης μεγάλων RDF γράφων που αποθηκεύονται στην κύρια μνήμη, ικανό
να παραλληλοποιήσει αποτελεσματικά τις επερωτήσεις που προέρχονται από ένα OBDA-
σύστημα, κατά το οποίο η οντολογία μπορεί να περιέχει μεγάλες ιεραρχίες από κλάσεις
αντικειμένων ή ιδιότητες. Το σύστημα που ονομάστηκε PARJ, χρησιμοποιεί πρωτότυπο
τρόπο αποθήκευσης των δεδομένων στην κύρια μνήμη, ο οποίος έχει μικρές απαιτήσεις
σε όγκο, καθώς και πρωτότυπο τρόπο εκτέλεσης επερωτήσεων που περιέχουν ζεύξεις
πάνω στο γράφο των δεδομένων, καθώς επίσης λαμβάνει υπόψιν του και τις ιεραρχίες
της οντολογίας.

Η αποθήκευση των δεδομένων ακολουθεί τη μέθοδο της κάθετης διαμέρισης (vertical
partitioning)[1], σύμφωνα με το οποίο για κάθε διακριτό κατηγόρημα που εμφανίζεται
στα δεδομένα, δημιουργείται ένας πίνακας με δύο στήλες που αντιστοιχούν στον
υποκείμενο και το αντικείμενο κάθε τριπλέτας με το συγκεκριμένο κατηγόρημα. Αρχικά
γίνεται κωδικοποίηση λεξικού (dictionary encoding) η οποία αντιστοιχεί σε κάθε όρο των
δεδομένων ένα μοναδικό ακέραιο αριθμό. Η αποθήκευση στην κύρια μνήμη γίνεται σε
πίνακες που περιλαμβάνουν ταξινομημένους τους συγκεκριμένους ακέραιους για κάθε
πίνακα της κάθετης διαμέρισης, ακολουθώντας αποθήκευση κατά στήλες όπως γίνεται σε
συστήματα βασισμένα σε παρόμοια αποθήκευση (column stores) [98, 43]. Η εκτέλεση
μίας επερώτησης που περιλαμβάνει πολλές ζεύξεις σε ένα πολυνηματικό περιβάλλον
γίνεται με βάση ένα αριστεροβαθύ πλάνο εκτέλεσης. Ένα διαφορετικό μέρος του πιο

αριστερού πίνακα στο πλάνο εκτέλεσης ανατίθεται στο κάθε νήμα. Έπειτα, για κάθε
πλειάδα και για κάθε ζεύξη, το κάθε νήμα εκτελεί αναζήτηση στους πίνακες των επόμενων
σχέσεων του ερωτήματος. Με αυτό τον τρόπο το κάθε νήμα εκτελείται παράλληλα, χωρίς
να χρειάζεται καθόλου επικοινωνία ή συγχρονισμός μεταξύ τους.

Σχετικά με την αναζήτηση σε κάθε πίνακα, αυτή γίνεται με έναν προσαρμοστικό αλγόριθμο,
ο οποίος κατά τη διάρκεια της εκτέλεσης αποφασίζει για κάθε τιμή αν θα εφαρμοστεί
δυαδική αναζήτηση ή σειριακή αναζήτηση. Η απόφαση λαμβάνεται με βάση την
απόσταση στην οποία εκτιμάται ότι θα βρεθεί η συγκεκριμένη τιμή, εάν αυτή υπάρχει,
από το σημείο του πίνακα στην οποία έχει μείνει η προηγούμενη αναζήτηση. Για
τη σωστή λειτουργία του αλγόριθμου, κατά την έναρξη λειτουργίας του συστήματος
διενεργείται μια διαδικασία βαθμονόμησης, η οποία επιστρέφει μία απόσταση που σε
επαναλαμβανόμενες αναζητήσεις σε έναν πίνακα, οι δύο αυτές μέθοδοι αναζήτησης
έχουν σχεδόν την ίδια απόδοση. Έτσι, κατά τη διάρκεια της εκτέλεσης, αν η εκτιμώμενη
απόσταση είναι μεγαλύτερη από την προκαθορισμένη απόσταση που έχει ορίσει η
διαδικασία βαθμονόμησης, εκτελείται δυαδική αναζήτηση. Διαφορετικά εκτελείται σειριακή
αναζήτηση. Με αυτό τον τρόπο εκμεταλλευόμαστε την ολική ή ακόμα και μερική διάταξη με
την οποία παράγονται οι τιμές σε κάθε πλειάδα, από την αρχική ταξινομημένη αποθήκευση
των πινάκων, χωρίς να διακόπτεται ο διασωληνωμένος τρόπος εκτέλεσης. Επίσης, ένα
ευρετήριο που περιέχει την αντιστοίχιση από την αριθμητική τιμή της κωδικοποίησης
λεξικού προς τη θέση της τιμής σε κάθε πίνακα μπορεί να χρησιμοποιηθεί βοηθητικά με
κάποια μικρή επιβάρυνση στον αποθηκευτικό όγκο.

Το σύστημα PARJ επεκτάθηκε κατάλληλα ώστε να λειτουργήσει ως εξωτερική βάση για
το Ontop. Αρχικά, κατά την εκκίνηση του Ontop δημιουργούνται αυτόματα αντιστοιχίσεις
με βάση το σχήμα της κάθετης διαμέρισης, και εισάγονται τα κατάλληλα μεταδεδομένα
στο μοντέλο που δημιουργεί το Ontop. Έπειτα, στο PARJ δημιουργούνται ειδικές
δομές με σκοπό την αποδοτική αποτίμηση των επερωτήσεων που παράγονται από
το Ontop. Αυτές οι δομές ονομάζονται περικαλύμματα ενώσεων (union wrappers),
και κάθε μία αντιστοιχεί σε μία T -αντιστοίχιση του Ontop που αφορά κάποια ιεραρχία
κλάσεων ή ιδιοτήτων. Ουσιαστικά, κάθε περικάλυμμα παρουσιάζεται στο Ontop σαν
ένας εικονικός πίνακας που περιέχει όλα τα δεδομένα της εκάστοτε ιεραρχίας, ενώ στην
πραγματικότητα οι συγκεκριμένοι πίνακες δεν αποθηκεύονται, αλλά κατά τη διάρκεια
της εκτέλεσης γίνεται αναζήτηση σε κάθε πίνακα που συμμετέχει στο περικάλυμμα, και
χρησιμοποιώντας μία ουρά προτεραιότητας, η ένωση των αποτελεσμάτων παράγεται
αποδοτικά κατά την εκτέλεση με ταυτόχρονη απαλοιφή διπλότυπων τιμών. Έτσι,
αποφεύγουμε τον κοστοβόρο υπολογισμό και την αποθήκευση των συμπερασμών που
αφορούν τις ιεραρχίες, και ταυτόχρονα αποφεύγουμε τις επερωτήσεις που περιέχουν
μεγάλο αριθμό υποερωτημάτων.

Η πειραματική αξιολόγηση του συστήματος έδειξε ότι το PARJ εκτελεί πιο αποδοτικά
επερωτήσεις πάνω σε RDF γράφους από άλλα συστήματα με παρόμοια λειτουργικότητα,
τόσο στην περίπτωση που οι επερωτήσεις τίθενται απευθείας, όσο και στην περίπτωση
που προέρχονται από μεταγραφή μέσω ενός OBDA-συστήματος.

Συνοπτικά, η συνεισφορά του συγκεκριμένου μέρους της διατριβής έχει ώς εξής:

• Παρουσιάζουμε το σύστημα PARJ, ένα σύστημα αποθήκευσης RDF γράφων στην
κύρια μνήμη, και εκτέλεσης επερωτήσεων πάνω σε αυτούς, το οποίο αποθηκεύει
τα δεδομένα με συμπαγή τρόπο, έχοντας χαμηλές απαιτήσεις σε αποθηκευτικό
χώρο και παράλληλα αυξάνοντας τη χωρική τοπικότητα των δεδομένων. Επίσης
χρησιμοποιεί ένας προσαρμοστικό αλγόριθμο αναζήτησης κατά την εκτέλεση των
ζεύξεων πάνω στα δεδομένα, ο οποίος μπορεί να παραλληλοποιήσει σε ένα
πολυνηματικό περιβάλλον επερωτήσεις που περιλαμβάνουν πολλαπλές ζεύξεις,
χωρίς επικοινωνία ή συγχρονισμό ανάμεσα στα νήματα.

• Μία δομή που αναπαριστά τις ιεραρχίες κλάσεων και ιδιοτήτων της οντολογίας
στο σύστημα PARJ, η οποία παρέχει πλήρεις απαντήσεις με βάση τα αντίστοιχα
αξιώματα της οντολογίας, χωρίς να υπολογίζει ή να αποθηκεύει τη συγκεκριμένη
πληροφορία σε ξεχωριστά τμήματα μνήμης.

• Μία υλοποίηση που δένει το PARJ με το σύστημα Ontop για αποδοτική ανάκτηση
δεδομένων βάσει οντολογιών όταν τα εξωτερικά δεδομένα είναι RDF γράφοι.
Σύμφωνα με την πειραματική αξιολόγηση, η υλοποίησή μας έχει καλύτερη απόδοση
σε σχέση με άλλα συστήματα παρόμοιας λειτουργικότητας.

Συμπεράσματα και μελλοντικές επεκτάσεις

Στην παρούσα διατριβή προτείνουμε λύσεις όσον αφορά το πρόβλημα της αποδοτικής
εκτέλεσης επερωτήσεων σε ένα περιβάλλον ανάκτησης δεδομένων βάσει οντολογιών, σε
τρία βασικά σενάρια ανάλογα με το είδος των υποκείμενων εξωτερικών πηγών δεδομένων.
Πιθανές μελλοντικές επεκτάσεις αφορούν άλλες μορφές εξωτερικών δεδομένων, όπως για
παράδειγμα τα λεγόμενα NoSQL συστήματα, όπως συστήματα αποθήκευσης δεδομένων
εγγράφων (document stores) και αποθήκευσης δεδομένων της μορφής κλειδί-τιμή (key-
value stores). Επίσης, σε αυτή την περίπτωση είναι επιθυμητή και η επέκταση του
συστήματος-διαμεσολαβητή ώστε να υποστηρίζει και τέτοιου είδους δεδομένα ως πηγές,
συνδυάζοντάς τα με τις σχεσιακές βάσεις.

Ένα άλλο ενδιαφέρον θέμα έχει να κάνει με την υποστήριξη γεωχωρικών δεδομένων.
Σε αυτή την περίπτωση, το αρχικό ερώτημα πάνω στην οντολογία μπορεί να εκφραστεί
στη γλώσσα GeoSPARQL[72], που είναι μια επέκταση της γλώσσας SPARQL και είναι
πρότυπο της Ανοιχτής Γεωχωρικής Κοινοπραξίας (Open Geospatial Consortium συντ.
OGC). Το σύστημα Ontop-spatial [11] είναι μια επέκταση του συστήματος Ontop που
πραγματοποιεί μετάφραση επερωτήσεων από τη γλώσσα GeoSPARQL σε επερωτήσεις
εκφρασμένες στη γλώσσα SQL, εμπλουτισμένη με γεωχωρικούς τελεστές. Η υποστήριξη
του συγκεκριμένου συστήματος μπορεί να αποτελέσει μελλοντική δουλεία τόσο από το
σύστημα-διαμεσολαβητή που αναπτύχθηκε πάνω στο Exareme για την περίπτωση που
γεωχωρικές σχεσιακές βάσεις αποτελούν έναν από τους τύπους εξωτερικών πηγών
δεδομένων, όσο και απο το σύστημα PARJ στην περίπτωση που έχουμε γεωχωρικά RDF
δεδομένα, όπως αυτά της γλώσσας stSPARQL[57].

CONTENTS

1 INTRODUCTION 31
1.1 Contributions . 32

1.2 Publications . 33

1.3 Thesis structure . 34

2 BACKGROUND AND RELATED WORK 35
2.1 RDF and SPARQL . 35

2.2 Ontology-based Data Access (OBDA) . 36

2.3 Systems and approaches for RDF Storage and SPARQL query processing 37

2.4 In-memory data processing . 39

3 HANDLING REDUNDANT PROCESSING IN OBDA QUERY EXECUTION OVER RELA-
TIONAL SOURCES 41

3.1 Introduction and Outline . 41

3.2 Preliminaries . 46

3.2.1 Databases. 46

3.2.2 Queries. 46

3.2.3 Ontology and Mappings. 50

3.2.4 Logic Programs . 50

3.3 Unfolding Queries Through Partial Evaluation . 52

3.4 Offline Duplicate Elimination With Materialized Views 57

3.5 Pushing Duplicate Elimination Before IRI Construction 60

3.6 Cost-Based Selection of Query Translation . 62

3.6.1 Analyzing External Tables . 63

3.6.2 Early Duplicate Elimination of Intermediate Results 63

3.6.3 Cost-based Translation . 65

3.7 Implementation and Experimental Evaluation . 68

3.7.1 Experiments with NPD and LUBM Benchmarks 68

3.7.1.1 Queries and Mappings . 69

3.7.1.2 Overhead in Setup and Optimization 69

3.7.1.3 Results . 69

3.7.2 Comparison with the JUCQ Approach . 71

3.7.3 Performance gain . 72

3.7.4 Evaluating the Duplicate Elimination Heuristic 74

3.8 Related Work and Conclusions . 75

4 FEDERATED OBDA QUERY EXECUTION 77
4.1 Introduction . 77

4.2 Background . 78

4.2.1 The Optique Platform . 78

4.2.2 The Exareme System . 80

4.2.2.1 Language and Optimization: . 81

4.2.2.2 Execution Engine: . 82

4.2.2.3 Worker Pool: . 82

4.2.2.4 Data / Stream Connector: . 82

4.2.2.5 Data Import: . 83

4.2.2.6 Query Execution: . 83

4.3 Overview . 83

4.3.0.1 Federated Analyzer . 84

4.3.0.2 Common Subexpression Identification 84

4.3.0.3 Pushing processing to endpoints . 84

4.3.0.4 Caching Intermediate Results . 85

4.4 Query Optimization in the OBDA Mediator . 86

4.4.1 Transformation-Based Optimization . 86

4.4.2 Incorporating Partitioning Information in the Search and Pruning 89

4.4.3 Adapting Volcano-style Search in Exareme . 93

4.4.4 Search with Materialized Results . 97

4.4.5 Improving Common Subexpression Identification 98

4.5 Experimental Evaluation . 100

4.5.1 Experiments in the Statoil Optique Use-Case 100

4.5.2 Experiments using Canonical IRIs . 101

4.6 Conclusions . 102

5 IN-MEMORY PARALLELIZATION OF JOIN QUERIES OVER LARGE ONTOLOGICAL HIER-
ARCHIES 105

5.1 Introduction . 105

5.2 Physical Data Storage and Execution Model . 107

5.3 Query Processing . 110

5.3.1 Adaptive Join Processing . 111

5.3.2 ID-to-Position Index . 113

5.4 Query Execution Over Ontological Hierarchies . 116

5.4.1 System Design . 116

5.4.2 Union Wrappers for Ontology Hierarchies . 118

5.4.3 Join Ordering and Selectivity Estimation . 120

5.5 Experiments . 122

5.5.1 Setup . 122

5.5.2 Results . 123

5.5.2.1 Effect of Runtime Join Optimization 125

5.5.2.2 Effect of ID-to-Position Index . 128

5.5.2.3 Scalability . 129

5.5.2.4 Results for Query Execution over OWL2 QL Ontologies 130

5.5.2.5 Comparison With Distributed RDF Stores 132

6 CONCLUSIONS AND FUTURE WORK 133

ABBREVIATIONS - ACRONYMS 135

APPENDICES 136

A NPD Queries 31-34 137

REFERENCES 144

LIST OF FIGURES

3.1 SLD Tree . 47

3.2 Example Mappings . 48

3.3 Example T -Mappings . 48

3.4 UCQ over the database . 49

3.5 Combined Mapping for Mapping Assertions m1, m1′ and m1′′ 49

3.6 Combined Mapping for Mapping Assertions m5 and m5′ 49

3.7 SLD Tree 2 . 58

3.8 SLD Tree 3 . 59

3.9 Performance gain for varying number of mappings per predicate 73

3.10 Performance gain with respect to number of results 73

4.1 The general architecture of the Optique OBDA system 79

4.2 General architecture of the Exareme component within the Optique System 81

4.3 Query Plan. 85

4.4 Simple Join Example . 87

4.5 Expanded DAG . 88

4.6 Pruned Path in the DAG . 90

4.7 Adding Partitioning Information . 91

4.8 Execution Times for Federated Scenario (With and Without Query Cache) . 101

4.9 Execution time and statistics for the queries in the federated setting at Sta-
toil . 102

4.10 Comparison of execution time for sameAs and Canonical IRI approaches . 104

5.1 Example of Physical Data Storage for a Property Partition 109

5.2 T -Mappings entry for class Professor . 118

5.3 Union Wrapper for Class Professor . 121

5.4 LUBM 32 threads execution times in ms for different dataset sizes 130

5.5 LUBM 10240 execution times in ms for different number of threads 131

LIST OF TABLES

3.1 Results for NPD scale 100 (Times in ms) 70

3.2 Results for LUBM scale 100 (Times in ms) 71

3.3 Average execution time (ms) for Wisconsin Benchmark 72

3.4 Results for NPD queries from [59] (scale 100-Times in ms) 72

3.5 Query Results for Different Duplicate Elimination Strategies 75

4.1 Mappings . 99

5.1 Example of Dictionary Encoding . 108

5.2 Results for LUBM 10240 (times in ms) . 125

5.3 Results for YAGO2 (times in ms) . 125

5.4 Results for WatDiv Basic Workload scale 1000 (times in ms) 126

5.5 Results for WatDiv Incremental and Mixed Linear Workloads scale 1000
(times in ms) . 127

5.6 Impact of Adaptive Processing for LUBM 10240 and WatDiv 1000 (times in
ms) for 1 thread . 128

5.7 Number of binary searches and sequential searches for LUBM10240 cho-
sen by out adaptive join method and comparison of binary search with ID-
to-Position index with respect to total execution cycles and L1, L2 and L3
cache misses . 129

5.8 Results for LUBM∃20 1000 (times in ms) . 132

Database Techniques for Ontology-based Data Access

1. INTRODUCTION

In the area of Knowledge Representation and Reasoning, ontologies play a crucial role
in modeling knowledge about an application domain. An ontology encodes information
about the classes of objects of the domain and the relationships between them, providing
the users of the application with a familiar conceptualization of the domain. On top of that,
logic based constructs encoded in the ontology can be used to derive new knowledge
through inference. The World Wide Web Consortium (W3C) recommends the usage of
theWebOntology Language (OWL) as the family of ontology languages used to represent
knowledge in the web.

Ontology-based Data Acess (OBDA) is a method for linking an ontology to underlying
external data sources through declarative mappings. The mappings can be thought of as
rules that populate ontology objects based on queries over the the external data (global
as view-GAV mappings in the data integration terminology). Then, a user can pose a
query over the ontology, and this query can be translated into the query language of the
underlying data sources using the mappings and sent for execution, providing the user
with the desired results, as if the data were part of the ontology. In this thesis, unless
otherwise stated, we deal with ontologies in the OWL 2 QL dialect of the OWL family, a
dialect specifically tailored for the case of having massive data in external sources, for
which there exist effective sound and complete query translation methods. In a similar
manner, themappings considered here belong are GAVmappings of the R2RML language
which is a W3C standard, or other languages of similar expressibilit, and the initial queries
over the ontology have the form of unions of conjunctive queries.

Despite the efficient, in terms of complexity, algorithms for query answering in OBDA
systems, the resulted query that must be executed in the external databases is in many
practical cases complex and large. As an example, it is not unusual in a typical OBDA
setting where long property and class hierarchies are defined in the ontology, an initial
conjunctive query over the ontology to be translated into a union of conjunctive queries,
which can contain hundreds or thousands of subqueries. The aim of this thesis is offer
database techniques in order to alleviate the aforementioned issue.

In this context we make a distinction between three different OBDA scenarios. In the first
scenario we have an OBDA setup such that the data are stored in an external relational
database with an arbitrary schema. In this case we explore different query translations
using a cost-based algorithm in order to come up with an equivalent, but most efficient
translation, compared to the translation obtained by other state of the art methods. In the
second scenario, the data are stored in several external databases, where each one has
its own schema. In this case we have developed a mediator which is able to efficiently ex-
ecute the resulted query over all of these databases, by employing and adapting state of
the art techniques regarding common subexpression identification, query caching, query
planning for data integration and distributed query processing. In the third and final sce-
nario, we have RDF data stored in a specialized triple store. RDF is a data model widely
used in order to integrate data from different sources, following a simple schema of triples

31 D. Bilidas

Database Techniques for Ontology-based Data Access

in the form of subject-predicate-object statements. For this third scenario, we have de-
veloped an in-memory RDF store, able to efficiently parallelize OBDA queries over large
ontological hierarchies.

1.1 Contributions

The contributions of the work described in this thesis are summarised as follows:

• We propose a novel enhancement over previous state of the art method for query
translation from an initial query over the ontology, to an SQL query over an external
database. Our enhancement provides a full cost-based method for OBDA query
translation.

• We propose cost estimates for the previous method, aiming to deal with redundant
processing in both forms of duplicate answers and repeated operations.

• We have implemented our method in the state of the art OBDA system Ontop and
have perfomed extended experimental evaluation that confirms the efficiency of our
method.

• We have implemented a mediator system for OBDA over multiple external relational
databases, by employing and adapting database techniques for common subexpres-
sion identification, query caching, query planning for data integration and distributed
query processing.

• We have successfully deployed the OBDAmediator in the real world use case of Sta-
toil from the Optique research project, in a setting that contains 7 different realational
data sources with complex schemas. We have executed most of the demanding use
case queries with an average execution time of almost 100 seconds.

• We present PARJ, an in-memory triple store which compactly stores RDF data in
main memory, in order to increase spatial locality during join processing, and em-
ploys a cache-friendly adaptive join processing approachwith lowmemory consump-
tion, able to efficiently parallelize evaluation of arbitrary multijoin BGPs without any
communication.

• We propose a method that takes into consideration information about ontological
hierarchies during join processing in PARJ, in order to provide complete answers
with respect to such axioms.

• We present PARJ-Ontop, a system that couples PARJ with Ontop, providing a com-
plete system for efficient OBDA query answering over RDF graphs. According to the
experimental evaluation, our system outperforms all other state of the art systems.

D. Bilidas 32

Database Techniques for Ontology-based Data Access

1.2 Publications

The content of the present thesis is partially covered in the following publications:

• Dimitris Bilidas and Manolis Koubarakis. In-memory parallelization of join queries
over large ontological hierarchies. Distributed and Parallel Databases, pages 1–38,
2020.

• Dimitris Bilidas and Manolis Koubarakis. Scalable parallelization of RDF joins on
multicore architectures. In Advances in Database Technology - 22nd International
Conference on Extending Database Technology, EDBT 2019, Lisbon, Portugal,
March 26-29, 2019, pages 349–360, 2019.

• Dimitris Bilidas and Manolis Koubarakis. Efficient duplicate elimination in SPARQL
to SQL translation.In Proceedings of the 31st International Workshopon Description
Logics co-located with 16th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2018), Tempe, Arizona, US, October 27th - to -
29th, 2018, volume 2211 of CEUR Workshop Proceedings. CEUR-WS.org, 2018.

• Evgeny Kharlamov, Dag Hovland, Martin G Skjæveland, Dimitris Bilidas, Ernesto
Jiménez-Ruiz, Guohui Xiao, Ahmet Soylu, Davide Lanti, Martin Rezk, Dmitriy
Zheleznyakov, et al. Ontology based data access in Statoil. Journal of Web Se-
mantics, 44:3–36, 2017.

• Evgeny Kharlamov, Ernesto Jiménez-Ruiz, Dmitriy Zheleznyakov, Dimitris Bilidas,
Martin Giese, Peter Haase, Ian Horrocks, Herald Kllapi, Manolis Koubarakis, Özgür
Özçep, et al. Optique: Towards OBDA systems for industry. In Extended Semantic
Web Conference, pages 125–140. Springer, 2013.

• Evgeny Kharlamov, T Mailis, Konstantina Bereta, Dimitris Bilidas, Sebastian Brandt,
Ernesto Jiménez- Ruiz, Steffen Lamparter, Christian Neuenstadt, O Özçep, Ahmet
Soylu, et al. A semantic approach to polystores. In 2016 IEEE International Confer-
ence on Big Data (Big Data), pages 2565–2573. IEEE, 2016.

• Herald Kllapi, Dimitris Bilidas, Ian Horrocks, Yannis Ioannidis, Ernesto Jiménez,
Evgeny Kharlamov, Manolis Koubarakis, Dmitriy Zheleznyakov, et al. Distributed
query processing on the cloud: the optique point of view (short paper). 2013.

• Guohui Xiao, Dag Hovland, Dimitris Bilidas, Martin Rezk, Martin Giese, and Diego
Calvanese. Efficient ontology-based data integration with canonical IRIs. In Euro-
pean Semantic Web Conference, pages 697–713. Springer, 2018.

Part of the work described in this thesis is also covered in the following submitted journal
paper:

• Dimitris Bilidas and Manolis Koubarakis. Handling redundant processing in OBDA
query execution over relational sources (currently under review). 2020.

33 D. Bilidas

Database Techniques for Ontology-based Data Access

1.3 Thesis structure

We first present related work and preliminaries in Chapter 2. The next three chapters are in
direct correspondence with the three different OBDA scenarios that we described. Specif-
ically, in Chapter 3 we consider the case where we have one external relational database
and we provide a cost-based translation method for obtaining an optimized query aiming
to handle redundant processing. Then, in Chapter 4 we consider the case of multpile ex-
ternal relational databases and we present a mediator system able to efficiently perform
the task of data integration over them. In Chapter 5 we consider the case where external
data are stored as RDF in a specialized triple store and we present the PARJ system for
efficient execution of OBDA queries in this setting. Finally, in Chapter 6 we conlude this
thesis and present future research directions.

D. Bilidas 34

Database Techniques for Ontology-based Data Access

2. BACKGROUND AND RELATED WORK

In this chapter we introduce basic background knowledge and related work that are re-
quired to understand this thesis. We start with a description of the RDF data model and
the SPARQL query language (Section 2.1. Then we present important notions related
to OBDA (Section 2.2. In section 2.3 we describe several systems and approaches for
centralized and distributed storage and processing of RDF graphs. Finally, in Section 2.4
we present systems and approaches for in-memory data processing.

2.1 RDF and SPARQL

The Resource Description Framework (RDF) 1 is a data model recommended by the W3C
for semantic data integration, sharing and linking across different organizations and ap-
plications on the Web. RDF provides flexible modeling of data coming from heteroge-
neous domains in the form of triples forming subject-predicate-object statements, facilitat-
ing the construction of Knowledge Graphs. Every component of such a triple is a resource
uniquely identified by an IRI or a data value in the form of a literal. The latter can only be
present in the object position. A set of such statements can be considered an RDF graph,
where subjects and objects are nodes and there exists an arc labeled with the property
name, connecting corresponding subject and object for each statement. Several organi-
zations publish data in the RDF model, leading to interlinking information from different
sources and automatic processing using software agents. As a result, as of 2019 the
Linked Open Data (LOD) cloud [90] contains more than 1200 datasets and 60 billion triple
statements, with DBpedia [8], a dataset that contains semantic information extracted from
Wikipedia, taking up a central position with 3 billion triples and around 50 million links to
other datasets.

The SPARQL query language is the W3C recommendation for querying RDF graphs. The
basic building block of SPARQL queries are triple patterns. A triple pattern is similar to an
RDF statement, with the exception that each component (subject, predicate or object) can
be either a resource or a variable. The evaluation of a single triple pattern over an RDF
graph consists of finding matches of the pattern on the graph such that variables are sub-
stituted by RDF resources. A Basic Graph Pattern (BGP) is a set of triple patterns. During
evaluation of a BGP all triple patterns are matched to an RDF statement and common
variables between triple patterns are substituted by the same resource. If we consider
RDF storage on a single relational triples table, a BGP with n triple patterns corresponds
to n− 1 self joins of the triples table.

On top of that, RDF can be extended with the ability to encode ontological knowledge
which is useful when describing the domain of a knowledge graph. RDF Schema (RDFS)
as well as more expressive ontological languages like OWL-2 QL define ontological con-
straints on top of RDF graphs, such that SPARQL query answering must be extended by

1https://www.w3.org/TR/rdf11-concepts/

35 D. Bilidas

Database Techniques for Ontology-based Data Access

taking into consideration the corresponding semantics in order to provide the user with the
complete answers, as it is the case of ontology-based data access that we describe in the
following section.

2.2 Ontology-based Data Access (OBDA)

Ontologies can be used on top of RDF graphs in order to enrich the semantic information
by providing a vocabulary that facilitates the conceptual modeling of a specific domain.
For example, one can use an ontological statement to declare that if someone teaches a
university course, then he is a professor. Then, for a given individual such that the data
contain the information that he teaches a course, a query answering system under the
appropriate entailment regime can deduce that this individual is a professor, even if this
knowledge is not explicitly stated in the data.

Ontology-Based Data Access (OBDA) is a database technique in which an ontology is
linked to underlying data sources through mappings. An end user can pose queries over
the ontology, which we assume to represent a familiar vocabulary and conceptualization
of the user domain. The OBDA system automatically translates the query and sends it
for execution to the underlying data sources, providing the end user with a convenient
abstraction over possibly complex schemas and details about the data storage and query
processing.

A system can follow two main approaches to provide complete answers under such en-
tailment regimes. The first one is query rewriting, which is similar in spirit with backward
chaining of datalog evaluation. Under this approach the original query is rewritten in or-
der to provide complete answers when posed over the incomplete data. This method
has the advantage that it does not need data preprocessing, but on the other hand it
produces more complicates queries. On the other hand, the second approach that is sim-
ilar with forward chaining, uses materialization during data loading in order to add all the
implicit knowledge to the data. This usually achieves better query performance, but it
involves expensive data preprocessing, leading to increased database size and making
things complicated during data updates or when the ontology changes.

There are several ontology languages aiming to different trade-offs between expressivity
and efficiency of reasoning tasks, but regarding conjunctive query answering over RDF
graphs, W3C recommends the usage of a specific profile of the OWL language which is
called OWL2-QL. Under this entailment regime, it is guaranteed that it always exists a
first-order query rewriting of a conjunctive query such that, when this rewriting is executed
over the incomplete data, it provides the full answers implied by the OWL2-QL ontology.
Indeed, several methods in order to obtain such a rewriting have been proposed, assum-
ing that data are stored in an external, usually relational, database. In many cases, this
rewriting has the form of a union of conjunctive queries, as for example in the Perfec-
tRef [77] which was the first such proposed rewriting. It was soon observed that the result
union of conjunctive queries was in many cases prohibitively large in order to be evaluated
efficiently (for example it could contain thousands conjunctive queries), and as a result,

D. Bilidas 36

Database Techniques for Ontology-based Data Access

optimizedmethods that produce queries with fewer unions were proposed, based on query
containment [66, 27]. Nevertheless, the result could still be extremely large. In order to
solve this problem, some rewriting methods were proposed aiming to produce more com-
pact rewritings in the form of nonrecursive datalog instead of union of conjunctive queries
[86, 52], but efficient evaluation of such rewritings in existing database engines is still an
issue. In [20] a cost-based comparison of different reformulations is carried out and in
general, the final rewriting will be a join of unions of CQs. Semantic Index [82] contains an
arithmetic encoding of class and property hierarchies and stores RDF data into relational
back-ends using the appropriate B-tree indexes, such that class and property membership
can be determined by range queries over these indexes, avoiding a large number of union
subqueries.

On the other hand, a complete materialization of all the implicit knowledge defined by an
OWL2-QL ontology in the general case may not be even possible, as the canonical model
of the ontology and data may be infinite. As a result, regarding methods based on forward
chaining, there have been proposed a combined approach [56] relying on materializa-
tion with respect to certain axioms combined with query rewriting, and an extension of
that which uses finite materialization coupled with a filtering procedure in order to discard
spurious answers[63].

Commercial RDF stores that support query answering over OWL2 QL ontologies include
Stardog 2 that is based on query rewriting, andGraphDB 3 that relies mostly onmaterializa-
tion. Our work, following the architecture of [82], is also based on query rewriting, using
PARJ as the execution engine, instead of an external relational database management
system (RDBMS), as we describe in Section 5.4.

2.3 Systems and approaches for RDF Storage and SPARQL query processing

RDF storage and processing can be distinguished in three perspectives: i) a relational
perspective, (ii) an entity perspective and (iii) a graph-based perspective [62]. Our work is
mainly following the first perspective, as using relational technology for RDF processing
has been a subject of research since the proposal of the RDF data model with prominent
results. BGP evaluation using a single triples table that contains the whole RDF graph
involves expensive self joins over this large table. As a solution, some systems like Jena
[103] proposed the usage of “flattened“ property tables, which contain a larger number
of columns, in an effort to simulate a relational schema and avoid joins as much as pos-
sible. Nevertheless, this design has some drawbacks, like for example a lot of NULL
values for wide tables, the need for UNION during a single BGP processing and difficulty
to handle multi-values attributes. [5] aims at efficient evaluation using an object-relational
DBMS including a two-column representation for properties. Vertical partitioning[1] uses
this representation in order to treat the drawbacks of the property tables. In this approach
a separate two-column table is created for every property of the RDF graph. In this case,

2https://www.stardog.com
3http://graphdb.ontotext.com/

37 D. Bilidas

Database Techniques for Ontology-based Data Access

the number of joins is not reduced in comparison to the single triples table, but each join
is between smaller tables and also tables not relevant to the query do not need to be
accessed at all. Column stores are ideal candidates for RDF processing using vertical
partitioning, as they provide compact storage and compression over each column. Our
physical design is based on vertical partitioning as in [1], combined with techniques from
column stores adapted for efficient in-memory RDF data storage.

Hexastore enhances the vertical partitioning by replicating the data through six different
indexes, corresponding to all possible permutations of subject, predicate and object [102].
RDF-3X [70] also uses extensive indexing such that an index is created not only for all
possible permutations but also for aggregated values, resulting in 15 indexes stored as
clustered B+ trees. This schema along with several optimizations, such as skipping large
parts of irrelevant data during merge joins using a form of sideways information passing,
made RDF-3X one of the most efficient disk-based RDF stores, despite conceptually using
the single triples-table approach. As in Hexastore, we keep two different replicas for each
property in different sort orders (corresponding to POS and PSO indexes) with respect to
our vertical partitioning data storage, and we also compactly store only distinct subjects
and objects. Also, our adaptive join optimization (Section 5.3.1) can be considered a way
of skipping irrelevant data as in RDF-3X.

Regarding SPARQL query processing using cloud technologies, [47] provides an overview
and classification of systems and approaches in different categories regarding several
characteristics. Here we briefly mention the most relevant research. An initial approach
using the MapReduce framework is presented in [84, 85]. In this work, the authors de-
scribe the query evaluation of Basic Graph Patterns of SPARQL using an iterative algo-
rithm, such that every join in the query requires a separate MapReduce job. The RDF
data is stored in plain files in the distributed file system. A similar iterative approach is
also used in [67], but here the authors note that more than one triple patterns that share a
variable can be joined together in the same MapReduce job. They use a greedy selection
algorithm that chooses in every step the variable that appears in more triple patterns and
they employ reduce-side joins to get the results. In [31] predicate-based hash partitioning
is employed. The query is decomposed to subqueries using the same partitioning and
in every node a local Sesame RDF store is used to evaluate each subquery. Instead of
hash partitioning, in [42] the authors use a graph partitioning algorithm to assign triples
to nodes and also they employ data replication for triples that are on the boundaries of
each partition, in order to maximize the number of subqueries that can be executed with-
out communication between the nodes. They stress the usefulness of a heuristic that
finds the minimal number of subqueries because this corresponds to a minimal number of
Hadoop jobs, and they split each query to a number of such subqueries using a brute-force
method, which is suitable only for queries with few triple patterns.

A number of approaches store the RDF data into an existing system that has its own
declarative language and then they transform the SPARQL queries into that language.
For example, [88] uses Pig Latin[71] and performs some well known optimizations to the
SPARQL query, like the early execution of filters and some selectivity estimations based
on variable counting. During the translation to Pig Latin, [88] just uses multi joins when

D. Bilidas 38

Database Techniques for Ontology-based Data Access

consecutive joins on the same variable are found, as this is an option that Pig Latin offers.
RAPID+, a system which is also based on Pig Latin, is presented in [81]. Here the authors
propose an intermediate algebra which is called Nested TripleGroup Algebra, in order to
facilitate the grouping of join operators during the translation of the query to the execution
plan in Pig Latin. The result is that each star join involving two or more triple patterns can
be executed in one Map-Reduce job, using vertical partitioning.

H2RDF+ [73] uses HBase4 to store the RDF data. It takes advantage of the HBase key
ordering for each table and it uses six tables, each one corresponding to an RDF triple
permutation. In this way there is replication of the data, so that the system can perform fast
merge joins when all triples are part of the initial RDF data. When some data is result of an
intermediate step, the system first performs a sorting on this intermediate data. Another
key feature of the system is that during the query planning it examines the option that
the query will be executed in a centralized system. The rationale behind this is that if the
query is simple, its evaluation in a centralized system can be preferable, because one
can avoid the overhead of the MapReduce jobs and network communication. The system
uses a greedy planner to decide about the order of the joins, based on a cost model
and some index statistics that it has. In a similar manner, the system named Rya[79] uses
Accumulo5, to store indexes for permutations of subject, predicate and object in the row ID
field of each corresponding table, but it only uses three indexes instead of all the possible
ones. Rya supports range queries and regular expressions, multi-threaded join execution
and also provides some limited inferencing capabilities. S2RDF [89] uses the in-memory
system Spark to store the RDF data using vertical partitioning combined with semi-join
materialization and then translates the SPARQL query to Spark SQL [7].

2.4 In-memory data processing

Regarding in memory join processing, a lot of research has been concentrated on cache
friendly methods, such as the radix hash join [64], and also into taking advantage of hard-
ware features such as the SIMD vectorized instructions for efficient parallel sort-merge
joins [4, 53]. These works consider the setting of relational data with arbitrary number of
columns, where a single join has to be performed on previously non indexed columns and
sorting or hashing is a serious overhead that has to be performed in parallel. Instead,
our work is tailored for RDF graphs, as it exploits initial ordering of both subject and ob-
ject RDF columns and partial ordering of subsequent joins for pipelining multiway joins,
such that it completely avoids hashing or sorting during query execution. Exploiting par-
tial ordering of values in a column has been used by main memory systems in the form
of zone-maps [96, 80] where additional statistics about each such zone have to be main-
tained in order to skip scanning certain areas. On the contrary, our join processing does
not need to rely on extra statistics as in zone-maps. Adaptivity during run-time regarding
the decision of scanning a base relation or use a secondary index has been studied in

4http://hbase.apache.org/
5http://accumulo.apache.org/

39 D. Bilidas

Database Techniques for Ontology-based Data Access

[17, 18] for disk-based systems.

Regarding centralized parallel in memory RDF processing, to the best of our knowledge
there is no work concentrating on query processing. RDFox [68] and Inferray [99] are
both systems that aim at parallel in memory computation and materialization of RDF infer-
ences. This can be thought of as a preprocessing step prior to querying. Although RDFox
offers query evaluation, it seems that is not the focal point of the system and for such
queries there is no support for intra-query parallelism, that is each query is evaluated in
a single thread. In [36] several variations of the disk based RDF-3X are presented, such
that they allow parallel join evaluation. From the experimental results it is shown that de-
pending on the query, there is no clear variation that has better performance, whereas
for some queries the original version is better, as parallel evaluation prohibits the usage
of the sideways information passing optimization in RDF-3X. Also, their approach works
by parallelizing each join separately and demands communication and synchronization
costs.

D. Bilidas 40

Database Techniques for Ontology-based Data Access

3. HANDLING REDUNDANT PROCESSING IN OBDA QUERY
EXECUTION OVER RELATIONAL SOURCES

This chapter describes an optimized query translation method for obtaining efficient SQL
queries from an initial SPARQL query posed over an ontology, though declarative map-
pings to a relational database. The results of this chapter are included in publications [12]
and [14].

3.1 Introduction and Outline

As we described in Section 2.2, the query translation in OBDA typically involves query
rewriting and query unfolding. During query rewriting, an initial query over an ontology
is rewritten in order to take into consideration the ontological axioms. The result of this
process is a query, that when posed over the ABox alone (that is, by disregarding all
the ontological axioms), will return the same answers as the initial query posed over the
ontology. This is done using the notion of certain answers, that is answers present in ev-
ery model of the ontology. During query unfolding the rewritten query is transformed into
another query expressed in the query language of the underlying data sources. In what
follows we consider an OBDA setting, where an OWL 2QL ontology is linked throughmap-
pings to data stored in a relational database management system (RDBMS). This method
provides the user with access to a virtual RDF graph. The original query is expressed
over this virtual RDF graph in the SPARQL query language, and the result of rewriting and
unfolding is a SQL query.

Example 1. As an example of OBDA setting consider a relational schema that contains
the relational tables A1, A2, A3, C1 and C2 and the mappings from Figure 3.2. In these
mappings P1, Q1, R1, P2, P3 and Q3 are properties defined in the ontology, whereas f, g, h
and k are functions roughly corresponding to string concatenation. These functions are
responsible for constructing an object that acts as an ontology instance out of values
occurring in the database. In our setting, they construct an RDF term represented by an
IRI. Also, consider the query ans(x, y, w, z) ← P1(x, y), P2(x,w), P3(y, z) posed over the
ontology.

The notion of OBDA as we describe it, was presented in [77]. There, the result of query
rewriting of an initial conjunctive query (CQ) over the ontology is a union of conjunctive
queries (UCQ) over the ontology. Then, the authors define a faithful representation of
this UCQ, along with the mappings and database instance in terms of a logic program.
Query unfolding is based on partial evaluation of such logic programs, and as final result
it produces an SQL query. More details about this process are given in Section 3.3. Sub-
sequent research was focused on more efficient rewritings in the form of UCQs over the
ontology [52, 27, 76]. The main aim of these approaches was to produce a UCQ with
as few subqueries as possible, as it was observed that the number of union subqueries

41 D. Bilidas

Database Techniques for Ontology-based Data Access

in the result of query rewriting could be very large. A different approach was followed in
[20], where a cost-based comparison of different reformulations is carried out, considering
that no mappings are used and the ABox is directly stored in the external database.. In
general, the final query in this case will be an SQL query that contains joins over UCQs
(JUCQs). An extension of this work for arbitrary relational schemas, so that it also takes
into consideration the unfolding step with arbitrary mappings, is presented in [59].

Regarding the implementation of OBDA systems, it has been observed that in practice
it is more efficient to compile ontological knowledge regarding class and property hierar-
chies into the mappings, and ignore such axioms during query rewriting. For this reason,
Ultrawrap-OBDA[92] uses the notion of saturated mappings and Ontop[21] uses the so
called T -Mappings [82]. For example, consider the setting of Example 1 and an ontology
that contains the following axioms: Q1 ⊑ P1, R1 ⊑ P1 and Q3 ⊑ P3. We can ignore the on-
tology axioms regarding property or class hierarchies during query rewriting (in our case
all three ontology axioms), and perform query unfolding with the enhanced T -mappings
shown in Figure 3.3.

In [82] three main reasons are specified for the presence of a large number of union sub-
queries in the result of query translation: i) ontological queries with existentially quantified
variables that can lead to rewritings of exponential size, ii) large ontological hierarchies
and iii) multiple mappings for each ontology term. Also, the authors observe that the first
reason is rarely observed in real world ontologies and queries. As a result, when compiling
ontological information about hierarchies into the mappings, as for example in the Ontop
T -mappings, the last two important reasons that lead to a large number of subqueries
are encountered during query unfolding. As an example, consider the query from Exam-
ple 1 posed over the previously specified OBDA setting and T -mappings. The unfolding
method from [77] will produce a UCQ over the database that contains six union subqueries
as shown in Figure 3.4. Each subquery corresponds to a different combination of the three
mappings defined for P1 with the two mappings defined for P3. One can easily see that in
case of queries with many atoms posed over large hierarchies, the final UCQ can contain
hundreds or thousands of subqueries. On the other hand, a different unfolding method
could choose to first compute as intermediate results the queries that correspond exactly
to the first and third atoms of the initial query. In the specific example, the first temporary
result would be a union query over tables A1, A2 and A3 and the second temporary result
would be a union query over tables C1 and C2. The final result would be a join of UCQs.
Finally, one could choose an intermediate strategy, that would compute only one of these
two intermediate results. Clearly, a cost-based decision should be made by the OBDA
system regarding which exactly of these intermediate results should be computed, and if
the overhead from computing and saving these results is counterbalanced from the gain
in the final query.

Unfortunately, uncertainty about query execution costs is an inherent problem in data in-
tegration, where the mediator system (in our case the OBDA system) operates outside
the database engine[45], as knowing all the factors that affect query execution is difficult
or even impossible. For example, these factors include the exact execution plan that will
be chosen by the RDBMS, including the access methods for each base relation and the

D. Bilidas 42

Database Techniques for Ontology-based Data Access

join order in a join query, hardware characteristics like for example the amount of avail-
able memory and disk throughput, the disk block size, the exact details of the database
physical design, like the existing indexes and the kind of each index and several other
factors.

On the other hand, one could expect that the RDBMS is capable of optimizing the pro-
duced query, since it performs query planning and optimization by taking into consideration
the aforementioned parameters. Unfortunately, database engines focus on optimization
of certain aspects of queries, including join ordering of multi-join queries, optimization of
aggregate functions, access methods for each relation, etc. Queries produced by OBDA
systems have some characteristics that are not regularly encountered on human-written
queries for database applications. One such characteristic is the occurrence of common
subexpressions in different parts of the query, for example in different subqueries of a
union query. As we saw, the number of these subexpressions and subqueries can be
very large. Although common subexpression identification (and in the case of multiple
queries the relatedmulti-query optimization area) have long been investigated in database
research and implemented in database prototypes [91, 74, 87], to the best of our knowl-
edge these methods have not become integral part of commercial RDBMSs, due to the
increase in optimization time and the complexity introduced to the query optimizer. But
since these common subexpressions are created during query translation, the OBDA sys-
tem has the knowledge about them that can be taken into consideration to produce the
final SQL query. Furthermore, it has been observed [59] that by using knowledge from the
mappings, we can compute during system setup some parameters that will help us obtain
more accurate selectivity estimations. For example, in our approach, a crucial factor that
must be used when deciding about the exact form of the final SQL query, is the number of
duplicates contained in the mappings used during unfolding for each ontology predicate.
For example, for predicate P1 of the query given in the previous example, it is crucial to
know the number of duplicates rows in tables A1, A2 and the table obtained by selecting
the first two columns of table A3. The OBDA system knows from the mappings for which
such columns and tables it should collect such information as an one-time task prior to
query execution. On the other hand, an RDBMS cannot accurately estimate the number
of duplicates in seemingly unrelated tables and columns during query execution.

Given the previous observations, in this chapter we propose a cost-based method em-
ployed by the OBDA system during unfolding, for choosing the final form of the SQL query
to be executed by the RDBMS. This method relies on heuristics that in turn rely only on
factors known to the OBDA system, such as sizes of the relations, duplicates introduced
by the mappings for each ontology term and selectivity estimation for simple CQs over the
database, that are not affected by issues such as join ordering or access methods, and
thus can be performed even from a system operating outside the RDBMS as long as some
basic statistics about the tables have been obtained prior to the deployment of the system.
Specifically, our method starts with the “fully” unfolded query produced by the method of
[77] as the baseline, and uses the heuristics in order to “fold” back specific paths, when
this is expected to be more effective. Each such fold corresponds to the creation of an
intermediate table, as explained in the previous example. These heuristics are based on

43 D. Bilidas

Database Techniques for Ontology-based Data Access

the notion of redundant processing between the union subqueries. We make a distinction
between two kinds of redundant processing: i) duplicate answers and ii) repeated opera-
tions (disk reads and writes on the same data) from different union subqueries of the same
query even in the absence of duplicate answers.

Regarding duplicates, using the standard set semantics for queries over ontologies, the fi-
nal answer should be duplicate-free, but since RDBMSs operate using the bag semantics,
duplicates are often introduced during query evaluation. Duplicates can be introduced as
different ways to obtain the same fact from the data, for example the same tuple may be
produced from different mappings used for the same property or class assertion. Using
the unfolding method from [77], this will result in duplicate answers coming from different
union subqueries. But duplicates can be introduced even from a single mapping, in case
the database relation already contains duplicate rows, or due to the projection operator
in the SQL query in the body of the mapping. In this setting, duplicates are redundant
answers whose impact can be detrimental for query evaluation, as the size of interme-
diate results can increase exponentially in the number of joins in the query. Even if the
final SQL query produced by an OBDA system dictates that the result should be duplicate
free using the SQL DISTINCT or UNION keyword, relational systems rarely consider early
duplicate elimination in order to limit the size of intermediate results, but only perform the
task on the final query result. This behavior is justified by the fact that duplicate elimination
is a costly blocking operation [16] and also that the SQL queries are usually formulated by
expert users who take into consideration the integrity constraints of normalized relational
schemas. Under these assumptions, considering early duplicate elimination options dur-
ing optimization is not usually regarded worthy. Contrary to this situation for SQL queries,
it has been ascertained [48] that in real world OBDA settings, duplicate answers frequently
dominate query results and also that this appears as “noise” to end users that might be
using a visual query formulation tool. In the previous version of this work [12], we intro-
duced a heuristic regarding early duplicate elimination, for duplicates introduced from a
single mapping. In this version we extend this heuristic for the case of duplicates that
show up in different union subqueries, and use it to help us decide when to “fold” back
specific branches of the unfolded query.

Regarding the second kind of redundant processing, this depends heavily on the exact
execution plan that will be chosen by the RDBMS. As an example, consider the UCQ from
Figure 3.4 and let us suppose that there are no duplicates (each fact for each ontology
predicate can be obtained only from a single mapping). Also suppose that the RDBMS
chooses to perform all the joins using index-based nested loops, using for the first three
subqueries the table C1 as the leftmost table and for the next three subqueries the table
C2 as the leftmost table. In this case, the redundant processing is equal to the two scans
of table C1 plus the two scans of table C2 (ignoring the possible impact of the memory
cache). If there was no redundant processing, then it is reasonable to assume that this
form of the query would be the most efficient translation, as it consists of simple CQs which
the RDBMS can efficiently optimize and probably evaluate in parallel. But since we have
redundant processing, one would expect that it would be more efficient to first compute
and save the temporary union table corresponding to the three mappings for P1, if the

D. Bilidas 44

Database Techniques for Ontology-based Data Access

RDBMS will again choose to perform index-based nested loops and the cost for creating
and saving the temporary result is smaller than the cost of the initial redundant processing.
As all these possible execution plans cannot be known to theOBDA system, for this case of
redundant processing, we use a criterion according to which temporary tables are created
in a “conservative” manner, only when it is almost certain that this decision will lead to
smaller execution cost.

In this chapter we present efficient solutions to the problem of handling redundancy, con-
sidering ontologies belonging to the OWL 2 QL language1, as the W3C recommendation
for query answering against datasets stored in relational back-ends. Nevertheless, sev-
eral aspects of this work can be considered for other ontology languages as well. As
mentioned, an early version of this work was presented in [12], where a heuristic was
presented for early duplicate elimination in duplicates introduced from a single mapping
(that is for each union subquery of the final SQL query separately). This heuristic was
evaluated over four different RDBMSs and it was shown that its usage is justified and that
for query mixes from two different used benchmarks, such that low selectivity queries do
not dominate execution time, it can lead to overall improvement of up to 25% compared
to the strategy of always performing duplicate elimination. The main contributions of the
present work, extending this previous version in several aspects, are as follows:

• We enhance the unfolding step previously described in the literature with cost-based
decisions regarding the redundant processing, obtaining a full cost-based method
for OBDA query translation (Section 3.3).

• We extend the heuristic in order to deal with duplicate answers coming from different
union subqueries (Section 3.6).

• We take into consideration other forms of redundant processing in the form of re-
peated operations (Section 3.6).

• We implement our method for cost-based translation by modifying the state of the art
OBDA system Ontop [82] and we perform extended experimental evaluation (Sec-
tion 3.7).

The organization of this chapter is as follows. We start by providing some preliminaries
regarding ontologies, mappings, relational databases and logic programs (Section 3.2).
In Section 3.3 we modify the unfolding method from [77], which is based on partial evalu-
ation of logic programs, in order to explore equivalent results given that certain mappings
have been replaced by a combined mapping which we define. In Section 3.4 we present
a methodology that computes the mapping assertions that are possibly responsible for
the introduction of duplicate answers and in Section 3.5 we discuss how to perform du-
plicate elimination over the database values by pushing the duplicate elimination before
the IRI construction. In Section 3.6 we describe the cost-based decisions and we present
the algorithm that incorporates them in the unfolding process. In Section 3.7 we present

1https://www.w3.org/TR/owl2-profiles/

45 D. Bilidas

https://www.w3.org/TR/owl2-profiles/

Database Techniques for Ontology-based Data Access

experimental evaluation of our implementation using the Ontop OBDA framework and the
NPD and LUBM benchmarks. We also use the Wisconsin benchmark to compare our
results with the results of [59]. In Section 3.8 we present relevant work and conclusions.

3.2 Preliminaries

We consider the following pairwise disjoint alphabets: ΣO of ontology predicates, ΣR of
database relation predicates, Const of constants, V ar of variables and Λ of function sym-
bols where, each function symbol has an associated arity. We also consider that Const is
partitioned into DBConst of database constants and OConst of ontology constants.

As in [77], we use functions with symbols from Λ in order to solve the so called impedance
mismatch problem of constructing ontology objects from values occurring in the database.
These functions roughly correspond to IRI templates specified in the R2RML2 language.
We also consider that ∀λ1, λ2 ∈ Λ, where λ1 ̸= λ2, the range of function with symbol λ1
and the range of function with symbol λ2 are disjoint. That is, the same ontology object
cannot be produced from different functions.

3.2.1 Databases.

We start by giving definitions for database instances and queries over them, following the
bag semantics from [26].

A bag B is a pair (A, µ), where A is a set called the underlying set of B and µ is a function
from elements of A to the positive integers, which gives the multiplicities of elements of A
in B. The underlying set of a bag B will be denoted by USB.

A relation instance is a bag of tuples of fixed arity using constants from DBConst.

A source schema S is a set of relation names from ΣR.

A database instance D for a source schema S is a mapping from relation names in S to
relation instances.

3.2.2 Queries.

We define queries following the bag semantics of [26]. In our definitions we use the term
“SQL query” although the syntax of our formulas is that of first-order logic. Similarly, re-
lation instances are viewed as bags of ground atoms (i.e., with no variables) of first-order
logic.

ASQL query over a relational schema S is an expression that has the form: Query(x⃗)← α,
where α is a first order expression containing predicates from ΣR, which are among the

2https://www.w3.org/TR/r2rml/

D. Bilidas 46

https://www.w3.org/TR/r2rml/

Database Techniques for Ontology-based Data Access

1:q

Root

2:m4

Node	2

2:m4

Node	3

Node	6

Node	9Node	8

Node	5

1:m1''

Node	1

2:m4

Node	4

Node	7

1:m1 1:m1'

Node	13Node	12Node	11Node	10

3:m5 3:m5' 3:m5 3:m53:m5' 3:m5'

Root : ans(x, y, z)θ0 ← ans(x, y, z)

θ0 = {}
Node1 : ans(x, y, z)θ0θ1 ← P1(x, y), P2(x, h(A)), P3(y, z)

θ1 = {}
Node2 : ans(x, y, z)θ0θ1θ2 ← A1(v

m1
1 , vm1

2), P2(f(v
m1
1), h(A)), P3(g(v

m1
2), z)

θ2 = {x/f(vm1
1), y/g(vm1

2)}
Node3 : ans(x, y, z)θ0θ1θ3 ← A2(v

m1′

1 , vm1′

2), P2(f(v
m1′

1), h(A)), P3(g(v
m1′

2), z)

θ3 = {x/f(vm1′

1), y/g(vm1′

2)}
Node4 : ans(x, y, z)θ0θ1θ4 ← A3(v

m1′′

1 , vm1′′

2 , vm1′′

3), P2(f(v
m1′′

1), h(A)), P3(g(v
m1′′

2), z)

θ4 = {x/f(vm1′′

1), y/g(vm1′′

2)}
Node5 : ans(x, y, z)θ0θ1θ2θ5 ← A1(v

m1
1 , vm1

2), A3(v
m1
1 , vm4

2 , A), P3(g(v
m1
2), z)

θ5 = {vm4
1 /vm1

1 , vm4
3 /A}

Node6 : ans(x, y, z)θ0θ1θ3θ6 ← A2(v
m1′

1 , vm1′

2), A3(v
m1′

1 , vm4
2 , A), P3(g(v

m1′

2), z)

θ6 = {vm4
1 /vm1′

1 , vm4
3 /A}

Node7 : ans(x, y, z)θ0θ1θ4θ7 ← A3(v
m1′′

1 , vm1′′

2 , vm1′′

3), A3(v
m1′′

1 , vm4
2 , A), P3(g(v

m1′′

2), z)

θ7 = {vm4
1 /vm1′′

1 , vm4
3 /A}

Node8 : ans(x, y, z)θ0θ1θ2θ5θ8 ← A1(v
m1
1 , vm1

2), A3(v
m1
1 , vm4

2 , A), C1(v
m1
2 , vm5

2)

θ8 = {vm5
1 /vm1

2 , z/k(vm5
2)}

Node9 : ans(x, y, z)θ0θ1θ2θ5θ9 ← A1(v
m1
1 , vm1

2), A3(v
m1
1 , vm4

2 , A), C2(v
m1
2 , vm5′

2)

θ9 = {vm5′

1 /vm1
2 , z/k(vm5′

2)}
Node10 : ans(x, y, z)θ0θ1θ3θ6θ10 ← A2(v

m1′

1 , vm1′

2), A3(v
m1′

1 , vm4
2 , A), C1(v

m1′

2 , vm5
2)

θ10 = {vm5
1 /vm1′

2 , z/k(vm5
2)}

Node11 : ans(x, y, z)θ0θ1θ3θ6θ11 ← A2(v
m1′

1 , vm1′

2), A3(v
m1′

1 , vm4
2 , A), C2(v

m1′

2 , vm5′

2)

θ11 = {vm5′

1 /vm1′

2 , z/k(vm5′

2)}
Node12 : ans(x, y, z)θ0θ1θ4θ7θ12 ← A3(v

m1′′

1 , vm1′′

2 , vm1′′

3), A3(v
m1′′

1 , vm4
2 , A), C1(v

m1′′

2 , vm5
2)

θ12 = {vm5
1 /vm1′′

2 , z/k(vm5
2)}

Node13 : ans(x, y, z)θ0θ1θ4θ7θ13 ← A3(v
m1′′

1 , vm1′′

2 , vm1′′

3), A3(v
m1′′

1 , vm4
2 , A), C2(v

m1′′

2 , vm5′

2)

θ13 = {vm5′

1 /vm1′′

2 , z/k(vm5′

2)}Figure 3.1: SLD Tree
47 D. Bilidas

Database Techniques for Ontology-based Data Access

m1 : A1(v
m1
1 , vm1

2)→ P1(f(v
m1
1), g(vm1

2))

m2 : A2(v
m2
1 , vm2

2)→ Q1(f(v
m2
1), g(vm2

2))

m3 : A3(v
m3
1 , vm3

2 , vm3
3)→ R1(f(v

m3
1), g(vm3

2))

m4 : A3(v
m4
1 , vm4

2 , vm4
3)→ P2(f(v

m4
1), h(vm4

3))

m5 : C1(v
m5
1 , vm5

2)→ P3(g(v
m5
1), k(vm5

2))

m6 : C2(v
m6
1 , vm6

2)→ Q3(g(v
m6
1), k(vm6

2))

Figure 3.2: Example Mappings

m1 : A1(v
m1
1 , vm1

2)→ P1(f(v
m1
1), g(vm1

2))

m1′ : A2(v
m1′

1 , vm1′

2)→ P1(f(v
m1′

1), g(vm1′

2))

m1′′ : A3(v
m1′′

1 , vm1′′

2 , vm1′′

3)→ P1(f(v
m1′′

1), g(vm1′′

2))

m2 : A2(v
m2
1 , vm2

2)→ Q1(f(v
m2
1), g(vm2

2))

m3 : A3(v
m3
1 , vm3

2 , vm3
3)→ R1(f(v

m3
1), g(vm3

2))

m4 : A3(v
m4
1 , vm4

2 , vm4
3)→ P2(f(v

m4
1), h(vm4

3))

m5 : C1(v
m5
1 , vm5

2)→ P3(g(v
m5
1), k(vm5

2))

m5′ : C2(v
m5′

1 , vm5′

2)→ P3(g(v
m5′

1), k(vm5′

2))

m6 : C2(v
m6
1 , vm6

2)→ Q3(g(v
m6
1), k(vm6

2))

Figure 3.3: Example T -Mappings

relations that belong to S, Query ∈ ΣR, Query ̸∈ S and x⃗ is a vector of constants from
DBConst and variables from V ar that appear in α.

A conjunctive query CQ over a relational schema S is a SQL query, where α has the
form R1(x⃗1) ∧ ... ∧ Rn(x⃗n), where x⃗1, ..., x⃗n are vectors of constants from DBConst and
variables from V ar, and R1, ..., Rn ∈ S. Variables from x⃗1, ..., x⃗n that do not appear in
x⃗ are existentially quantified, but we omit the quantifiers in order to simplify the reading.
CQs roughly correspond to SQL Select-From-Where queries.

Let q be the SQL query Query(x⃗) ← α, we will denote by
∏

i(q) the query resulting from
the projection of the i-th answer term of q, that is the query: Query(xi)← α

An assignment mapping of a conjunctive queryQ into a database instanceD is an assign-
ment of values from DBConst belonging to D to the variables of Q such that every atom in
the body of Q is mapped to a ground atom in D. Let θ be an assignment mapping of Q
into database instance D and let X be a variable in Q. We denote by θ(X) the constant in
DBConst to which θ maps X and we denote by θ(Ri(x⃗i)) the ground atom to which Ri(x⃗i)
is mapped.

D. Bilidas 48

Database Techniques for Ontology-based Data Access

ans(f(x), g(y), h(w), k(z))←
A1(x, y), A3(x, v1, w), C1(y, z)∨
A2(x, y), A3(x, v1, w), C1(y, z)∨

A3(x, y, v2), A3(x, v1, w), C1(y, z)∨
A1(x, y), A3(x, v1, w), C2(y, z)∨
A2(x, y), A3(x, v1, w), C2(y, z)∨

A3(x, y, v2), A3(x, v1, w), C2(y, z)

Figure 3.4: UCQ over the database

cm1 : A1(v
m1
1 , vm1

2) ∨ A2(v
m1
1 , vm1

2) ∨ A3(v
m1
1 , vm1

2 , vm1′′

3)→ P1(f(v
m1
1), g(vm1

2))

θ = {vm1′

1 /vm1
1 , vm1′′

1 /vm1
1 , vm1′

2 /vm1
2 , vm1′′

2 /vm1
2 }

Figure 3.5: Combined Mapping for Mapping Assertions m1, m1′ and m1′′

cm2 : C1(v
m5
1 , vm5

2) ∨ C2(v
m5
1 , vm5

2)→ P3(g(v
m5
1), k(vm5

2))

θ = {vm5′

1 /vm5
1 , vm5′

2 /vm5
2 }

Figure 3.6: Combined Mapping for Mapping Assertions m5 and m5′

49 D. Bilidas

Database Techniques for Ontology-based Data Access

Let µi denote the multiplicities µ(θ(Ri(x⃗i))), i = 1, ..., n. The result due to θ of a conjunctive
query Q over D is the atom (θ(x⃗), µθ) with the multiplicity µθ = µ1µ2 · · · µn.

The result of a conjunctive query Q over a database instance D denoted by Q(D) is given
by ⊎θrθ, where θ is any assignment mapping of Q into D, rθ is the result due to θ and ⊎
denotes bag union.

3.2.3 Ontology and Mappings.

A TBox is a finite set of ontology axioms.

An ABox is a finite set of membership assertions A(ρ) or role filling assertions P (ρ, ρ′),
where ρ, ρ′ ∈ OConst and A,P ∈ ΣO denote a concept name and role name respectively.

A DL ontology O is a pair ⟨T ,A⟩ where T is a TBox and A an ABox.

A mapping assertion (or simply a mapping) m from a source schema S to a TBox T has
the form: ϕ(x⃗)→ ψ1∧ ...∧ψn, where ϕ(x⃗) will be denoted by body(m) and it is a SQL query
over a database schema S, each ψi has the form Pi(cc

1
i (x⃗

1
i), cc

2
i (x⃗

2
i)) or Ci(cc

1
i (x⃗

1
i)) with Pi

(respectively Ci) ∈ ΣO a property (respectively concept) name, and each ccji ∈ Λ is a
function with arity equal to the length of x⃗ji and range a subset of OConst. The conjunction
in the right-hand side will be denoted by head(m). A mapping collectionM is a finite set
of such mapping assertions.

In this chapter we consider mappings where all variables in ψ1 ∧ ... ∧ ψn also appear in x⃗.
In this setting,M can be transformed into a set of equivalent mapping assertions where
the head of each assertion consists of a single atom [77]. In what follows we assume that
the head of every mapping assertion consists of a single atom.

LetM be a mapping collection, we will use the symbolMCQ to denote the assertions from
M whose body is a CQ over the database schema.

In correspondence with CQs over a relational schema, we define a CQ over an ontology
O as an expression of the form: Query(x⃗) ← P1(x⃗1) ∧ ... ∧ Pn(x⃗n) where x⃗1, ..., x⃗n are
vectors of constants from OConst and variables from V ar, x⃗ is a vector of constants from
OConst and variables from V ar that appear in x⃗1, ..., x⃗n, and P1, ..., Pn ∈ ΣO are ontology
predicates that appear in O.

A union of conjunctive queries UCQ over an ontology O is an expression of the form
Query(x⃗)← CQ1(x⃗)∨ ...∨CQn(x⃗), where each CQi for i = 1, ..., n is an expression of the
form P i

1(x⃗
i
1) ∧ ... ∧ P i

n(x⃗
i
n) as in the previous definition.

3.2.4 Logic Programs

Following [77], we use partial evaluation of logic programs in order to translate a UCQ over
the ontology into a UCQ over the data sources, using the SQL language. In this section
we present basic notions from logic programs[60] regarding partial evaluation [61]. As we

D. Bilidas 50

Database Techniques for Ontology-based Data Access

are interested in the translation of UCQs, we do not deal with negation, and as a result we
only present notions related to definite logic programs.

A definite logic program is a set of statements that have the following form: ∀x⃗(A ←
A1 ∧ ... ∧ An), where A,A1, ..., An are atoms as in standard first order logic definitions
and x⃗ are all the variables occurring in A,A1, ..., An. Each such statement is also called
a (definite) program clause, or a (definite) rule, with A being the head of the rule, and
A1 ∧ ... ∧ An the body of the rule.

A definite goal is a definite clause such that the head is empty. Following the standard
convention in logic programming, we omit the existential quantifiers and use the syntactic
form A1, ..., An for the body, instead of A1 ∧ ... ∧ An, both in clauses and goals.

A substitution θ is a finite set of the form: {x1/t1, .., xn/tn}, where each xi is a variable,
each ti is a term distinct from xi, variables x1, ..., xn are pairwise distinct and no variable
xi occurs in some term ti. Let Exp be an expression. The application of a substitution
θ on Exp is denoted Expθ and is the expression obtained by Exp after replacing each
occurrence of xi with ti, for i = 1, ..., n.

Let Exp1 and Exp2 be expressions. A unifier for Exp1 and Exp2 is a substitution θ such
that Exp1θ = Exp2θ.

Let θ1 = {x1/s1, ..., xm/sm} and θ2 = {y1/t1, ..., yn/tn} be substitutions such that no variable
from x1, ..., xm occurs in θ2. The composition of θ1 with θ2 is the following substitution:
{x1/s1θ2, ..., xm/smθ2, y1/t1, ..., yn/tn}.

The most general unifier (mgu) of two expressions Exp1 and Exp2, is a unifier ξ such
that for every unifier ν of Exp1 and Exp2 there exists a substitution θ such that ν is the
composition of ξ with θ.

A computation rule is a function from a set of goals to a set of atoms, such that the value
of the function for a goal is always an atom, called the selected atom, in that goal.

Let G be← A1, ..., Am, ..., Ak, C be A ← B1, ..., Bq and R be a computation rule. Then G′
is derived from G and C using the mgu θ via R if the following conditions hold:

• Am is the selected atom in G given by R.

• θ is an mgu of Am and A.

• G′ is the goal← (A1, ..., Am−1, B1, ..., Bq, Am+1, ..., Ak)θ

A resultant is a first order formula of the form Q1 ← Q2, where each of Q1, Q2 is either
absent or a conjunction of atoms. Any variables in Q1 or Q2 are assumed to be universally
quantified at the front of the resultant.

Let P be a definite program, G′ be a goal with body G and R a computation rule. Then,
the SLD-tree of P ∪ {G′} via R is the tree defined as follows:

• Each node is a resultant (possibly with an empty body)

51 D. Bilidas

Database Techniques for Ontology-based Data Access

• The root node is G0{} ← G0, where G0 = G.

• LetGθ0...θi ← A1, ..., Am, ..., Ak be a node in the tree with k ≥ 1 and suppose that Am

is the selected atom of the derivation given by R. Then, this node has a descendant
for each input clause of A ← B1, ..., Bq of P such that Am and A are unifiable. The
descendant is Gθ0...θi+1 ← (A1, ..., B1, ..., Bq, ..., Ak)θi+1, where θi+1 is an mgu of A
and Am.

• Nodes which are resultants with empty bodies have no descendants.

Each branch of the SLD-tree is a derivation ofG′. A branch which ends in a node such that
the selected atom does not unify with the head of any program clause is called a failure
branch. A branch which ends in the empty clause is called a success branch. An SLD-tree
is complete if all of its branches are either failure or success branches. An SLD-tree that
is not complete is called partial.

In general an SLD-tree can contain branches that correspond to infinite derivations, but
we will not deal with this case, as the logic programs that we will construct do not contain
recursion.

The computed answer θ for a node Qθ0, ..., θi ← Qi of an SLD-tree is the restriction of
Qθ0, ..., θi to the variables in the goal G′.

Let P be a definite program, A an atom and R a computation rule and T an SLD-tree for
P ∪ {← A} via R. Then:

• any set of nodes such that each non-failing branch of T contains exactly one of them
is a Partial Evaluation (PE) of A in P ;

• the logic program obtained from P by replacing the set of clauses in P whose head
contains A with a PE of A in P is a PE of P with respect to A.

The semantics of a definite logic program P can be defined by two different ways, proved
to be equivalent. The first one is the declarative, that uses the model-theoretic semantics
of first-order logic, where the semantics are given by the least Herbrand model, which
contains the facts that are true in every model of P . The second way is the procedural,
where the SLD-tree is used, and the semantics are given by the success set of P , that is
all the factsA such that the SLD-tree of P ∪{← A} has a success branch. Also, it is known
that the semantics of a program P coincide with the semantics of any partial evaluation of
P .

3.3 Unfolding Queries Through Partial Evaluation

In this section we describe the process of unfolding queries over the ontology, into queries
over the external relational database using declarative mappings. We are following the
approach of [77], with the following modifications:

D. Bilidas 52

Database Techniques for Ontology-based Data Access

• We enforce that during each step of the SLD_Derive process, the algorithm employs
the computation rule that chooses for unification the leftmost possible atom in the
right-hand side of the resultant.

• We make a distinction between mapping assertions whose body is a CQ over the
database and the rest of the mapping assertions.

• We define a step that “folds” back specific branches of the PE tree based on the no-
tion of combined mapping, and we show that the SQL query that is obtained based
on this form of the PE tree has exactly the same answers with the SQL query ob-
tained using the initial form of the tree.

As in [77], we start by defining the logic program for a UCQ Q(x⃗)← CQ1(x⃗)∨ ...∨CQn(x⃗)
over: (i) an ontology O (ii) a database instance D over a database schema S and (iii) a
mapping collectionM from source schema S to the vocabulary of O. The main modifica-
tion is that we use auxiliary predicates only for mapping assertions inM\MCQ.

The program forQ,D andM, denoted P (Q,M, D) is the logic program defined as follows:

• P (Q,M, D) contains the clause Q(x⃗)← CQi(x⃗) for each CQi in the right-hand side
of Q.

• P (Q,M, D) contains the fact R(⃗t) for each tuple t⃗, such that t⃗ ∈ R, for each relation
instance R in D.

• P (Q,M, D) contains each mapping assertion m ∈MCQ.

• For each mapping assertion m ∈ M \ MCQ, P (Q,M, D) contains the clause
head(m)← Auxm(x⃗), where Auxm is an auxiliary predicate associated to m, whose
arity is the same as head(m).

• For each mapping assertion m ∈M\MCQ, P (Q,M, D) contains the fact Auxm(⃗t),
where t⃗ ∈ body(m)(D).

We now present the function SLD-Derive defined in [77], with the extra condition that
we enforce use of the computation rule that chooses for unification the leftmost possible
atom. The SLD-Derive(P (Q,M, D)) takes as input P (Q,M, D) and returns a set Res
of resultants constituting a PE of q(x⃗) in P (Q,M, D), by constructing an SLD-tree for
P (Q,M, D) ∪ {← q(x⃗)} as follows:

• it start by selecting the atom q(x⃗),

• it continues by selecting the atoms whose predicates belong to the alphabet of T , as
long as possible, using the computation rule R which selects each time the leftmost
such atom

• it stops the construction of a branch when no atom with predicate in the alphabet of
T can be selected.

53 D. Bilidas

Database Techniques for Ontology-based Data Access

The partial evaluation PE(Q,M, D) of P (Q,M, D) with respect to q(x⃗) is obtained
by dropping the clauses for q in P (Q,M, D) and replacing them with the result of
SLD-Derive(P (Q,M, D)).

Example 2. Consider the query ans(x, y, z)← P1(x, y), P2(x, h(A)), P3(y, z), the mapping
collection (T -mappings) shown in Figure 3.3 and a database instance over a schema
that contains the relation names A1, A2, A3, C1 and C2 with tuples of appropriate arities
according to Figure 3.3. The SLD-tree for P (Q,M, D) ∪ {← ans(x, y, z)} is shown in
Figure 3.1.

In [77] the virtual ABox given by a mapping collection M over a database instance D
for a database schema S is defined as the set of ABox assertions generated by applying
each mapping assertion inM over D and it is shown that for each tuple of constants t⃗,
P (Q,M, D) ∪ {← q(⃗t)} is unsatisfiable if and only if t⃗ belongs to the result of executing Q
over the database instance that stores exactly the assertions contained in the virtual ABox.
Here we omit the formal definitions and the proof, but we note that it is straightforward to
see that the specific result carries over to our modified definition of P (Q,M, D). It is
also shown that the result of SLD-Derive is independent of the database instance D (i.e.,
independent of facts of the form Auxm(⃗t) for some auxiliary predicate Auxm, and facts of
the form R(⃗t) for some relation instance R) and the algorithm UnfoldDB is defined, which,
given an UCQ Q over an ontology O with a mapping collectionM, translates the set of
resultants returned by SLD-Derive(P (Q,M, D)) into queries over the database instance
D. Again, we omit the details and we note that in our case the resulted query will be a
UCQ over S that has the form

Query(x⃗)← Q1(x⃗) ∨ ... ∨Qn(x⃗) (3.1)

where each Qi for i = 1, ..., n is the translation given by UnfoldDB that corresponds to a
resultant returned by SLD-Derive(P (Q,M, D)), and it is an expression of the form

Qi(f⃗i(x⃗i))←
Auxi1(x⃗i1) ∧ ... ∧ Auxil(x⃗il) ∧Ril+1

(⃗xil+1
) ∧ ... ∧Rim(x⃗im) (3.2)

where each f j
i ∈ f⃗i is a function whose function name belongs in Λ and whose variable

arguments are among the variables of x⃗i1 , ..., x⃗im , each Auxij for j = 1, ..., l corresponds to
body(m) for some m ∈M\MCQ and each Rik for k = l + 1, ...,m is a relation name from
the database schema. Note that on the original definition of UnfoldDB semantic query
optimization (SQO) with respect to the database schema S is not performed. Neverthe-
less, in subsequent research, the role of SQO with respect to this context was proved
crucial [93, 83]. In this work we consider that SQO, like for example self-join elimination,
is performed in the result of UnfoldDB, that is in each Qi for i = 1, ..., n in (3.1). Further-
more, by overloading the definition of UnfoldDB, we consider a version of the function that
takes as input an SLD-tree resulted from the application of the SLD-Derive(P (Q,M, D)),
and operates as described to produce a query that has the aforementioned form.

We now proceed with some definitions that will be used when we “fold back” the SLD-tree

D. Bilidas 54

Database Techniques for Ontology-based Data Access

produced by SLD-Derive. For each edge e of the SLD-tree we define source(e) to be the
node at the beginning of e, target(e) to be the node the node at the end of e, TM(e) to
be the predicate symbol of the atom selected by computation rule R at source(e),M(e) to
be the clause (mapping assertion) used in the specific derivation, sub(e) to be the substi-
tution used in the specific derivation and pos(e) to be the set of integers corresponding to
the positions of atoms affected by the derivation in the right-hand side of the resultant in
target(e).

Let m1, ...,mn be mapping assertions of the form ϕi → ψi where no variable is repeated
in ψi, for i = 1, ..., n and there exists a unifier θ such that the expressions ψ1θ, ..., ψnθ are
all syntactically equal (obviously the predicate symbol at the head of each assertion is the
same). Then, the combined mapping of m1, ...,mn is the following expression:

ϕ1θ ∨ ... ∨ ϕnθ → ψ1θ

If a variable z is repeated multiple times in ψi for a mapping assertion, then wemodify ψi by
keeping only the first occurrence and we replace all other occurrences with fresh variables
z1, ..., zk ∈ V ar. Then, we compute the unifier θ, and finally we add to the head of the
combined mapping the conditions z = z1θ, ..., z = znθ. In this case, the combined mapping
has a slightly different form from the definition of mappings as given in Section 3.2.3, as it
now also contains a set of equalities in the head. These are simply translated to SQL by
projecting the same column multiple times with different renamings, in the corresponding
union subquery.

Essentially, the combined mapping introduces a mapping assertion whose body is the
union the input mappings, with the appropriate renaming. Two examples of combined
mappings for the example mappings shown in Figure 3.3 are presented in Figures 3.5
and 3.6.

Proposition 1. Let T be an SLD-tree resulted from SLD-Derive with input P (Q,M, D),
mc be the combined mapping of mappingsm1, ...,mn ∈M andMc = (M\{m1, ...,mn})∪
{mc}. The semantics of PE(Q,M, D) coincide with the semantics of PE(Q,M, Dc).

Proof. We need to show that for every tuple t⃗ of constants, q(⃗t) is true in PE(Q,M, D)
if and only if q(⃗t) is true in PE(Q,M, Dc), which follows directly from the construction of
mc.

Let T be the tree resulted from SLD-Derive(P (Q,DB,M)) and e0 an edge in T . Also,
let e1, ..., en be edges in T with source(e0) = source(e1) = ... = source(en) and TM(e0) =
TM(e1) = ... = TM(en) such that there exists a combined mapping mc : ϕ0θ ∨ ... ∨ ϕnθ →
ψ1θ, with θ = sub(e0) and TM(e0) be equal to the predicate at the head of mc. A fold
of T into e0 is the tree T2 that is resulted from T by replacing in each descendant node
of target(e0) (including target(e0)) the atoms at positions pos(e0) with the atom ψ1θ, and
deleting all the sub-trees starting from target(e1), ..., target(en). Moreover, let f1, ..., fm be
all the edges in T (including e0) such thatM(f1) = ... =M(fm) =M(e0). Then, the fold of
T based onmc is the tree that is obtained if we sequentially apply the process of obtaining
the fold of T into fi for i = 1, ...,m ensuring that for each fk, fl with k, l in 1, ...m, if the

55 D. Bilidas

Database Techniques for Ontology-based Data Access

depth of target(fk) in T is smaller than the depth of target(fl), then the fold of T into fk is
obtained after obtaining the fold of T into fl.

Figures 3.7 and 3.8 show the fold of the SLD-tree of example 2 based on mappings from
Figures 3.5 and 3.6 respectively, where Auxcm1 and Auxcm2 are regular auxiliary predi-
cates used for mappings inM\MCQ according to the construction of P (Q,M, D), that
correspond to combined mappings cm1 and cm2 respectively.

Proposition 2. Let T be an SLD-tree resulted from SLD-Derive with input P (Q,M, D),
mc be the combined mapping of mappingsm1, ...,mn ∈M andMc = (M\{m1, ...,mn})∪
{mc}. The fold of T based on mc is exactly the tree returned by SLD-Derive with input
P (Q,M, Dc).

Proof. Let Tfold be the fold of T based on mc and Tc be the SLD-tree resulted from
SLD-Derive with input P (Q,M, Dc). We need to show that Tfold and Tc consist of the
same resultants. Clearly the two trees have the same root. Then, given a resultant
ans(x⃗)θ0...θk ← A1(x⃗1), ..., Ai(x⃗i), ..., Aw(x⃗w) at depth k which is the same for the two
trees, it is sufficient to show that the children of this resultant are the also the same for
the two trees. Let nodeTc and nodeTfold

be the nodes in Tc and Tfold respectively that
contain the specific resultant. Suppose that Ai is the leftmost atom in the body of the
resultant with predicate that belongs to the alphabet of T and will be chosen by the com-
putation rule R. Also, for now, let’s suppose that there is only one node nodeT in the
initial tree T such that for every edge e in T with TM(e) equal to the predicate sym-
bol at the head of mc, then source(e) = nodeT . According to the construction of the
fold of T into e0, if nodeT is different from nodeTfold

, then the children of nodeTfold
are the

same with the children of nodeTc, as they are not affected by the combined mapping. If
nodeT is equal to nodeTfold

, then nodeT has n children affected by the combined map-
ping, plus a number of children not affected (possibly 0). The second kind of children
are also children of nodeTc, whereas the first kind have been replaced in Tfold with the
child ans(x⃗)θ0...θkθk+1 ← A1(x⃗1), ..., CM(z⃗), ..., Aw(x⃗w), which is also a child of nodeTc, and
these are the only children of both nodeTc and nodeTfold

. Now, if there are more nodes
in T affected by the fold of T based on mc, then from the construction of the fold, where
descendant nodes are always modified prior to their predecessors, and from the fact that
R chooses always the leftmost possible atom, it is straightforward to see that the result of
the case where only one node is affected by the combined mapping is carried over to this
case.

A direct consequence of Propositions 1 and 2 is that if we consider the SLD-tree tree T
resulted from SLD-Derive with input P (Q,M, D) and we apply the UnfoldDB algorithm on
the resultants contained in the the fold of T based on the combined mapping mc, then
the SQL query that will be produced has exactly the same answers with the SQL query
produced by applying the UnfoldDB algorithm on the resultants of the original tree T .
This gives us the ability to choose a sequence of folds, in order to obtain an equivalent

D. Bilidas 56

Database Techniques for Ontology-based Data Access

translation that can be more efficient, by using a cost-based search in the initial SLD-tree,
which we describe in detail in the Section 3.6.3.

An issue that arises in these translations has to do with the way the combined mapping
is treated. One way is to be treated as a regular mapping assertion, as the body of this
mapping is simply a union query over the original mapping assertions. This union query
will be computed as many times as the combined mapping is used in the produced query.
Obviously a better choice would be to create a temporary table that holds the specific
result as an intermediate result of the main query, in the same database connection. This
is the solution that we follow in this work, as it also avoids the overheads of creating a
permanent materialized view in the database. A second issue that has to be handled is
the decision regarding which folds should be used, if any, for a specific query. As we
will describe in the following section, the process of taking the specific decision heavily
depends on the size of the SQL query, the size of each combined mapping in comparison
to the size of the final SQL query and the number of duplicate answers contained in them.

3.4 Offline Duplicate Elimination With Materialized Views

One solution to the problem of duplicates, is to track down the mapping assertions which
are responsible for duplicates, create materialized views with the distinct results, possibly
with indexes, and then use these views instead of the original assertions during query
unfolding. It is reasonable to expect that this solution will give the best performance during
query execution, but on the other hand this incurs expensive preprocessing and also, using
materialized views in the database increases the database maintenance load, especially
for frequently updated tables, as well as the the database size. Also, this solution will not
take into consideration duplicates due to projections in the SPARQL query and finally, it
is not in line with the overall approach of providing the end user with access to several
underlying data sources, without the need to modify data, and on a practical level, such
access may not be even possible.

Nevertheless, even in the case where one chooses to use materialized views, it is not
straightforward exactly which of the mapping assertions should be chosen. In the rest of
this section we describe a process to find the exact assertions for this setting, whereas
in the following sections we consider the case where no materialization happens and all
processing needs to be done during query execution.

Given a mappingM and a database instance D over a schema S, a straightforward so-
lution is to materialize all m ∈M such that DTRhead(m)(D) > 1, but as the query produced
after rewriting takes into consideration the ontology axioms, implied assertions may be
used, such that a specific variable has been projected out from the outputs of the body
of an existing assertion due to reasoning for class instances with respect to domain or
range of a property like in Example 4, where the modified mapping implied assertion is
the following:

movies(t, d)→ Director(d)
The exact way that this implied assertion will be used depends on the rewriting method,

57 D. Bilidas

Database Techniques for Ontology-based Data Access

1:q

Root

2:m4

Node	2

Node	3

Node	1

1:cm1

Node	5Node	4

3:m5 3:m5'

Root : ans(x, y, z)θ0 ← ans(x, y, z)

θ0 = {}
Node1 : ans(x, y, z)θ0θ1 ← P1(x, y), P2(x, h(A)), P3(y, z)

θ1 = {}
Node2 : ans(x, y, z)θ0θ1θ2 ← Auxcm1(v

m1
1 , vm1

2), P2(f(v
m1
1), h(A)), P3(g(v

m1
2), z)

θ2 = {x/f(vm1
1), y/g(vm1

2)}
Node3 : ans(x, y, z)θ0θ1θ2θ5 ← Auxcm1(v

m1
1 , vm1

2), A3(v
m1
1 , vm4

2 , A), P3(g(v
m1
2), z)

θ5 = {vm4
1 /vm1

1 , vm4
3 /A}

Node4 : ans(x, y, z)θ0θ1θ2θ5θ8 ← Auxcm1(v
m1
1 , vm1

2), A3(v
m1
1 , vm4

2 , A), C1(v
m1
2 , vm5

2)

θ8 = {vm5
1 /vm1

2 , z/k(vm5
2)}

Node5 : ans(x, y, z)θ0θ1θ2θ5θ9 ← Auxcm1(v
m1
1 , vm1

2), A3(v
m1
1 , vm4

2 , A), C2(v
m1
2 , vm5′

2)

θ9 = {vm5′

1 /vm1
2 , z/k(vm5′

2)}

Figure 3.7: SLD Tree 2

D. Bilidas 58

Database Techniques for Ontology-based Data Access

1:q

Root

2:m4

Node	2

2:m4

Node	3

Node	6

Node	8

Node	5

1:m1''

Node	1

2:m4

Node	4

Node	7

1:m1 1:m1'

Node	10Node	9

3:cm2 3:cm2 3:cm2

Root : ans(x, y, z)θ0 ← ans(x, y, z)

θ0 = {}
Node1 : ans(x, y, z)θ0θ1 ← P1(x, y), P2(x, h(A)), P3(y, z)

θ1 = {}
Node2 : ans(x, y, z)θ0θ1θ2 ← A1(v

m1
1 , vm1

2), P2(f(v
m1
1), h(A)), P3(g(v

m1
2), z)

θ2 = {x/f(vm1
1), y/g(vm1

2)}
Node3 : ans(x, y, z)θ0θ1θ3 ← A2(v

m1′

1 , vm1′

2), P2(f(v
m1′

1), h(A)), P3(g(v
m1′

2), z)

θ3 = {x/f(vm1′

1), y/g(vm1′

2)}
Node4 : ans(x, y, z)θ0θ1θ4 ← A3(v

m1′′

1 , vm1′′

2 , vm1′′

3), P2(f(v
m1′′

1), h(A)), P3(g(v
m1′′

2), z)

θ4 = {x/f(vm1′′

1), y/g(vm1′′

2)}
Node5 : ans(x, y, z)θ0θ1θ2θ5 ← A1(v

m1
1 , vm1

2), A3(v
m1
1 , vm4

2 , A), P3(g(v
m1
2), z)

θ5 = {vm4
1 /vm1

1 , vm4
3 /A}

Node6 : ans(x, y, z)θ0θ1θ3θ6 ← A2(v
m1′

1 , vm1′

2), A3(v
m1′

1 , vm4
2 , A), P3(g(v

m1′

2), z)

θ6 = {vm4
1 /vm1′

1 , vm4
3 /A}

Node7 : ans(x, y, z)θ0θ1θ4θ7 ← A3(v
m1′′

1 , vm1′′

2 , vm1′′

3), A3(v
m1′′

1 , vm4
2 , A), P3(g(v

m1′′

2), z)

θ7 = {vm4
1 /vm1′′

1 , vm4
3 /A}

Node8 : ans(x, y, z)θ0θ1θ2θ5θ8 ← A1(v
m1
1 , vm1

2), A3(v
m1
1 , vm4

2 , A), Auxcm2(v
m1
2 , vm5

2)

θ8 = {vm5
1 /vm1

2 , z/k(vm5
2)}

Node9 : ans(x, y, z)θ0θ1θ3θ6θ10 ← A2(v
m1′

1 , vm1′

2), A3(v
m1′

1 , vm4
2 , A), Auxcm2(v

m1′

2 , vm5
2)

θ10 = {vm5
1 /vm1′

2 , z/k(vm5
2)}

Node10 : ans(x, y, z)θ0θ1θ4θ7θ12 ← A3(v
m1′′

1 , vm1′′

2 , vm1′′

3), A3(v
m1′′

1 , vm4
2 , A), Auxcm2(v

m1′′

2 , vm5
2)

θ12 = {vm5
1 /vm1′′

2 , z/k(vm5
2)}

Figure 3.8: SLD Tree 3

59 D. Bilidas

Database Techniques for Ontology-based Data Access

but in any case, in the resulted SQL query column title will not be in the Select clause.

Situations like this can be identified offline, by analyzing the ontology and the original
mapping. The first step is to find the ontology axioms of the form ∃P.⊤ ⊑ C and
∃P−.⊤ ⊑ C (or equivalently ⊤ ⊑ ∀P.C) that define the domain and range of some
property P to be a class C in our ontology. Then we identify the mapping assertion in
M that generates RDF triples which have as predicate the property P and we modify
the target SQL query of the mapping, by projecting out the columns used for the sub-
ject or object respectively. At this point, we can skip certain mappings that are covered
by the corresponding rdf :type mapping for a given class, as OBDA systems eliminate
the usage of the property triple pattern for these cases based on foreign key relation-
ships [82]. Consider again the case of Example 4: if we had one more database ta-
ble director_info which has a primary key id and we also know that director in movies
is a foreign key that references this primary key, then if we also had the mapping:

director_info(id, ...)→ Director(f(id))
the previously obtained mapping can be skipped as it is redundant and will not be used
by the OBDA system.

The method is described in Algorithm 1. ComputeDTR is a function that returns the DTR
for the query passed as argument. If DTR = 1 according to proposition 1, then access to
data is avoided altogether, otherwise the actual DTR is computed by sending two count
queries: with and without the distinct modifier. Later, when the DTR needs to be de-
termined during query optimization, an estimation based on data summarization is used
instead (Section 3.6). Function ExistsFK returns true if a foreign key exists between
the output column of query query1 and the output column of query query2. The result of
this algorithm is a set of mapping assertions, possibly annotated with information about
the projection of a column. Modification of the produced SQL query in order to take into
consideration the views created for these mappings, instead of the original body of the
mapping, can simply be performed in the final step of the query unfolding, where each
Auxj is replaced by the corresponding SQL, and as a result it is independent of the query
rewriting method.

3.5 Pushing Duplicate Elimination Before IRI Construction

In SPARQL to SQL approaches, pushing joins inside unions is a well known structural
optimization, so that joins over IRIs are avoided and relational columns, whose values
are possibly indexed, are used instead. Methods for unfolding based in partial datalog
evaluation like the one we consider here produce such queries, where additionally, union
subqueries that contain joins between incompatible IRIs, that when evaluated will pro-
duce an empty result, are completely discarded. Also, the safe separator3 of the R2RML
mapping language can be used to ensure that concatenation of multiple columns cannot
produce the same value with that of a single column [83]. In a similar manner, it can be
very useful to perform duplicate elimination before IRI construction. In this section we dis-

3https://www.w3.org/TR/r2rml/#dfn-safe-separator

D. Bilidas 60

Database Techniques for Ontology-based Data Access

Algorithm 1: Track down SQL queries that contain duplicates
1 MappingsWithDuplicates (mappingM, ontology O, database schema S, database instance D);
Output: Mapping assertions possibly annotated with a projected column
Uses : ComputeDTR(query, db_schema, db_instance)
Uses : ExistsFK(schema, query1, query2)

2 result := ∅;
3 for m ∈M do
4 if head(m) is Class assertion then
5 if ComputeDTR(body(m), S,D) > 1 then
6 add m to result;
7 end
8 else

/* head(m) is Property assertion with predicate P */
9 if O contains ∃P.⊤ ⊑ C and ComputeDTR(

∏
1(body(m)), S,D) > 1 and not (∃m2 ∈M s.t.

predicate of head(m2) is C and ExistsFK(S,
∏

1(body(m)), body(m2)) then
10 add m to result for projection of 1st column;
11 end
12 if O contains ∃P−.⊤ ⊑ C and ComputeDTR(

∏
2(body(m)), S,D) > 1 and not (∃m2 ∈M s.t.

predicate of head(m2) is C and ExistsFK(S,
∏

2(body(m)), body(m2)) then
13 add m to result for projection of 2nd column;
14 end
15 end
16 end
17 return result;

cuss the process of transforming the unfolded query that has the form shown in formula
(3.1) at page 54, into an equivalent one, such that duplicate elimination is performed on
database values.

To do so, we must group together union subqueries that have the same select clause up
to variable (column name) renaming. In our case the situation is more complicated, as
we want to ensure that tuples produced from different IRI templates cannot possibly have
equal values. Consider for example the following query:
SELECT ':Person' || alias1.id AS x
FROM table1 alias1
UNION
SELECT ':Person' || alias1.key AS x
FROM table2 alias1
UNION
SELECT ':Person' || alias1.id ||

'/' || alias1.name AS x
FROM table3 alias1

Given that the ’/’ character is a safe separator, the third subquery cannot produce any
result tuple that will be the same with a result tuple coming from the first two subqueries.
On the other hand, there is a possibility that the first two subqueries may produce the
same answer. The following rewriting of this query can be used:
SELECT ':Person' || var1 AS x,
FROM
(SELECT

alias1.id as var1

61 D. Bilidas

Database Techniques for Ontology-based Data Access

FROM
table1 alias1

UNION
SELECT

alias1.key AS var1
FROM
table2 alias1

)
UNION ALL
SELECT DISTINCT ':Person' ||

alias1.id || '/' || alias1.name AS x,
FROM table3 alias1

Note that UNION ALL operator is simply concatenating the results. When the UNION
ALL is the outer operator of a query, it is reasonable for the RDBMS to start sending the
results in a pipelining fashion, as they are produced from each subquery without saving
or waiting for all the results to be produced. In this sense, it can be considered a “cheap”
operator in contrast to UNION. If we know that column id of table3 is a primary key, then
the distinct keyword of the last subquery can be eliminated. Even if this is not the case,
the resulted query has several advantages over the initial. First, the duplicate elimination
process has been separated over two distinct result sets and also each tuple is smaller
in size. This gives to the RDBMS the opportunity to better utilize available memory, as it
now has smaller datasets to perform duplicate elimination, or even parallelize the process.
Available indexes on the columns can be used. Also, as discussed, when there is no
blocking outer operator, results are produced in a pipelined fashion. This way the first
results can be obtained very quickly and, as IRI construction is an expensive operation,
the difference can be impressive when we have large results and the processing for each
subquery is relatively cheap.

3.6 Cost-Based Selection of Query Translation

In this section we consider a cost-based algorithm in order to choose a specific sequence
of folds and obtain the SQL translation of the initial query. During this process we take
into consideration the two kinds of redundant processing that we described in Section 3.1.
Regarding the first kind (redundancy due to duplicates), we will employ a heuristic about
early duplicate elimination of intermediate results during query evaluation that we first
described in [12]. In order to describe the heuristic, we first consider a single subquery
that has the form shown in formula 3.2 of Section 3.3. We will describe our algorithm
operating on the complete query that has the form shown in formula (3.1) in Section 3.6.3.
Our method relies on an estimation of the final result size of each union subquery. To
obtain this estimation we should gather some statistics from the database in the form of
data summarization for all the columns that can be possibly referenced from a query, that is
all the columns in the SQL query of some mapping assertion. As making an estimation for
an arbitrary FOL query is an involved process, we make a distinction between assertions
inMCQ (Ri+l+1, ..., Ri+m in formula 3.2) and assertions inM \MCQ (Auxi1 , ..., Auxin in
formula 3.2). We consider that the latter are primitive tables as if they were virtual views,
and we collect statistics only for the output columns, whereas the former are parsed and

D. Bilidas 62

Database Techniques for Ontology-based Data Access

we collect statistics for all the referenced columns. We will refer to each conjunct in the
right-hand side of (3.2) as an input table of query Qi(f⃗i(x⃗i)).

Let q be a query as in (3.2) and Ii(x⃗i) be an input table of q. The query ans(x⃗ci)← Ii(x⃗i),
where x⃗ci contains exactly the variables of x⃗i that appear more than once in q, will be
called the projection query of input table Ii(x⃗i) from q. Additionally, let D be a database
instance (which will be implied).

3.6.1 Analyzing External Tables

As we operate outside the RDBMS engine, in order to extract the needed information we
should import all the corresponding data, something that is clearly not practical. Luckily
we have several other options. One such option is to only import a random sample and
extract the needed information from that, as most database vendors support ordering the
results by a random function. Another option is to obtain the data summarization directly
from the RDBMS, if it provides a way to access this information. This option is likely
to give the most accurate results, but it is highly dependent on the specificities of each
database vendor. One third option is to build a simple single-bucket histogram for each
column, by sending for execution queries that ask for the number of values, number of
distinct values, minimum and maximum value. Simple histograms like this are known
to give imprecise selectivity estimations for filter and join results of attributes that exhibit
skewness [44], but on the other hand their construction and usage is faster in comparison
to more elaborate kinds of histograms. For our experiments we have chosen the last
option, as it is fast and simple and can be applied to any underlying RDBMS. This is
an one-time offline process, that needs to be done before query execution, similar to an
analyze command in a database schema, as it only depends on mappings and data. Also,
as it is crucial to have an accurate estimation of the number of duplicate answers that come
from different mappings for the same predicate, we execute queries counting exactly the
distinct number of answers for queries in bodies of mappings that can possibly formulate
a combined mapping assertion. These mapping assertions can simply be identified offline
as the subsets of mappings whose heads can be unified during the partial evaluation.
Regarding duplicates coming from a single mapping, adopting the commonly used value
independence assumption between the result attributes and the uniformity of values in
an attribute [100], we estimate the distinct tuples of the relation to be the product of the
distinct values of its attributes. In case this value is larger than the number of tuples in the
relation, we assume that there are no duplicate tuples in the relation.

3.6.2 Early Duplicate Elimination of Intermediate Results

First, we define the duplicate-tuple ratio DTRR of a relation instance R is equal to∑
t∈USR

µ(t)

|USR|
. A relation instance with DTR equal to 1, will be called a duplicate-free re-

lation instance. Now, let us suppose that we have a single SQL subquery coming from
the unfolding step and we have to take the decision regarding a single input table (either

63 D. Bilidas

Database Techniques for Ontology-based Data Access

“real” primitive table or virtual view) used in this subquery; we will take into consideration
different union subqueries in Section 3.6.3. In this case, it may be advantageous to dictate
the RDBMS to perform the duplicate elimination on projection query of the specific input
table at the beginning of query execution, store the duplicate-free intermediate result in a
temporary table and use it for the specific query. This can be done in several ways de-
pending on the exact SQL dialect and capabilities of the underlying system. For example
one can use (non-recursive) common table expressions or temporary table definitions.
Of course the exact decisions as to when this should happen depend on several factors,
including the exact query, the DTR of the projection query of the input table, the number
of uses of the specific input table in the query, the choice to save the temporary table in
disk or keep it in memory and several other factors that depend on the database physical
design, database tuning parameters, the exact query execution plan and the evaluation
methods chosen by the optimizer of the RDBMS. As mentioned, it is difficult for all these
factors to be estimated outside the database engine. For this reason, in what follows,
we propose to take this decision according to a heuristic that depends only on the size
of the data and the DTR of the input table, whose estimation can be obtained using data
summarization.

The main assumption that we make regarding duplicate elimination states that the impact
of an input table with DTR equal to a constant number n in the number of tuples of the final
query result is proportional to n. As a result of this assumption, the selectivity of the query
plays the most important role regarding the duplicate elimination decisions. Intuitively, a
query whose result size is much larger than the size of the intermediate result for which
we examine the duplicate elimination option, it is expected to be faster if we first perform
the elimination, as each tuple of the intermediate result has as impact the creation of a
large number of tuples in the final result. On the other hand, when we have very selective
queries with few results, whereas the size of the intermediate result under consideration
is much larger, one would expect that each tuple of the intermediate result does not add
that much to the total cost of the query in order to counterbalance the cost of a duplicate
elimination, especially when expecting the optimizer to limit the sizes of intermediate query
results as soon as possible.

A Heuristic Regarding Duplicate Elimination. Given a database instance D, a query q that
has the form (3.2) and whose result over D is the relation instance Q and an input table
Ii(x⃗i) of q, then perform duplicate elimination on input table Ii(x⃗i) prior to execution of q if

SizeQ −
SizeQ
DTRAns

>
SizeAns

DTRAns

where relation instance Ans is the result of the projection query of Ii(x⃗i) from q on D
and SizeQ and SizeAns are the estimated sizes (in bytes) of relation instances Q and Ans
respectively. That is, duplicate elimination should be performed if it is expected that the
reduction on the size of the final result will be bigger than the size of the intermediate result
with duplicate elimination.

D. Bilidas 64

Database Techniques for Ontology-based Data Access

3.6.3 Cost-based Translation

In this section we present the algorithmGetTranslation (Algorithm 2), which, given a UCQ
Q over an ontology O and a mapping collectionM from O to a database instance D over
a database schema S, it returns a SQL query over D, including a set of temporary views
that should be created (contained in CMtemporary). Each one of these temporary views cor-
responds to a SQL query on the body of a combined mapping that exists in the SDL-tree
produced by SLD-Derive(P (Q,M, D)). In other words, the algorithm chooses a sequence
of folds based on one of these combined mappings each time, that are performed repeat-
edly in a corresponding sequence of trees, starting from the initial SLD-tree. The Tcurrent
variable holds the current tree at each point of execution. In each step, the fold that is
expected to provide the largest gain is chosen, and this process is continued until no fold
that provides gain exists. In this sense, the algorithm proceeds in a greedy way, in order
to avoid examining all the combinations. The gain for each possible combined mapping
is estimated based in the redundant processing that we avoid by materializing and using
the specific mapping with respect to i) duplicate answers and ii) repeated operations even
in the absence of duplicate answers.

Regarding duplicate answers, in correspondence with the observations made in Section
3.6.2, here the main factors that determine the behavior of the algorithm are the query
selectivity and the size of the result of the SQL query in the body of each combined map-
ping. The difference here is that we consider the final query that is the result of UnfoldDB,
instead of a single union subquery, and a combined mapping that contains many input
mappings which can produce duplicate results between them, instead of a single input
table of one subquery. Let cm be the combined mapping ϕ1 ∨ ... ∨ ϕn → ψ in this con-
text, for simplicity we will denote by Sizecm and DTRcm the size and DTR of the relation
instance that is the result of executing the query ϕ1 ∨ ... ∨ ϕn over the database instance
D, given that duplicate elimination is not performed. Computing and saving the combined
mapping is expected to be more efficient, if the reduction on the size of the final SQL
query will be bigger than the size of the temporary table resulting from the materialization
of the combined mapping with duplicate elimination (Sizecm/DTRcm). Using the quantity
SizeSQLcm to denote the size of the result of the final SQL query when the combined map-
ping cm has been chosen for materialization with the duplicates eliminated, which is equal
to SizeSQLcurrent/DTRcm, we have that the result of UnfoldDB with input the fold of T into
cm (SQLcm) is preferred over the result of UnfoldDB with input T (SQLcurrent) if:

SizeSQLcurrent − SizeSQLcm >
Sizecm
DTRcm

(3.3)

Regarding repeated operations even in the absence of duplicate answers, as discussed
in Section 3.1, in order to obtain an exact cost model we should be aware of the exact
execution plan and the choice of access methods for each relation in order to estimate the
amount of data read and written to disk for each CQ. As this is not viable for the OBDA
system that operates outside the database engine, we base our estimation on the sizes of
the input relations and the size of the result. Specifically, we consider that the smaller table

65 D. Bilidas

Database Techniques for Ontology-based Data Access

in each CQ is fully scanned once, and all other tables are either probed using an index as
many times as the number of final query results or are fully scanned once, depending on
which of the two options has the lowest cost. In order to find the smaller table, table sizes
in this context are compared by taking into consideration the filters that appear in each
table in the CQ, that is tables are compared according to the size of each corresponding
projection query. Also, as we do not want to take into consideration duplicates introduced
from the combined mapping under consideration, for each input table that participates in
the combined mapping, we take its size after we divide it by DTRcm.

Let SQL be an SQL query of the form 3.1 that is the result of UnfoldDB, we will denote by
RRSQL the estimation for the size in bytes of redundant reads in the absence of duplicates
as described. In other words, RRSQL holds the sum of redundant reads for every disjunct
(CQ) in the right-hand side of (3.1). Then, the result of UnfoldDB with input the fold of T
into cm (SQLcm) is preferred over the result of UnfoldDB with input T (SQLcurrent) if the
estimated reduction in redundant reads from SQLcurrent to SQLcm is larger than than the
size of the temporary table resulting from the materialization of the combined mapping
with duplicate elimination (Sizecm/DTRcm):

RRSQLcurrent −RRSQLcm >
Sizecm
DTRcm

(3.4)

If we want to take both kinds of redundant processing into consideration concurrently, we
simply have to add the left-hand side parts of (3.3) and (3.4):

SizeSQLcurrent − SizeSQLcm +RRSQLcurrent −RRSQLcm

>
Sizecm
DTRcm

(3.5)

In Algorithm 2 we are considering the heuristic as a quantity giving the expected gain,
with negative values meaning that we have loss instead of gain, as shown in Line 11 of
the algorithm, since we want to compare the different options and choose the one that
gives the biggest gain at each step. So the final formula used is:

SizeSQLcurrent − SizeSQLcm+

RRSQLcurrent −RRSQLcm −
Sizecm
DTRcm

(3.6)

Regarding some implementation issues, we should note that we do not need to make
selectivity estimation for all the results each time, but only for those that are affected by
the combined mapping, that is, the disjuncts in the result of UnfoldDB that correspond
to resultants in the SLD-tree which are descendants of nodes which use some of the

D. Bilidas 66

Database Techniques for Ontology-based Data Access

input mappings of the combined mapping examined each time. As a matter of fact, we
can modify the gain formula so that only these disjuncts are taken into consideration in
the computation of RRSQLcurrent , RRSQLcm , SQLcurrent and SQLcm. Also, the queries that
correspond to the temporary tables for the combined mappings contain only database
values and not ontological terms. As a result, joins on the final result of the UnfoldDB
are performed as in the original unfolding algorithm, only over database values, and not
over IRIs. In a similar manner, the duplicate elimination during the computation of the
temporary results corresponding to combined mappings is also performed over generally
smaller and possibly indexed values, and finally, given that the final query result that will
be sent for execution should also be duplicate free, we again perform duplicate elimination
over the database values by pushing the duplicate elimination before the IRI construction
as described in Section 3.5.

Algorithm 2: Translation Process
1 GetTranslation (M, Q,D);
Input : Mapping CollectionM, Query Q, Database D
Output: SQL query over D

2 CMtemporary = ∅;
// The combined mappings that should be used as temporary tables

3 Tcurrent = SLD-Derive(P (Q,M, D)); // The SLD-tree at each step. Initially equal to the
result of SLD-Derive(P (Q,M, D))

4 SQLcurrent = UnfoldDB(Tcurrent);
5 Add to CMused all the combined mappings that exist in Tcurrent;
6 MaxGain = 0;
7 do
8 foreach cm ∈ CMused do
9 Tcm: the fold of Tcurrent based on cm;
10 SQLcm = UnfoldDB(Tcm);
11 Compute Gain from SQLcurrent to SQLcm according to Formula 3.6 ;
12 if Gain > MaxGain then
13 MaxGain = Gain;
14 Tbest = Tcm;
15 SQLbest = SQLcm;
16 BestCm = cm;
17 end
18 end
19 if MaxGain > 0 then
20 SQLcurrent = SQLbest;
21 Tcurrent = Tbest;
22 Remove BestCm from CMused;
23 Add BestCm to CMtemporary;
24 end
25 while MaxGain > 0;
26 return SQLcurrent;

67 D. Bilidas

Database Techniques for Ontology-based Data Access

3.7 Implementation and Experimental Evaluation

We have implemented our translation in an prototype extension of Ontop version 1.18.1.
This version of Ontop normally uses the default unfolding method of [77] over the T -
Mappings [82] in order to emulate H-complete ABoxes, as we mentioned in Section 3.1,
and employs the tree-witness query rewriting [52] on such ABoxes. We follow the same
architecture, using the tree-witness approach for query rewriting and we modify the un-
folding step over the T -Mappings as described here.

Newer versions of Ontop use a different query unfolding method that employs the notion
of intermediate query (IQ) [105]. We discuss the relevance of our method to this in Section
3.8. For this reason, we compare our method with both the default translation based in
partial evaluation of logic progrmams obtained by version 1.18.1, but also with the new
translation method obtained from the latest Ontop versions 3.0.1 and 4.0.2. In general,
version 3.0.1 outperforms version 4.0.2, so we only report times for version 3.0.1 here,
but all the execution times for version 4.0.2 are also available along with all other material
in 4.

Our aim in this section is to perform an experimental comparison of our approach with
other methods using well-known benchmarks. For this reason, we present experiments
using the NPD and LUBM benchmarks in Section 3.7.1, comparing our approach with the
translation performed by the two aforementioned Ontop versions. Then in Section 3.7.2
we compare our approach with the JUCQ approach using the datasets and queries from
[59] and in Section 3.7.3 we study the performance of our method in comparison to the
default translation, for different query characteristics. Finally, in order to obtain an empirical
analysis of our heuristic regarding duplicate elimination, in Section 3.7.4 we perform an
experimental evaluation using a micro benchmark with specific query fragments coming
from queries used in the general evaluation.

3.7.1 Experiments with NPD and LUBM Benchmarks

We have performed an experimental evaluation of our techniques using the LUBM [38]
and NPD [58] benchmarks, with the ontology and mappings that are publicly available at
the Ontop repository on github5 and with existential reasoning enabled. Both datasets
were generated for scale 100.

The experiments in this section were carried out on a machine with an Intel Core i7-3770K
processor with 8 cores and 32 GB of RAM running UBUNTU 18.04, using PostgreSQL
version 11.3 as a backend. PostgreSQL was setup and tuned for usage in a machine
with 32GB RAM. The schema and data in all systems were identical and all the proposed
indexes were created. The database size was about 1.1 GB for LUBM and about 5.8 GB
for NPD.

4http://cgi.di.uoa.gr/~dbilid/experiments-obda/
5https://github.com/ontop/iswc2014-benchmark/tree/master/LUBM and https://github.com/

ontop/npd-benchmark

D. Bilidas 68

http://cgi.di.uoa.gr/~dbilid/experiments-obda/
https://github.com/ontop/iswc2014-benchmark/tree/master/LUBM
https://github.com/ontop/npd-benchmark
https://github.com/ontop/npd-benchmark

Database Techniques for Ontology-based Data Access

3.7.1.1 Queries and Mappings

For LUBM benchmark in total 84mapping assertions were produced as T -Mappings from
Ontop. For LUBM we used the original 14 queries. For NPD we used a subset of 19
out of the original 30 queries: queries 1-12, 22-25 and 28-30, excluding the queries that
use GROUP BY, as it is not supported by the used Ontop version, queries that contain
OPTIONAL and queries with empty translation due to incompatible IRIs. To these queries
we added four more, in order to showcase the advantage of duplicate elimination com-
ing from a single mapping. The reason for this addition is that despite the fact that many
mappings introduce duplicates, the existing queries are only using a small subset of the
mappings that mostly avoid this problem. We believe that the four added queries are sen-
sible and simple, yet their evaluation proved very hard. This showcases that the problem
we are dealing with is also present in the NPD benchmark. These new queries are num-
bered 31 to 34 and presented in Appendix A. All SPARQL queries were executed using
the DISTINCT modifier.

3.7.1.2 Overhead in Setup and Optimization

The time needed to gather all the necessary statistics and analyze tables prior to the first
deployment of the system as described in Section 3.6 was 48 seconds for LUBM and 3
minutes and 10 seconds for NPD. Total optimization time for the 14 LUBM queries total
time increased from 325 ms to 360 ms, whereas for the 23 NPD queries the increase
was from 1115 ms to 1380 ms. The given times include the total time from parsing each
SPARQL query to outputting the corresponding SQL query. The first time is the time
needed by the original Ontop version 1.18.1, whereas the second time is the time needed
by our modified version.

3.7.1.3 Results

For each query we used a timeout of 1000 seconds. For each setting, all queries were
executed sequentially according to their numbering, after a full system reboot. The given
times measure the total time needed for each query including the optimization time in
Ontop, the execution time in the relational back-end and the time to obtain the results in
Ontop. All the results were obtained, but they were not saved or processed otherwise.
The combined mappings chosen by our method were materialized as temporary tables
during execution in the same session as the main query and unique indexes were created
on those tables. All times are in milliseconds. All results and the produced SQL queries,
as well as all the necessary material to reproduce the experiments are available in the link
given in the beginning of this section.

Results are presented in Table 3.1 for NPD queries and in Table 3.2 for LUBM queries.
Results in column v1 Default contains the execution times obtained by the Ontop version
1.18.1, column v1 Opt. contains the times obtained by the modified Ontop version accord-

69 D. Bilidas

Database Techniques for Ontology-based Data Access

Query v1 Default v1 Opt. v3 #Results

NPD 1 4899 5258 13696 1627744
NPD 2 4189 4142 5015 172751
NPD 3 1155 1119 1535 83737
NPD 4 20542 20899 27159 1627744
NPD 5 54 66 128 193
NPD 6 33234 23533 36128 1231564
NPD 7 1438 1377 1489 180
NPD 8 307 303 ERROR1 5974
NPD 9 2354 2222 1537 12750
NPD 10 4243 3649 3800 79512
NPD 11 86773 7650 8523 418056
NPD 12 122712 14376 16824 838430
NPD 22 6373 3247 8003 1113200
NPD 23 6565 3304 44340 763400
NPD 24 2437 498 ERROR1 147400
NPD 25 10055 9324 12106 1725400
NPD 28 32343 22815 167362 2141968
NPD 29 90271 17212 26400 419834
NPD 30 163276 26661 58143 705984
NPD 31 TIMEOUT 29771 54641 2979400
NPD 32 1085 318 746 8000
NPD 33 77139 19545 24509 148037
NPD 34 5443 3329 18678 486000

Avg. 307682 9592 252742

1 Error during unfolding
2 Excluding timeouts and errors
Table 3.1: Results for NPD scale 100 (Times in ms)

ing to our approach and column v3 contains the times obtained by Ontop version 3, the
latest stable Ontop release. The average execution times for each case are also shown
in the bottom of each table, excluding errors and timeouts. For the case of NPD queries,
there was 1 timeout from v1 Default for query 31, and two errors during unfolding from
Ontop v3. The exact error message for each error can be found at our result repository.
According to the results, our approach outperforms on average both Ontop version 1.18.1
and version 3. For the NPD benchmark the decrease in average execution time obtained
by our method is 69% and 62% in comparison to version 1.18.1 and version 3 respectively,
while for the LUBM benchmark the decrease is 31% and 12% respectively. Also, with very
few exceptions, our method outperforms the other two approaches on every single query.

D. Bilidas 70

Database Techniques for Ontology-based Data Access

Query v1 Default v1 Opt. v3 #Results

LUBM 01 543 587 685 4
LUBM 02 1283 1272 1377 264
LUBM 03 129 87 101 6
LUBM 04 149 125 438 34
LUBM 05 69 98 71 719
LUBM 06 17086 8868 29419 1048532
LUBM 07 259 306 334 67
LUBM 08 393 301 1079 7790
LUBM 09 47126 33518 16539 27247
LUBM 10 16 16 13 4
LUBM 11 191 187 192 224
LUBM 12 132 134 245 15
LUBM 13 112 111 138 472
LUBM 14 3096 2826 4406 795970

Avg. 5042 3460 3931
Table 3.2: Results for LUBM scale 100 (Times in ms)

3.7.2 Comparison with the JUCQ Approach

In this section we compare our method with the approach from [59]. As this implementation
is not part of the Ontop release, we directly use the queries produced by this approach,
which are available at the Ontop examples github repository 6. For this reason, in all the
experiments presented in this section we only report the time for executing the SQL queries
in PostgreSQL, omitting the time for query unfolding. For measuring the execution times of
the JUCQ approach, we used the scripts provided in the aforementioned github repository.
As in the previous section, we also include the times obtained using the versions 1.18.1
and 3 of Ontop. The execution environment is the same as in the previous section.

We use the exact benchmark and queries that were also used in [59]. Specifically, we
use the OBDA version of the Wisconsin benchmark [30], with the same ontology and
mappings, for which we have created 24 instances of the base relational table, each one
with 1 million tuples. This is the exact setting used in [59]. The results of the Wisconsin
benchmark are presented in Table 3.3, where there are two different query sets, one that
contains queries consisting of 3 atoms, and the other with queries consisting of 4 atoms.
Each query set contains 84 queries, and the average execution time for each approach is
shown. Our approach outperforms all other translations, followed by the JUCQ approach,
whereas the worst performance is obtained from the default translation of version 1, which
is the only approach such that timeouts occur. One other observation has to do with the
execution times for the UCQ (default translation of Ontop 1.18.1) and JUCQ translations
reported in [59]. Specifically, our execution times for these two sets of approaches seem

6https://github.com/ontop/ontop-examples/tree/master/iswc-2017-cost/

71 D. Bilidas

https://github.com/ontop/ontop-examples/tree/master/iswc-2017-cost/

Database Techniques for Ontology-based Data Access

Query Set v1 Default v1 Opt. v3 JUCQ

3 atoms 73133 22589 53624 30528
4 atoms 2236841 30922 64048 43926
1 Excluding 24 timeouts

Table 3.3: Average execution time (ms) for Wisconsin Benchmark

Query v1 Default v1 Opt. v3 JUCQ [59] #Results

NPD 6* 91083 21700 132787 295445 2150854
NPD 11* 169833 9189 20070 204426 734214
NPD 12* 74001 5415 11471 14699 734214
NPD 31* 224925 18201 3980 ERROR1 1718
AVG 139960 13626 42077 1715232

1 Error during execution after 221 seconds
2 Excluding Errors
Table 3.4: Results for NPD queries from [59] (scale 100-Times in ms)

to be much better. For example, in their reported times, timeouts of 20 minutes occurred
in every setting, and the average execution time for the JUCQ approach was 160 seconds
for the 3 atoms query set, whereas in our experiments the corresponding time is only 30.5
seconds. These differences can possibly be attributed to different versions of the Post-
greSQL database (they used version 9.6) and different tuning parameters of the database
engine. Other than that, our findings are consistent with theirs. Specifically, we observed
the largest improvement of JUCQ with respect to the default UCQ translation for queries
with more mappings and redundancy. The behavior of our approach is similar, exhibiting
large improvement for these queries in comparison to all other three approaches.

Finally, we use the same modified NPD queries NPD 6*, NPD 11*, NPD 12* and NPD 31*
as in [59], executed over the scale 100 of the NPD benchmark. This is different from [59],
where these queries were executed only over the original NPD dataset (scale 1). The
results are presented in Table 3.4. Again our approach outperforms all other approaches.
Also, regarding the JUCQ translation, the results here show a different situation in compar-
ison to the Wisconsin benchmark, as it exhibits the worst performance and also a timeout
occurs for query NPD 31*. The queries produced by the JUCQ approach seem in general
more complicated from the ones produced from the other three approaches.

3.7.3 Performance gain

In this section, we study the performance gain of our optimized method over the default
translation which is obtained by partial evaluation of logic programs and leads to genera-
tion of UCQs. Following the setup of [59], we use the Wisconsin benchmark, generating

D. Bilidas 72

Database Techniques for Ontology-based Data Access

Figure 3.9: Performance gain for varying number of mappings per predicate

Figure 3.10: Performance gain with respect to number of results

24 tables with 1 million tuples per table, executing 84 queries with 3 atoms each, with a
varying number of mappings used for each query (from 1 to 6) and we compute the per-
formance gain using the formula 1− (Opt. Time/Default Time). In Figure 3.9 we present
results for each number of mappings per predicate. The figure presents the average gain
for all the queries per case (1 to 6 mappings). As expected, when there is only 1 map-
ping per predicate, our method does not generate any temporary table, and as a result,
it performs roughly the same as the default translation. Starting from two predicates, our
methods begins to outperform the default translation, reaching an average gain of more
than 0.7.

In Figure 3.10, we present a scatter chart with the performance gain with respect to the
number of results for the 84 queries of the benchmark. As shown, the queries are parti-
tioned in visually distinct groups with respect to the number of their results. The effect of
query selectivity is evident in this chart, with our method becoming increasingly efficient
compared to the default, as the number of results grows larger, achieving a gain of 0.75
for the queries with about 1.7million results. On the contrary, for the first group of queries,
with low number of results, we cannot see a consistent behavior in comparison with the
default.

73 D. Bilidas

Database Techniques for Ontology-based Data Access

3.7.4 Evaluating the Duplicate Elimination Heuristic

In this section we present experimental justification for the use of our heuristic regarding
duplicate elimination. For this purpose, we have chosen four query fragments from the
LUBM benchmark and four from NPD, such that duplicate elimination is applicable on
them, as it was found during the previously described experiments. The experiments of
this section were carried out on a machine with an Intel Core i7-3770K processor with 8
cores and 16 GB of RAM running UBUNTU 16.04. As our intention was to examine how
our optimizations perform in different underlying systems, we used four different back-
ends: PostgreSQL (version 9.3), MySQL (version 5.7) and two of the most widely used
proprietary RDBMSs, which due to their license we will call System I and System X. All
systems were setup and tuned for usage in a machine with 16GB RAM.

Each query fragment consists of a single select-from-where subquery. The fragments
were chosen such that they have varying characteristics regarding the execution time, the
number of results and the DTR of the mapping assertion under consideration. In order to
test these queries with different selectivities, we applied to them extra filters. As LUBM100
contains information about exactly 100 universities, we used a filter on the university ID
attribute in direct correspondence to the percentage of selectivity, whereas for NPD we
used different filters for each fragment. We used filters that result in selectivity percentage
of 1, 5, 10, 30 and 60, resulting in a total of 40 queries per system. We executed each of
these 40 queries with and without duplicate elimination performed, resulting in a total of
240 runs for all systems. The results were obtained with warm caches.

In the upper part of Table 3.5 (one-time) we present the total execution times for these
queries per system, depending on the duplicate elimination strategy. The titles of the first
three columns are self explanatory. The fifth column gives the total time, if always the
best strategy were chosen for each system. The fourth column gives the best time, if for
each query and each selectivity, the best common strategy was chosen for all systems.
This way, the difference between the fourth and fifth column can give an indication of how
similar the behaviors of the systems are, whereas comparison of third and fourth columns
can give a measure of how well our heuristic takes advantage of this common behavior.

One can observe that the strategy of always performing duplicate elimination is much
better than never performing, and that even the strategy of always choosing the best
approach is not extremely better. The reason for this result is that for queries with low
selectivity, the execution time is much larger and dominates the total time. For these
queries, performing duplicate elimination is preferable and sometimes gives up to two
orders of magnitude better results. In order to simulate a querymix such that low selectivity
queries do not dominate execution time, we also computed results where we give very
selective queries a weight, such that queries with 1% selectivity have been executed 60
times, queries with 5% selectivity have been executed 12 times, etc. We present the total
execution time under this setting in the lower part of Table 3.5. As before, exact times and
queries are available at the same location 7.

7http://cgi.di.uoa.gr/~dbilid/experiments-obda/

D. Bilidas 74

http://cgi.di.uoa.gr/~dbilid/experiments-obda/

Database Techniques for Ontology-based Data Access

System Always Never Heuristic Best (common) Best(Separate)

on
e-
ti
me PostgreSQL 13345 168785 12854 12638 12353

MySQL 281598 - 281685 279522 279265
SystemI 10733 143616 9906 9693 9502
SystemX 20558 27479 8588 8803 7280

qu
er
y-
mi
x PostgreSQL 167116 618328 144984 146406 143191

MySQL 1129311 - 1066499 1056659 1056145
SystemI 135790 520408 102724 101984 99989
SystemX 167761 220408 93660 90557 83045

Table 3.5: Query Results for Different Duplicate Elimination Strategies

3.8 Related Work and Conclusions

Regarding related work, [59] constitutes the most relevant research, as it also deals with
cost-based translation. The authors extend the cover-based translation of [20], in order to
take into consideration the mappings to arbitrary relational schemas. The authors analyze
the database as a preprocessing step, in order to extract useful statistics, such as the car-
dinality of join results between queries in bodies of mapping assertions whose heads can
be joined. Using these statistics, the authors can obtain accurate selectivity estimations
for the produced queries. Unfortunately, despite the accurate selectivity estimations, the
cost model used to compare the different cover-based reformulations is not realistic, as
it assumes that all joins in a CQ are performed using hash joins, which is highly unlikely,
and also it is assumed that every input relation is completely scanned. Also, the join order
is not taken into consideration at all, something that can have a huge impact in the cost of
the query. As we have discussed, this is an inherent problem of a system that operates
outside the database engine. The difference with our method is that we use heuristics
that apply to different execution plans and database engines, and also, at each step of
our method, we compare highly relevant queries, where apart from the relations affected
by the combined mapping under consideration, all other input relations and joins between
them are the same, such that query selectivity plays the most important role in our deci-
sion. Also, we avoid running the query translation process multiple times, whereas in [59]
for each different query cover, the rewriting, unfolding and estimation process has to be
performed independently. Finally, the authors only consider mappings whose the body is
always a CQ over the relational schema.

Since version 3, the Ontop system has departed from the usage of partial evaluation of
logic programs for query unfolding. Specifically, it now relies on a query representation
which is called intermediate query [105], in order to represent both SPARQL and SQL
queries, facilitating the translation of SPARQL query operators like OPTIONAL [104] and
GROUP BY. Instead, in this work we concentrate only on CQs over the ontology. We have
experimentally shown that our method performs better on average for CQs in comparison
with the latest Ontop versions. We believe that it is an interesting topic for future research
to also apply cost-based methods to other operators present in SPARQL, possibly com-
bining our results with the line of research carried out in [105, 104].

75 D. Bilidas

Database Techniques for Ontology-based Data Access

[92] is also relevant, as it uses a cost model in order to materialize specific views prior to
query execution. This solution in many cases provides efficient query execution, but incurs
expensive preprocessing and also, using materialized views in the database increases the
database maintenance load, especially for frequently updated tables, as well as the the
database size. Also, it is not in line with the overall OBDA approach of providing the end
user with access to several underlying data sources, without the need to modify data,
and on a practical level, such access may not be even possible. In contrast, we compute
specific temporary views during query execution, when we estimate that this will result in
lower execution cost, without affecting the original database schema.

In [46] the authors adopt a logic which enables them to avoid mappings when using an
object-relational back-end and a combination of data completion and query rewriting. Dur-
ing this process primary keys are used for object identification, removing the need for du-
plicate elimination. Also, the authors use disjointness axioms in the ontology to further
remove the need of duplicate elimination between unions. [33] presents query rewriting
and optimization techniques that eliminate redundant atoms during the application of a
resolution based algorithm. To do so, they employ a method that takes into considera-
tion the tuple-generating dependencies (TGDs) of the ontological language they consider,
which unlike the DL-Lite languages, considers atoms of arbitrary arity, thus it’s conceptu-
ally closer to the relational model and does not need separate mappings, so a separate
unfolding phase is not needed.

We provided a complete cost-based method for unfolding an initial query over an ontology
into an SQL query with a number of temporary views ready to be executed over the ex-
ternal data source. According to the experimental evaluation, our method produces more
efficient queries compared with other statr of the art methods.

D. Bilidas 76

Database Techniques for Ontology-based Data Access

4. FEDERATED OBDA QUERY EXECUTION

In the previous chapter we focused on the case where the declarative mappings of the
OBDA setup access a single relational database. In this chapter we present research
related to the scenario where mappings contain references to multiple databases, or in
other words, to a database federation. Unlike the previous scenario, where the result of
the query translation can be directly executed to the database, in this case we need a
middleware module, that decomposes the result of query translation into different frag-
ments, such that each fragment contains references to data residing in a single database,
it imports the results of these fragments and combines them in order to produce the final
query result. Here, we present the development of a module that performs this task, as it
was carried out in the Optique project, by extending the Exareme system. The integration
of our module in the Optique platform is described in [54], whereas a detailed overview of
our system is presented in Chapter 5.4 of [49] and in Section VI-A of [51]. Experimental
evaluation in the Statoil Optique use-case is presented in Section 7.4 of [49], and also in
Section 6.1 of [104] in regards to the canonical table approach for identifying the same
resource in different databases.

4.1 Introduction

Data integration refers to the process of accessing information from multiple and possibly
heterogeneous data sources. In the context of OBDA this refers to scenarios where there
are multiple relational databases, each one having its own schema, and we have declar-
ative mappings that define virtual RDF data by accessing several of them. In contrast
with the scenario that we explored in the previous chapter, where we only had a single
relational database, here the OBDA system cannot issue the produced query obtained
from the query translation process directly to these databases. Instead, an intermediate
system is needed, which is responsible for decomposing the input query to different query
fragments, such that each fragment can be evaluated in a single database. Then the
intermediate results that correspond to the specific fragments must be combined and pro-
cessed to produce the final result. In certain cases it may be preferable to take advantage
of the processing capabilities of each endpoint, in order to ship fragments of the query
for execution there and only import back an intermediate result, instead of the detailed
data. Of course, such a decision should be cost-based. For instance a simple policy of
sending the largest possible fragment to each end-point is often sub-optimal. Systems
that accomplish these tasks are known as mediators, whereas the underlying database
systems are known as endpoints.

In this chapter we present the development of a mediator system for OBDA. Our system
was developed in the context of Optique project and it is based on the Exareme System,
an elastic execution environment for complex data workflows on the cloud. These data
workflows incorporate user computations in the form of User-Defined Functions (UDFs).
Several extensions have been implemented in order for the system to be able to cope with

77 D. Bilidas

Database Techniques for Ontology-based Data Access

the demanding requirements of the federated OBDA scenario, whereas at the same time
preserving its massively parallel processing capabilities:

(i) its optimizer has been re-designed in order to take into consideration common subex-
pressions coming from different parts of a complex query;

(ii) special data transfer operators have been implemented in order to be able to import
data from endpoints;

(iii) a federated analyzer module has been implemented, which based on theOBDAmap-
pings, gathers statistics about the external data;

(iv) pushing data processing to endpoints as a post-optimization step is considered;
(v) caching and reuse of intermediate results can be enabled to expedite query process-

ing.

We start this chapter by providing background information regarding the Optique platform
and the Exareme system (Section 4.2). Then we present an overview of the extensions
made in Exareme in order to become an OBDA mediator (Section 4.3. After that we
present a more detailed description of the developed optimizer (Section 4.4) and we finally
present experimental evaluation (Section 4.5).

4.2 Background

In this section we give background information about the Optique platform and its de-
ployment in the Statoil use-case, the Exareme system (formerly known as ADP), and the
integration of these two components.

4.2.1 The Optique Platform

The Optique European project 1 [50] provides an end-to-end solution for scalable access
to Big Data integration, where end users formulate queries based on a familiar conceptu-
alization of the underlying domain. From the users’ queries the Optique platform automat-
ically generates appropriate queries over the underlying integrated data, optimizes and
executes them on the Cloud. The efficient execution of complex queries posed by end
users is an important and challenging task. The distributed query processing engine of
the Optique platform (Exareme) aims at providing a scalable solution for query execution
in the Cloud, and should cope with heterogeneity of data sources as well as with temporal
and streaming data.

In Figure 4.1 we present the architecture of the Optique OBDA approach. The core el-
ements of the architecture are an ontology, which describes the application domain in
terms of user-oriented vocabulary of classes (usually referred as concepts) and relation-
ships between them (usually referred as roles), and a set of mappings, which relates the
terms in the ontology and the schema of the underlying data source. End-users formulate

1http://www.optique-project.eu

D. Bilidas 78

http://www.optique-project.eu

Database Techniques for Ontology-based Data Access

Figure 4.1: The general architecture of the Optique OBDA system
queries using the terms defined by the ontology, which should be intuitive and correspond
to their view of the domain, and thus, they are not required to understand the data source
schemata. The main components of the Optique’s architecture are

• the Query Formulation component that allows end users to pose queries to the sys-
tem,

• the Ontology and Mapping Management component that allows for bootstrapping of
ontologies and mappings during the installation of the system and for their subse-
quent maintenance,

• the Query Transformation component that rewrites users’ queries into queries over
the underlying data sources,

• the Distributed Query Optimisation and Processing component that optimises and
executes the queries produced by the Query Transformation component.

All the components will communicate through agreed APIs.

In order for the Optique OBDA solution to be practical, it is crucial that the output of the
query rewriting process can be evaluated effectively and efficiently against the integrated
data sources of possibly various types, including temporal data and data streams. This
efficiency for Big Data scenarios is not an option – it is a necessity. We plan to achieve the
efficiency by both massive parallelism, i.e., running queries with the maximum amount of
parallelism at each stage of execution, and elasticity, i.e., by allowing a flexibility to execute
the same query with the use of resources that depends on the the resource availability for
this particular query, and the execution time goals. The role of the Distributed Query
Optimisation and Processing component is to provide this functionality.

An important motivation for the Optique project are two demanding use cases that give
to the project the necessary test-bed. The first one is provided by Siemens 2 and encom-

2http://www.siemens.com

79 D. Bilidas

http://www.siemens.com

Database Techniques for Ontology-based Data Access

passes several terabytes of temporal data coming from sensors, with an increase rate of
about 30 gigabytes per day. The users need to query these data in combination with many
gigabytes of other relational data that describe events. The second use case is provided
by Statoil, a Norwegian state-owned multinational energy company, which recently has
changed its name into Equinor 3 and concerns more than one petabyte of geological data.
The data are stored in multiple databases which have different schemata and the user has
to access many of them in order to get results for a single query. In general, in the oil and
gas industry IT-experts spend 30–70% of their time gathering and assessing the quality
of data [28]. This is clearly very expensive in terms of both time and money. The Optique
project provides solutions that reduce the cost of data access dramatically. A bigger goal
of the project is to provide a platform with a generic architecture that can be easily adapted
to any domain that requires scalable data access and efficient query execution for OBDA
solutions.

4.2.2 The Exareme System

The distributed query execution engine of Optique is based on the Exareme (formely
known as Athena Distributed Processing-ADP) [101], a system for complex dataflow pro-
cessing in the cloud. Exareme has been developed and used successfully in several Eu-
ropean projects. The initial ideas came from Diligent4. Then Exareme was adapted and
used in project Health-e-Child as a Medical Query Processing Engine. Subsequently, it
was refined to support more execution environments, more operators, and a more query
processing and optimization algorithms. Exareme has been used successfully at the Uni-
versity of Athens for large scale distributed sorting algorithms, large scale database pro-
cessing, and also for distributed data mining problems.

The general architecture of the distributed query answering component within the Optique
platform is shown in Figure 4.2. The system utilizes state-of-the-art database techniques:
(i) a declarative query language based on data flows, (ii) the use of sophisticated optimiza-
tion techniques for executing queries efficiently, (iii) operator extensibility to bring domain
specific computations into the database processing, and (iv) execution platform indepen-
dence to insulate applications from the idiosyncrasies of the execution environments, such
as local clusters, private clouds, or public clouds.

The query is received through the gateway using JDBC API (Java Database Connectiv-
ity). This communication mainly involves interaction with the Query Transformation com-
ponent. The Master node is responsible for initialization and coordination of the process.
The Optimization Engine produces the execution plan for the query using techniques de-
scribed in [55]. Next, the execution plan is given to the Execution Engine which is re-
sponsible for reserving the necessary resources, sending the operators of the graph to
the appropriate workers, and monitor the execution.

The system uses two different communication channels between the different components
3https://www.equinor.com/
4http://diligent.ercim.eu/

D. Bilidas 80

https://www.equinor.com/

Database Techniques for Ontology-based Data Access

Exareme

Figure 4.2: General architecture of the Exareme component within the Optique System

of the system. Data from the relational data sources, streams, and federated sources
is exchanged between the workers using lightweight TCP connections and compression
for high throughput. All the other communications (e.g., signals denoting that a node
is connected, execution is finished, etc.), is done through a peer-to-peer network (P2P
Net). For the time being, this network is a simple master-slaves using Java-RMI (Remote
Method Invocation).

4.2.2.1 Language and Optimization:

The queries are expressed in SQL. Queries are issued to the system through the gate-
way. The SQL query is transformed to a data flow language allowing complex graphs with
operators as nodes and with edges representing producer-consumer relationships. The
first level of optimization is planning. The result of this phase is an SQL query script. We
enhanced SQL by adding the table partition as a first class citizen of the language. A table
partition is defined as a set of tuples having a particular property (e.g., the value of a hash

81 D. Bilidas

Database Techniques for Ontology-based Data Access

function applied on one column is the same for all the tuples in the same partition). A table
is defined as a set of partitions. The optimizer produces an execution plan in the form of
a directed acyclic graph (DAG), with all the information needed to execute the query. The
following query is an example.

DISTRIBUTED CREATE TABLE lineitem_large TO 10 ON l_orderkey AS
SELECT * FROM lineitem WHERE l_quantity = 20

The query creates 10 partitions of a table with name lineitem_large with rows based on a
selection condition. The partitioning is based on the column l_orderkey.

4.2.2.2 Execution Engine:

Exareme relies on an asynchronous execution engine. As soon as a worker node com-
pletes one job, it is sending a corresponding signal to the execution engine. The exe-
cution engine uses an asynchronous event based execution manager, which records the
jobs that have been executed and assigns new jobs when all the prerequisite jobs have
finished.

4.2.2.3 Worker Pool:

The resources needed to execute the queries (machines, network, etc.) are reserved or
allocated automatically. Those resources are wrapped into containers. Containers are
used to abstract from the details of a physical machine in a cluster or a virtual machine
in a cloud. Workers run queries using a python wrapper of SQLite 5. This part of the
system, which is available 6, can also be used as a standalone single node DB. Queries
are expressed in a declarative language which is an extension of SQL. This language
facilitates considerably the use of user-defined functions (UDFs). UDFs are written in
Python. The system supports row, aggregate, and virtual table functions.

4.2.2.4 Data / Stream Connector:

Data Connector and Stream Connector are responsible for handling and dispatching the
relational and stream data through the network respectively. These modules are used
when the system receives a request for collecting the results of executed queries. Stream
Connector uses an asynchronous stream event listener to be notified of incoming stream
data, whereas Data Connector utilizes a table transfer scheduler to receive partitions of
relational tables from the worker nodes.

5http://www.sqlite.org
6https://code.google.com/p/madis/

D. Bilidas 82

http://www.sqlite.org
https://code.google.com/p/madis/

Database Techniques for Ontology-based Data Access

4.2.2.5 Data Import:

The system provides the possibility to import data from several heterogenous sources.
These data can be of many different types, including relational data, data in file formats
like comma-separated values files or XML and streams. When the data is in the form
of streams, the procedure is initiated through the Stream API in the Exareme Gateway,
otherwise the JDBC API is used. In the first case, Master Node employs one or more
Optimization Engines which produce a plan defining which worker nodes should be re-
ceiving each data stream. In the second case, the Optimization Engines also define how
the data should be partitioned (number of partitions, partitioning column, etc.) and where
each partition should be stored. The Master Node is notified when the execution plan is
ready and then it employs one or more Execution Engines.

4.2.2.6 Query Execution:

In a similar manner, when Exareme Gateway receives a query, one or more Optimization
Engines produce an execution plan which contains the resulted sequence of operators and
the data partition upon which they should be applied. The Optimization Engines report
back to the Master Node which then utilizes the Execution Engines who communicate
with the Worker Nodes to execute the query. In the case of federated data, some Worker
Nodes need to communicate with external databases. They ask queries and get back
their results which, depending on the plan, need to be combined with the data that they
have locally.

When the execution of the query has finished, the Master Node is notified and through
the Gateway it can send a message to the external components. The results stay in the
Worker Nodes, because the volume of data in the results may be prohibitive for them to
be transferred in a single node. When an external component want to access the results,
then it must do so by sending an extra request. When receiving such a request, the Master
Node uses the Data Connector to collect the results or apply to them some aggregation
functions (for example sum, average, etc.).

4.3 Overview

In this section we give an overview of the development of the OBDA mediator using the
Exareme engine, considering as input query a query that has the form of the unfolded
query produced by the default translation process of Ontop, as described in the previous
chapter.

83 D. Bilidas

Database Techniques for Ontology-based Data Access

4.3.0.1 Federated Analyzer

Since the Exareme optimizer is cost-based, the first step in order to be able to make
cost estimations for different federated query plans, is to analyze the columns of base
tables residing in different endpoints. This is an offline process taking place before query
answering. Initially, the OBDAmappings are parsed and a list of all base tables referenced
there is obtained. This way Exareme avoids gathering statistics for tables that cannot show
up in an unfolded SQL query. This number can be very large for the databases considered
in the Statoil environment and this simple optimization saves a lot of computation. For
each column of the obtained tables Exareme sends to the corresponding endpoint queries
that ask for the different values, the minimum and maximum value and the column size.
This way we can obtain basic statistical measures without having to resort to the often
unfeasible task of importing all the data.

4.3.0.2 Common Subexpression Identification

Common subexpression identification refers to the process of identifying the same query
fragment in different queries, or in different parts of the same query, and the equally im-
portant task of deciding if the specific subexpressions should be computed only once and
reused or not. This last decision is not obvious, as reusing a subexpression includes the
cost of materializing the intermediate result to disk, whereas if the tuples of the subex-
pression, as they are produced, can be pipelined to the next query operator, it may be
preferable to compute it from the beginning. The decision becomes even more compli-
cated, as when many common subexpressions exist, the choice for each one possibly
affects the cost regarding the choice for the rest. In a parallel environment, the decision
to reuse can be even less preferable, as independent query fragments can be computed
simultaneously.

Using state of the art techniques in common subexpression identification proved to be
crucial in evaluation of OBDA queries, as these contain highly correlated union sub-
queries. Consider for example the query shown in Figure 4.3. It consists of two differ-
ent unions and accesses three different endpoints. Note that the join between tables
SLEGGE_EPI.WELLBORE and SLEGGE.STRATIGRAPHIC_ZONE is a common subex-
pression for these two unions. Exareme includes a Volcano-style optimizer and models
the different possible query plans using an AND-OR graph. The optimizer implements a
greedy heuristic that was proposed in [87] in order to take the aforementioned decisions.

4.3.0.3 Pushing processing to endpoints

In a data integration setting where each endpoint is an RDBMS, a mediator can take
advantage of the corresponding processing capabilities in order to “push” a query frag-
ment for execution in the endpoint and obtain an intermediate result. One could think
of a process of query decomposition where maximal fragments that can be executed

D. Bilidas 84

Database Techniques for Ontology-based Data Access

Figure 4.3: Query Plan.

in each endpoint are identified and sent for execution. Unfortunately, this approach of-
ten leads to inefficient execution plans, as very large intermediate result, that otherwise
could be avoided, may be produced. Consider again the example from Figure 4.3. The
join between SLEGGE_EPI.WELLBORE and SLEGGE.STRATIGRAPHIC_ZONE can be
pushed to the EPDS endpoint, but if this join leads to a very large intermediate result,
then maybe a better query plan would be to import each table separately and use a
different join order, by first joining one of the tables with a result coming from another
endpoint. The same situation arises for the joins between tables COREDB.SITE and
COREDB.SITE_TYPE. For this reason, we examine opportunities for pushing process-
ing towards the endpojnts as a post-optimization step. This is done after an optimized
plan, possibly with common subexpression re-usage, has been obtained. In such a plan,
we consider pushing fragments that only touch tables from a single endpoint, as long as
there is no sub-plan marked as materialized for re-usage. If no plan with more than a sin-
gle descendant table is found to be beneficial to be pushed to an endpoint, then separate
requests for each base table are sent. These requests contain only possible filters and
projections for the corresponding base table.

4.3.0.4 Caching Intermediate Results

Caching of intermediate results refers to the process of keeping results coming from eval-
uation of a query for future reuse. These results correspond to query fragments imported
from endpoints, or results of processing that takes place inside Exareme, for example
intermediate results chosen to be materialized from the common subexpression identifi-
cation optimization or final results of a query. As a subsequent, possibly different query
is coming for evaluation, the optimizer should choose a plan, by taking into consideration
existing fragments in the cache, and estimate the cost of plans that reuse such fragments
accordingly. In the context of data integration this can lead to important savings, as the
need of data import can be completely avoided. An eviction policy that guarantees data

85 D. Bilidas

Database Techniques for Ontology-based Data Access

freshness can be applied, for example by specific timeouts. Also, it is important to provide
the user with the option to enable or disable use of the cache on a per query basis.

4.4 Query Optimization in the OBDA Mediator

Query optimization in the Exareme mediator system is based on transformation-based
optimizers, that also take into consideration common subexpression in different parts of
the query and existence of intermediate results in cache.

In the next section we first describe the main ideas behind transformation-based opti-
mization and the common subexpression identification procedure used. In order to apply
these ideas to a distributed system like Exareme, in Section 4.4.2 we describe the re-
quired incorporation of repartitioning for distributed processing and the search process.
In Section 4.4.5 we discuss ways to improve common subexpression identification for the
queries produced by Ontop. Then we describe the main ideas of adding the consideration
for federated execution into the optimization phase.

4.4.1 Transformation-Based Optimization

Transformation-based or rule-based optimizers start from an initial query plan and apply
possible transformations in order to examine alternative plans and keep the one with the
lower cost. This process is sometimes called top-down optimization, in contrast to clas-
sic System-R [25] like bottom-up optimization, which starts from the best access plans for
each base relation and proceeds to combine the best of them in order to build the complete
query plan. The work of [35] and later of [34] present an efficient way for exploring the
search space of alternative plans using memoization. Each logical expression is kept in a
hash table. The memo structure keeps the best plan for each equivalent class of expres-
sions. During the application of the transformation rules, if a new expression is generated,
then a look-up to the memo structure is made for its hash value and if the expression is
there the optimizer avoids redundant work of re-optimizing this expression. The optimizer
takes also into consideration physical properties of the relations; for each equivalent class
it also keeps plans that result in a relation with a desirable physical property, e.g. sorting
or partitioning in a specific column. These properties can be the result of the algorithm
that was used for the implementation of the operator, or from a separate algorithm that
was used to ensure the presence of the desirable property. In the latter case the algorithm
is called an enforcer. Depending on the transformation rules that are examined, one can
generate a specific set of plans, e.g. only left-deep joins or bushy joins [75].

We will give an example using the Logical Query DAG representation that is also used
in [87] and is known as AND-OR DAG. In this representation, more than one query plan
is plotted in the same DAG using two different kind of nodes, the OR-nodes, which refer
to base or intermediate relations, and the AND-nodes, which refer to operators. Each
OR-node can have many AND-nodes as children. Each of these operators will result in

D. Bilidas 86

Database Techniques for Ontology-based Data Access

B.name = C.name

T3 C

A.id = B.id

A B

T1

PROJECT(A.id as id)

T2

Figure 4.4: Simple Join Example

the same logical relation: their common parent. On the other hand, each AND-node has
as children some OR-nodes, whose number equals to the cardinality of the operator. We
will use rectangles to draw the OR-nodes and ellipses to draw the AND-nodes. Figure 4.4
presents an AND-OR DAG that holds a single query plan, whereas the DAG of Figure 4.5
holds two different query plans. The DAG of the second figure has been produced from
the first one by applying the right join associativity operator: (A ⋊⋉id B) ⋊⋉name C → A ⋊⋉id

(B ⋊⋉name C).

When a plan is examined, except from the application of the possible logical transforma-
tions, different implementations are also applied for each operator and different enforcers
that create a specific physical property for the result. This causes the search space to
become larger. Apart from the memoization of best plans for each equivalent class, the
Volcano algorithm also employs a branch and bound style pruning by keeping the cost
of the best solution found so far and discarding paths that will lead to a more expensive
solution. In order for this pruning to be efficient, it is important that a good solution is found
as early as possible and also to choose to expand each time the most prominent amongst
all options. These choices heavily depend on the system and the execution environment.

Regarding multi-query optimization and common subexpression identification, [87, 109]
use transformation-based optimizers to represent all queries in the same query tree and
identify the same logical expressions between different queries. This method offers so-
lutions to the problem of identifying possible common subexpressions as well as to the
problem of deciding which of them it would be beneficial to materialize. Apart from that,
these methods inherit the advantage of extensibility from the transformation-based op-
timizers. For each logical expression, a hash value is generated based on its operator
and the input expressions. This way, equivalent logical expressions have the same hash
value. During the application of the logical transformations, nodes that will be deduced as

87 D. Bilidas

Database Techniques for Ontology-based Data Access

T2

A.id = B.idB.name = C.name

BC

T3

A

T4

A.id = B.id

T1

PROJECT(A.id as id)

B.name = C.name

Figure 4.5: Expanded DAG

equivalent will be unified, which may lead to further unification of their ancestors.

Regarding the search process, three different methods are presented in [87]. The first one
is called Volcano-SH and optimizes the DAG using the normal Volcano search, without
taking into consideration common subexpressions that can be reused. After an optimal
plan (ignoring common subexpressions) has been found, the algorithm examines what
nodes of the plan are beneficial to materialize. This is not an easy decision, as the cost of
each node depends on whether descendant nodes have been chosen for materialization
and the number of uses of each node depends on whether its ancestor nodes will be
materialized. As examining all the possibilities is exponential on the number of nodes,
Volcano-SH traverses the DAG bottom-up and uses an underestimation in the number of
uses for every node, such that if a decision to materialize the given node will be taken, it
is certain that this will lead to a cheaper plan. On the other hand, the algorithm may also
decide not to materialize nodes that should have been chosen.

Even if the optimal set of nodes would have been chosen, Volcano-SH still would not nec-
essarily produce a globally optimal plan, as it only examines reuse possibilities between
the independent optimal plans for each query. The second method, Volcano-RU tries to
solve this problem, by providing information about what should be reused from the al-
ready optimized queries during the search process. In order to achieve this, during the
optimization process, the algorithm keeps track of how many of the previous queries (best
plan for each query) are using each node in the graph and whether, given the reuse and
materialization costs, each node is worth to get materialized given that it is used once
more. If it is worth, then the node is considered materialized and its cost for the currently
optimized query is the reuse cost. After this process, the Volcano-SH is executed on the
final plan to make the final decisions for the materialization. Again this method does not
guarantee that the globally optimal plan will be found, as the resulting plan depends on the

D. Bilidas 88

Database Techniques for Ontology-based Data Access

order of the queries. Even if we try all the possible orders, something that it is intractable,
still the final choice will be made from the Volcano-SH and will not be necessarily optimal.
Apart from that, for some query we may have the case that a node that in the end will be
materialized, will not be considered as such, thus leading in a suboptimal plan.

Finally, the third method is a greedy algorithm, which tries to find the best set of nodes that
should be materialized. For each set, it computes the best plan given that the nodes are
considered materialized from the beginning. The total cost for this set is the sum of the
plan cost and the materialization costs. The method starts with an empty set of material-
ized nodes and a set of sharable nodes, i.e. nodes that can be shared between different
queries in some global plan. The algorithm seeks to build a good set of materialized nodes
by trying to add one node each time from the set of sharable nodes and selecting each
time the one that gives the larger gain. The algorithm stops when adding any of the re-
maining sharable nodes to the materialized set does not lead to cost reduction. Clearly
the greedy algorithm invokes the search process many times. The authors propose some
optimizations in the algorithm in order to share work between different invocations of the
search process and also in order to completely avoid the search process for some nodes,
however, according to the experiments of [87, 109], the optimization time with this algo-
rithm is up to an order of magnitude larger than that of Volcano-SH and Volcano-RU. Apart
from that, although in most cases it finds a better plan, there is still no guarantee that this
is the globally optimal plan, as at each step it chooses to materialize a single node that will
give the larger improvement, despite the fact that the combination of two or more other
nodes could give a better result.

4.4.2 Incorporating Partitioning Information in the Search and Pruning

In this section we discuss extensions that are required in order to apply the DAG represen-
tation in a distributed system like Exareme. We describe the incorporation of partitioning
information in the DAG and discuss steps that are taken during the search process, which
help reduce the optimization overhead. We also describe the system properties and the
assumptions that we are making during the execution, as well as the modifications in the
multi-query optimization algorithm that emanate from these properties.

We assume that each table is either partitioned to a fixed number of partitions, or is repli-
cated in each node of Exareme as a whole. Using this partitioning scheme data shuffling
can be avoided for joins between replicated tables, which can be performed on a single
node, or joins between one partitioned table and one replicated table, which can be per-
formed as broadcast joins. The first option is better for large tables, whereas the second
may be proved useful for small ones.

As intermediate results that are transferred through the network are always written to disk,
we take as granted that these are always materialized, and we avoid examining if it would
be profitable or not to do so. This decision also reduces the search space, as we have
to decide only about the input results of operators that can have them readily available
locally. Query fragments that are sent for execution in the nodes of Exareme can be

89 D. Bilidas

Database Techniques for Ontology-based Data Access

B.id = C.id

T1 T3

T7

PROJECT(A.id as id)

T6

C

A.id = B.id

T5

A

B.id = C.idC.name = D.name

A.id = B.id

B

B.id = C.id

B.id = C.id

C.name = D.name

T2

C.name = D.name

D

T4

A.id = B.id

Figure 4.6: Pruned Path in the DAG

of arbitrary form, as long as the decomposer has ensured that they can be executed in
parallel, without data transfer.

In order to get the cost for each operator, the decomposer asks the cost estimator, which
gives estimations based on statistics for each column of each table. Apart from the cost,
the decomposer also gets an estimation about the size of each intermediate relation.
SELECT A.id
FROM A, B, C, D
WHERE A.id=B.id AND B.id=C.id AND C.name=D.name

Listing 4.1: SQL query

Regarding the transformations, we want to examine bushy join plans because they can
increase the parallelism of the execution plan, but at the same time we want to exclude
cartesian products, as it is very unlikely that they can lead to a good execution plan, and
their incorporation leads to a significant growth in the number of plans that needs to be
considered. The join transformations that we use during the logical expansion of the DAG
are the left join associativity and join commutativity, avoiding cartesian products. In Fig-
ure 4.6 we can see the DAG that corresponds to the Query 4.1, after the application of the
join transformations. We do not show the commutativity, where for each join operation in
the figure, there should also be a join operation with reverse operand order. We also use
a transformation for pushing projections inside the joins that is not shown in the figure.

Regarding the common subexpression identification, we assume that the process is car-
ried out in the spirit of Volcano-SH, that is each query is optimized in turn, knowing what

D. Bilidas 90

Database Techniques for Ontology-based Data Access

A.id
hash partitioning

A

broadcastbroadcast

B

B
partitioned on id

B.id
hash partitioning

A
partitioned on id

A
replicated

A.id = B.id
repartition join

A.id = B.id
left broadcast join

T2

PROJECT(A.id as id)

T1

A.id = B.id
right broadcast join

B
replicated

Figure 4.7: Adding Partitioning Information

previous queries have chosen for materialization and computing the cost of each node
accordingly. After the optimal plan has been found for each query, the nodes in this plan
which are the result of a repartition or broadcast operator are marked as materialized.
This is based on the previously explained assumption, that data transferred through the
network are always written to the disk of the destination node. In order to also take into
consideration results that are processed locally by the nodes of Exareme and decide about
their materialization status, we can again use the Volcano-SH decisions in order to avoid
examining all the choices, the number of which is exponential in the number of nodes.

We treat partitioning as a physical property [35]. In [108] the authors present the incor-
poration of partitioning into a system for massive data analysis, which also uses a trans-
formation based optimizer. The authors propose a single logical data exchange operator
which covers all kinds of data transfer and can have several physical implementations.
Repartition and broadcast operators could be such physical implementations. The authors
reason about the combination of partitioning with other structural properties (grouping and
sorting). Nevertheless, the authors, although they stress the need for heuristics in order to
deal with the large number of alternatives, do not give details about the search process. In
what follows we focus on the repartition of data and leave aside other structural properties,
but as shown in [108], they can be integrated to the model.

The authors of [95] use a similar method as used in [109] and examine the problem of
finding partitioning schemes that will result in a table that can act as input for different
operators. This problem can arise when operators have as requirement the input table
to be partitioned in more than one column, e.g., a group by operator on two columns. In
order to achieve this, the authors propose a second optimization phase, after the normal
optimization has finished.

For each AND node that needs its input partitioned, we examine two different enforcers,
one that repartitions the input table on the specified column and one that replicates the

91 D. Bilidas

Database Techniques for Ontology-based Data Access

input table to all the nodes of Exareme. These correspond to physical implementations
of the data exchange operator. Other implementations can be considered as well. With
respect to the partitioning scheme of the input tables, we distinguish between three kinds of
joins. The repartition join requires both input tables to be partitioned the same way (same
hash function and same number of partitions) on the joining columns. The left broadcast
join requires the left input table to be replicated to all the nodes of the system; it does not
impose any requirements to the right input table, that is, the right input table can also be
replicated, or it can be partitioned in any way and in any columns. The right broadcast
join imposes exactly the opposite requirement. These three kinds of joins are treated as
different physical implementations; for each join in the logical DAG all three options must
be examined in order to explore the complete search space. Local join implementations
can be added as a second level of physical implementation for each of the three joins.

Figure 4.7 shows an example of the resulting DAG for the query “Select A.id from A, B
where A.id=B.id”, after the addition of the partitioning information. Note that the bottom
nodes for tables A and B denote the tables with any valid partitioning scheme, that is
partitioned on any of their columns or replicated. The same holds for tables T1 and T2.
In the example, T1 can be partitioned on column A.id and also partitioned on B.id, if the
path followed comes from its first child. It can be partitioned on whatever column table B
is (or replicated if B is also replicated) if the path comes from its second child, or it can be
partitioned on whatever column table A is (or replicated if A is also replicated) if the path
comes from its third child.

An implementation detail that will be proved useful is that during the expansion of the DAG
we keep information in the form of column equivalence classes for each path, as it has
been described in [108]. Along a path we put in the same equivalence class columns that
it has been deduced that they contain the same values for all the tuples in the specific
path. This information is coming from the join conditions of the path. Also, selections
can lead to all the columns in a class to be equal to a constant, and we can further take
advantage of functional dependencies to add more columns in a class [108]. After each
join, in order to get the partition history of the resulted node, the partition histories of the
input nodes needs to be merged with respect to the newly acquired information that the
columns that take part in the join condition now contain equal values.

Furthermore, for each path we also keep information about the repartition history. This
information is related to the column equivalence classes. As soon as it becomes certain
that a repartition operator on a specific column is contained in the path, the corresponding
equivalence class is annotated as participating in the repartition history. The repartition
history is cleared if we meet two consecutive nodes such that commutativity does not hold
between them. This information will help us to prune the search space as we will describe
in the next section.

Representing partitioning information in this way creates two problems. The first one is
that on some paths wemay end upwith redundant repartition or broadcast operators. Con-
sider for example that T1 in Figure 4.7 has as parent a repartition join operator A.id=C.id
which requests T1’s result to be partitioned on A.id. During the addition of partitioning
information, a repartition operator on A.id will be added above T1 and a new OR node T1

D. Bilidas 92

Database Techniques for Ontology-based Data Access

(partitioned on A.id) will be added between the new repartition operator and the operator
A.id=C.id. The newly created operator is redundant for the path that passes through the
first child of T1, it is not redundant for the path that pass through the second child of T1
and it may or may not be redundant for the path that pass through the third child of T1. In
this last case it is redundant only if the bottom A node is partitioned on A.id. We can be
sure that the operator is not needed once we meet the next repartition operator and it is
on a column that does not belong to the same equivalence class. In order to deal with this
problem we must examine for every child of T1 if i) it guarantees that its result will be parti-
tioned in the required equivalent class, ii) it guarantees that its result will not be partitioned
in the required equivalent class, and iii) it does not guarantee any of the previous two con-
ditions. In the first case we don’t have to insert the repartition operator, in the second case
we have and in the third case we can push the repartition requirement to the child of the
corresponding operator, as in [108]. Nevertheless, in the last case, this is not always the
optimal solution, as it may add the repartition operator later in the tree, whereas adding
the operator above T1 could be cheaper. The decision must be taken by reckoning the
costs of possible choices into it. In the next section we present the search algorithm that
settles this problem, integrating the solution into the branch and bound pruning strategy
of the algorithm.

The second problem has to do with the fact that when an operator does not have any re-
quirement about the partitioning of an input table, it will only examine the possibilities that
are already existing in the plan. That is, the ways that this input tables can be partitioned
according to its input tables if it is an intermediate table, or the ways it has been parti-
tioned during the import to the system if it is a base table. Consider the right broadcast
join operator in the example. It will consider table A partitioned only as it was imported
into Exareme, even though in some other paths it can be partitioned on different columns
or replicated. It is not a problem if an optimization does not take into consideration mate-
rialized results, since it is always cheaper to choose the table as it is already partitioned
instead of applying an extra repartition operator, but if there are some other options mate-
rialized, maybe it is preferable to use one of these. To deal with this problem we can keep
the information about which materialized nodes correspond to each logical node and and
when no specific partition requirement is present, examine all of them.

4.4.3 Adapting Volcano-style Search in Exareme

As we mentioned in Section 4.4.1, Volcano-style optimizers depend on the developer to
take into consideration the system particularities and use the appropriate heuristics in
order to facilitate the search process. The pruning occurs either based on the cost in
a branch and bound fashion or based directly on some heuristic in order to completely
avoid specific paths. In the first case, it is also important to use some heuristic in order
to reach quickly a complete solution with low cost, in order to prune as much as possible
the remaining paths. Furthermore, a time limit could be set for each invocation of the
search algorithm. After the specific time limit the algorithm returns the best solution that
has been found up to that point. Again it is important that the most prominent solutions

93 D. Bilidas

Database Techniques for Ontology-based Data Access

Algorithm 3: getBestPlan
input : e: A Node in the expanded Logical DAG, c: The column that the result must be partitioned,

limit: Cost limit, repCost: enforcer cost from parent
output: The best plan

1 Plan result;
2 if e.isMaterialized then
3 result=new Plan(new Path(), getReuseCostOf(e));
4 else if memo contains e partitioned on c with repartition cost less than repCost then
5 result=memo.getPlanFor(e, c);
6 else
7 result=searchForBestPlan(e, c, limit, repCost);
8 end
9 if result!=null AND result.getCost()<limit then
10 return result;
11 else
12 return null;
13 end

are examined within the specified limit.

Regarding the branch and bound pruning, in [94] it was proposed that apart from the cost
of the path that it has examined so far, we can also consider a lower bound based on an
estimation about the cost of the remaining of the path (or the actual cost, in case some of
the children are already computed), so that pruning would be more efficient. In [29], the
first case is referred as accumulated-cost bounding, whereas the second is referred as
predicted-cost bounding. The authors note that branch and bound, especially in the case
of accumulated-cost bounding where many cost computations may already have been
done before a decision to stop searching is taken, may have a counter-effect of deterio-
rating the search efficiency, as it comes in contrast with the nature of memoization. A path
may be searched many times, each time with a bigger budget, and if pruning is decided to
be done each time, then work is being repeated. In [32] a solution to this problem is given,
along with several other optimizations in the search process. Note that both [32] and [29]
consider that the search space has not been generated using transformations, but some
top down join enumeration method. Nevertheless, the search process is similar.

Regarding the cost estimation for each operator, as in all top down optimizers, we compute
it before the computation of the cost for its inputs. The rationale behind this is that the cost
of each operator depends on some properties of its input tables, independently of how
these tables have been created. In other words, we estimate the size of an intermediate
table and the histograms of its columns, without having to compute an estimation for its
total cost and explore the search space below it.

The outline of the search algorithm is shown in Algorithm 4. In this outline we only show
information regarding the basic accumulated-cost bounding that interacts with the reparti-
tion operator. Nevertheless, we also employ optimizations from [32] which are not shown
in the algorithm for clarity of presentation. The search algorithm is based on the origi-
nal Volcano search process [35] with several modifications regarding the incorporation of

D. Bilidas 94

Database Techniques for Ontology-based Data Access

Algorithm 4: searchForBestPlan
input : e:A Node in the expanded Logical DAG, c: The column that the result must be partitioned,

limit: Cost limit, repCost enforcer cost from parent
output: The best plan

1 Plan result=new Plan();
2 repartitionCost=getRepartitionCostFor(e, c);
3 foreach child o of e do
4 Plan e2Plan=new Plan();
5 opCost=getCostFor(o);
6 limit-=opCost;
7 foreach child e2 of o do
8 minRepCost=min(repCost, repartitionCost);
9 Column c2=getPartitionRequired(o, e2);
10 int c2RepCost=getRepartitionCost(e2, c2);
11 if o guarantees that its result is partitioned on Eq. Class of c then
12 e2Plan.append(getBestPlan(e2, c2, limit, c2RepCost));
13 else if o guarantees that its result is NOT partitioned on Eq. Class of c then
14 e2Plan.addToRepartitionHistory(c); /* at this point we can be sure that a

repartition operator will be added somewhere */
15 if repartitionCost<repCost then
16 addRepartitionNodeAbove(e, c);
17 limit-=repartitionCost;
18 end
19 e2Plan.append(getBestPlan(e2, c2, limit, c2RepCost));
20 else
21 e2Plan.append(getBestPlan(e2, c, limit, minRepCost));
22 if result is not ptned on c AND repartitionCost<repCost then
23 addRepartitionNodeAbove(e, c);
24 limit-=repartitionCost;
25 end
26 end
27 //the repartition op was not added during children calls;
28 if e2Plan is not partitioned on c2 then
29 addRepartitionNodeAbove(e2, c2);
30 limit-=c2RepCost;
31 end
32 int e2PlanCost=e2Plan.getCost();
33 if result is not ptned on c then
34 e2PlanCost+=minRepCost; /* add a penalty of minRepCost to cost of e2 */
35 end
36 limit-=e2PlanCost;
37 end
38 if e2PlanCost<result.getCost then
39 result=e2Plan;
40 memo.put(e, result, c, repCost);
41 end
42 if e.getParent is root node then
43 setNodesInPlanMaterialized(e2Plan);
44 end
45 return result;
46 end

95 D. Bilidas

Database Techniques for Ontology-based Data Access

partitioning. The algorithm is invoked from Algorithm 3 which examines if the best plan
for the input node has already been found or if the input node is materialized. If none of
these happens, then it calls Algorithm 4. The algorithm takes as input a node of the logical
DAG, a column c in which the node must be partitioned, which can be null if no specific
partitioning is required and a cost limit such that the plan that will be found must have a
cost less than the limit. If no such plan is found, the algorithm will return null. Furthermore,
the algorithm also takes as input a maximum repartition cost repCost. Its meaning is that
it should explicitly add a repartition operator that guarantees that the result will be parti-
tioned on c only if the cost for that operator is less than repCost. As a result, the algorithm
does not finally guarantee that its result will be partitioned on c. The check has to be done
from the point that we called the algorithm. At that point we know if finally the result was
partitioned as intended or not.

In each call of the algorithm, if the operator examined guarantees that the result will be
partitioned on c it does not add the repartition operator. If the operator examined guaran-
tees that the result will not be partitioned on c, then it only adds the repartition operator if
the cost for that is less than repCost, otherwise it returns the result supposing that a proper
repartition operator will be added at some time during the parent calls. Otherwise, if the
operator examined does not guarantee any of the two conditions, it makes a recursive call
using the minimum of repCost and the cost for repartition in the current call. Upon the re-
turn of that call it will examine if the result is finally partitioned on c. If not, as in the second
case it will add a repartition operator only if the cost for that is less than repCost. In the
last case, the partition requirement c2 is null, so the partition in c is retained. Regarding
the partition requirement in c2, if this is not null, after the recursive calls it is examined if
e2 that was returned satisfies this condition. If not, that is none of the children added the
repartition operator, it means that the cheapest repartition operator must be added at this
point.

Once the best plan has been found, we put it in the memo, along with the minRepCost.
This is needed, because the result is optimal only with respect to parent calls that have
repartition cost equal or greater than the current repCost for which the optimization took
place. This is because during the optimization it is possible that a repartition operator has
been added with a cost R, where R < repCost, but in a future call we cannot guarantee
that R is less than the next repartition cost. In this future call, the optimization needs to
be redone only if the returned plan is partitioned on c, otherwise we can be sure that no
repartition operator has been added. In order to prevent redundant optimization, we can
keep the actual repartition cost that was added at some point during recursive calls and
only reoptimize if the future repCost is less than that.

We also employ a technique that increases the chances that the first plans examined
are prominent, so that we provide quickly a low limit to the accumulated-cost bounding.
The decision has to do with first following at each OR node the paths that do not need a
repartitioning operator. At each step at which we must choose the next operator, if we can
choose an operator that we can be sure it can be executed without repartition, this would
be preferable. As a result, we first examine plans in which we can group more joins that
can be executed in parallel and are more prominent to provide good results. For example,

D. Bilidas 96

Database Techniques for Ontology-based Data Access

consider the expanded DAG that is shown in Figure 4.6, which corresponds to query 4.1
(for ease of presentation we have not applied transformation regarding the projection).
When we are in node T5, we know from the previous join that we will need the result to
be partitioned in B.id. So, we first choose to follow the path that guarantees that T5 will
be partitioned in B.id, which is the child that contains the join operator B.id = C.id.

The described heuristic is used in order to find good solutions as early as possible. We also
use another criterion in order to completely ignore a specific path that contains more than
one repartition operators for a given equivalence column class, as this can be derived from
the repartition histories of the nodes in the path. This second criterion is complementary to
the first one. The reasoning behind it has to do with the fact that we avoid plans that do not
group together operators that can be executed with the same partitioning, since we can
be sure there is another branch in the DAG which contains the specific operator grouped
together. Operators are grouped together with respect to the parallel execution, if there
is not a repartition nor a broadcast operator between them. In the example of Figure 4.6,
if we suppose that all tables are partitioned and not replicated, we will decide to mark as
redundant the path shown in red. Note that this decision can be taken at a point when
we can be sure that a repartition operator will be added, that is when we are meeting an
operator that guarantees that its result will not be partitioned in the desired column, even
if we don’t know exactly the point at which we will finally add it. This happens before the
exploration of the whole subtree below the specific operator. In the given example we can
take the decision before exploring the space below B.id = C.id.

We also use another criterion that stems from the assumption that it is always better to
partition large tables and replicate smaller ones. We set a repartition threshold below
which we do not examine repartitioning a table, and a broadcast threshold above which
we do not examine replicating a table. These two thresholds can be equal, that is we
examine exactly one option for each table, or the repartition threshold can be smaller than
the broadcast threshold, that is for tables with estimated size between the two thresh-
olds we examine all options. At each operator we examine if the input tables satisfy the
corresponding threshold condition with respect to the partitioning scheme required by the
operator. For example, if we have a left broadcast join and the estimated size of the left in-
put table is above the broadcast threshold, we discard the specific path and do not explore
the space below that operator.

4.4.4 Search with Materialized Results

When the optimal plan for a query has been found, we mark the nodes that occur after
a repartition or broadcast operator as materialized. In the next query we have to invoke
again the search process, with a new set of materialized nodes. As it is observed in [87],
we can take advantage of previous invocations and compute only the differences in the
costs for the nodes that are impacted by the differences in the set of materialized nodes. To
do that, we must recompute the cost for all the parents of each node whose materialization
status has changed. The authors of [87] present the incremental cost update algorithm
in order to avoid redundant computations, as we can reach a node from many different

97 D. Bilidas

Database Techniques for Ontology-based Data Access

paths. The algorithm keeps a priority heap of nodes that are sorted based on a topological
number that is computed for each node during the generation of the DAG, such that each
node always has a smaller number from every of each ancestors. Each time, the node
with the smallest number is extracted from the heap and its cost is computed. If the cost
has changed then the cost of the parent AND nodes is recomputed and parent OR nodes
are added to the heap. The process continues until the heap is empty.

In [87] the specific process takes place in the context of the greedy algorithm. But in our
case, we know the nodes that must be added in the materialized set even though we
proceed in the spirit of Volcano RU, that is we examine the queries in turn. This gives the
opportunity for one more optimization. Each time, we only need to examine nodes that are
used by the next query. To do that, we keep a list of nodes whose materialization status
has changed and the impact of this change has not been recomputed. This list is global for
all the invocations of the search algorithm. After the optimization has finished for a query,
the nodes that have chosen to be materialized, i.e., the nodes of the optimal plan that are
after a data transfer operator and are not materialized from previous queries, are added
to the list. For the next query, we remove from the list only the nodes that are accessed
by the specific query, as this information has been kept from the traversal described in
Section 4.4.2. The heap is initialized to contain only the specific nodes. Furthermore, we
do not examine at all the OR nodes that are already materialized.

4.4.5 Improving Common Subexpression Identification

In this section we present some optimizations that can increase the number of common
subexpressions that will be identified in queries that contain self-joins and unary filter-like
where conditions. These optimizations take place during the application of the logical
transformations and are independent of the physical layer and the execution environment
(distributed or centralized). The motivation came from the queries produced by ontop.

One of the characteristics of many queries that result from OBDA is the presence of self
joins. Let us consider an example query, taken from [58] and simplified for ease of pre-
sentation. Listing 4.2 presents a SPARQL query that asks for wellbores and the lengths
of their cores, where length is greater than 50 and its unit of measurement is meters. The
query is first rewritten with respect to some ontology. We will omit this process as it is
not relevant for our example and we will concentrate on the unfolding to SQL based on
some mappings to a database schema. The relevant mappings for our case are given in
Table 4.1

Based on these mappings, one of the unions of the resulting SQL query is shown in List-
ing 4.3. This query contains two self joins on the table core. Notice that these two self joins
could be avoided if the OBDA system had information that the combination of columns id
and core is unique for the table core. But assuming that we don’t have this information,
we have to evaluate the query as it is. First of all, in order to plot all queries in the same
AND-OR DAG, we have to assign some global aliases to the base tables. As the query
is parsed, we replace the local aliases with the global ones. If there is no global alias for

D. Bilidas 98

Database Techniques for Ontology-based Data Access

npdv : Wellbore(uri(id))←wellbore(id, name)

npdv : coreForWellbore(uri(id, coreNumber), uri(id))←wellbore(id, name),

core(id, coreNumber, coreLength, coreUom)

npdv : name(uri(name), uri(id))←wellbore(id, name)

npdv : coreLength(uri(name), coreLength)←core(id, coreNumber, coreLength, coreUom)

npdv : coreUOM(uri(name), coreUom)←core(id, coreNumber, coreLength, coreUom)

Table 4.1: Mappings

a base table, we generate a new one. If a query contains self joins, we generate more
global aliases for the same base table. Supposing that the first query that we have to plot
in the DAG is the query in Listing 4.3 and that the global aliases that have been generated
are alias0, alias1, alias2 for base table core and alias3 for base table wellbore, we have to
plot the query shown in Listing 4.4 in the same DAG. For table wellbore we choose alias3
that we have been generated for the first query, but for table core we can choose any of
the three aliases that we have generated for the specific base table. Clearly, choosing
the global alias that has been assigned to the alias QVIEW1 of the first query will result in
identifying more common subexpressions in the DAG. But the choice will not be always
that obvious, as common subexpressions may be identified later during the application of
transformations and also the final decisions for the plan must be taken during the search
phase. In order to be able to find the globally optimal plan we must try all possible cases,
which are three in our example. We can easily do that by adding more than one child to
the AND node that represents the result of the second query. In general, if the number
of global aliases for a base table is n and the query that we have to add contains k in-
stances of that table, we must add n!/(n − k)! different choices. This obviously can lead
to a significant growth of the size of the DAG. Luckily, usually most queries contain at max
two or three different instances of a specific base table. For queries that contain a greater
number of self joins and self joins on different tables, a trade-off between identifying more
subexpressions and keeping the optimization process time reasonable must be found.
SELECT DISTINCT ?wellbore (?length AS ?lenghtM)
WHERE {

?wc npdv:coreForWellbore ?w.
?w rdf:type npdv:Wellbore .
?w npdv:name ?wellbore .
?wc npdv:coreLength ?length .
?wc npdv:coreUOM "m"^^xsd:string .
FILTER(?length > 50)

}

Listing 4.2: SPARQL query

SELECT
QVIEW1.`name` AS `wellbore`, QVIEW2.`wlbTotalCoreLength` AS `lenghtM`

FROM
wellbore_core QVIEW1,
wellbore_core QVIEW2,
wellbore_core QVIEW3,

99 D. Bilidas

Database Techniques for Ontology-based Data Access

wellbore_npdid_overview QVIEW4
WHERE
QVIEW1.`id` = QVIEW4.`id` AND
QVIEW1.`coreNumber` = QVIEW2.`coreNumber`
QVIEW1.`id` = QVIEW2.`id`
QVIEW1.`coreNumber` = QVIEW3.`coreNumber`
QVIEW1.`id` = QVIEW3.`id` AND
QVIEW3.`wlbCoreIntervalUom` = 'm' AND
QVIEW2.`wlbTotalCoreLength` > 50

Listing 4.3: SQL query

SELECT
QVIEW2.`name` AS `wellbore`, QVIEW1.`wlbTotalCoreLength` AS `lenghtM`

FROM
wellbore_core QVIEW1,
wellbore QVIEW2
WHERE
QVIEW1.`id` = QVIEW2.`id`

Listing 4.4: SQL query

Regarding unary conditions, likeNOT NULL, ontop may produce queries that have these
conditions on different columns, but by also taking into consideration the joins on each
union, these conditions can be proved equivalent. In order to identify these cases, we
add to each query all the implied conditions during the plotting at the AND-OR DAG.

4.5 Experimental Evaluation

We now present experimental evaluation of our OBDA mediator system built on Exareme.
In Section 4.5.1 we present the execution results for the Optique Statoil use-case and we
compare the execution with and without query cache for 81 queries of the query catalog
of the use-case. In Section 4.5.2 we present complementary results from the Statoil use-
case, using the Canonical IRIs approach as described in [104].

4.5.1 Experiments in the Statoil Optique Use-Case

In this section we present the query results for running the Statoil query catalog using our
Exareme as the federation engine. Queries are accessing the following databases de-
scribed in [49]: (i) EPDS (ii) Recall (iii) CoreDB (iv)GeoChemDB (v)OpenWorks (vi) Com-
pass

EPDS contains two different database schemas, resulting in a total number of 7 different
data sources.

In total, 81 queries were executed with a 1000 seconds timeout under two different setups:
with and without caching of intermediate results. In the second setup, execution started
with empty cache and queries were executed sequentially, according to their numbering
in the query catalog. Out of all 81 queries, 66 were executed successfully within the time

D. Bilidas 100

Database Techniques for Ontology-based Data Access

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

1s

10s

100s

1000s
Exareme Federation LogScale

No Cache Cache

Figure 4.8: Execution Times for Federated Scenario (With and Without Query Cache)

limit and only seven of them needed more than four minutes. The average time for suc-
cessful queries in the first setting was 135.6 seconds, whereas in the second setting 101.4
seconds. All results are presented in Figure 4.8 (Times are in seconds). For the experi-
ments, Exareme was installed on a cluster of eight virtual machines, running in a protected
subnet at Statoil. Each virtual machine contains 8 GB of RAM and two processing cores.

4.5.2 Experiments using Canonical IRIs

When multiple databases participate in a federation through OBDA, the same actual re-
source may have different IRIs in each different database. Canonical IRIs provide a way
for efficiently identifying the same resource in different databases that participate in a fed-
eration through OBDA, by assigning to it an canonical IRI, which uniquely represents the
resource. Normally, the sameAs property of OWL vocabulary can be used for this pur-
pose, but as this property is transitive, in the context of OBDA, using this property would
result in inability to rewrite the initial query over the ontology to non-recursive SQL [24].
For this reason, sameAs is not part of the OWL2 QL language. An initial approach for
incorporation this functionality in OBDA is presented in [24], where a restricted use of
sameAs is proposed. The canonical IRI approach is used instead in [104], in order to
treat the large rewritings that result from this initial approach.

In this section we provide experimental results obtained by our OBDA mediator in the
Statoil use case, that compare these two approaches, in order to show that our system
with all the features and techniques described in this chapter, can take advantage of the
optimized query form offered by the canonical IRIs approach, and reduce significantly the
execution time over the initial sameAs approach. All necessary linking tables of these two
approaches were used as internal Exareme tables, by importing and processing all the
needed information from the endpoints.

As before, we integrated the 7 data sources (relational databases) used in Statoil, extend-

101 D. Bilidas

Database Techniques for Ontology-based Data Access

sameAs Canonical IRI
Total queries 76 76
Timeouts 31 11
Min exec. time 12s 0.50s
Mean exec. time 11m 4.3m
Median exec. time 11m 0.77m

Figure 4.9: Execution time and statistics for the queries in the federated setting at Statoil

ing an existing ontology and the set of mappings, and creating the tables necessary for
sameAs and canIriOf. The queries and ontology are published in [41]. One of the data
sources is the slegge database, which is also described in [41] together with the mappings
toward this database.

The experiments in Statoil were run with a catalogue of 76 SPARQL queries constructed
from information needs written down by geologists and geoscientists in the company. The
domain of the queries is that of subsurface exploration, with a focus on wellbore informa-
tion. The most complex query had 23 triple patterns, using object and data properties
coming from 5 data sources. The queries were executed with a 20 minute timeout, both
with sameAs approach and with the canonical IRI approach.

The Ontop rewriting engine and Exareme SQL federation engine all run on virtual ma-
chines deployed on the company intranet, as the data cannot be moved out. Ontop ran
on a single machine, while the Exareme SQL federation ran on 8 other machines. The
oracle databases are version 10g, and run on separate machines.7

We realize that this setup does not comply with the normal clean setup of a database
experiment. However, the complexity (7 datasources) and realism (real questions and
production databases) of the setup means the results have great value, although their
precision is sub-optimal. Compare this with biology, where the in vivo experiments on
live creatures, dealing with the full complexity of the organisms, may lead to results that
cannot be seen in the in vitro experiments, and therefore are considered superior.

The minimum, mean andmedia query execution times, for both the sameAs and canonical
IRI approaches are shown in Figure 4.9, whereas in Figure 4.10 we present a comparison
of execution times for each query separately. The improvement from sameAs to canonical
IRI is drastic. With the canonical IRI approach all queries, with three exceptions, are faster,
there are fewer timeouts, and the majority of the queries execute within 3 minutes.

4.6 Conclusions

We presented database techniques for executing OBDA queries over a federation of re-
lational data sources. We have implemented our proposed techniques in a new mediator
system built using Exareme, and we have succesfully deployed the new system in the Sta-

7Typical machine: HP ProLiant Server, 24 Intel Xeon CPUs (X560@2.67GHz), 283 GB RAM.

D. Bilidas 102

Database Techniques for Ontology-based Data Access

toil use case of the Optique project, in a setting with 7 external relational legacy databases
involving complex schemas and many hundrends of tables

103 D. Bilidas

Database Techniques for Ontology-based Data Access

●●●●●●●●●●●
●

●●●●
●●●●●●●●●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●

Queries ordered by execution time with sameas

To
ta

l e
xe

cu
tio

n
tim

e
(m

in
ut

es
)

−
 li

ne
ar

 s
ca

le

1
5

10
15

20

●

sameAs
Canonical IRI

timeout

Figure 4.10: Comparison of execution time for sameAs and Canonical IRI approaches

D. Bilidas 104

Database Techniques for Ontology-based Data Access

5. IN-MEMORY PARALLELIZATION OF JOIN QUERIES OVER LARGE
ONTOLOGICAL HIERARCHIES

This chapter presents the design and development of PARJ, an in-memory RDF store able
to parallelize multi-join OBDA queries. Unlike Chapters 3 and 4, here we do not consider
external relational databases and arbitrary mapping rules. Instead, the data are stored as
RDF triples in PARJ. The results of this chapter are included in publication [15], which in
turn extends our previous work [13].

5.1 Introduction

Since the adoption of the RDF data model numerous systems and research prototypes
have been developed aiming at efficient SPARQL query evaluation, focusing mainly on
the evaluation of BGPs which proved to be extremely demanding. Centralized systems
explored different physical storage options and query execution techniques. Main stor-
age schemas include a single triples table, denormalized property tables, vertical parti-
tioning, graph-based storage and storage based on bit arrays. Details and references to
such systems are presented in the next section. As scalability became an issue with the
continuously increasing size of several datasets, distributed approaches came into play,
assisted by cloud technologies such as the MapReduce framework, its implementation
Apache Hadoop and several Big Data processing systems built on top of it. Most of these
systems use optimizations in order to minimize the execution cycles, which correspond
to Hadoop jobs and involve data transfer between the workers. This is due to the syn-
chronous nature of the MapReduce paradigm. As a result, depending on data partitioning
and replication one can achieve evaluation completely in parallel for some queries, but for
queries that require communication the overhead is important due to the synchronization
step.

A number of in-memory distributed systems were later proposed such that their communi-
cation is based on custom asynchronous methods, mostly on the Message Passing Inter-
face (MPI) standard. Trinity.RDF [107] is based on graph exploration and it was the first
system to follow this design. TriAD [39] and the extension of the centralized main memory
RDF store RDFox with a dynamic data exchange operator [78] also use an asynchronous
execution model (In what follows we will refer to the system described in [78] as the dy-
namic exchange operator approach), but unlike Trinity.RDF they use relational-style joins,
increasing the level of parallelism for large intermediate results over the graph-based ap-
proach. In order to do so, both of these systems use expensive graph partitioning before
data loading. AdPart [3] tries to overcome this problem by using simple subject-based
hash partitioning and then adaptively, based on the query load, replicates specific data
fragments to the workers. As a result of the initial subject-based partitioning, expensive
broadcast of intermediate result occurs in case of joins on objects.

In the OBDA setting, deep and wide class and property hierarchies pose a serious per-

105 D. Bilidas

Database Techniques for Ontology-based Data Access

formance issue for all systems that perform query answering over RDF data with respect
to entailment regimes that allow the definition of such hierarchies. Materializing all im-
plied assertions with respect to these hierarchies, as it is the case in RDFS reasoning
with forward chaining, is an expensive preprocessing step and it may lead to data size
many times larger than the original, something that may not be viable especially for an in-
memory system. On the other hand, using RDFS reasoning with backward chaining may
lead to complicated queries. Many approaches exist that aim to treat these problems,
mainly focusing on disk based storage.

In this chapter we present PARJ, an in-memory query processing system able to paral-
lelize multi-join queries over large RDF graphs. Its name stands for Parallel Adaptive RDF
Joins. Our query processing approach is inspired by the asynchronous execution model
of main-memory distributed RDF stores, mainly of TriAD and the dynamic exchange oper-
ator approach. Both these approaches use expensive preprocessing in the form of graph
partitioning in order to minimize communication between servers during query execution.
Also, extra effort is needed in order to track the server that contains each resource. Most
importantly, even in a centralized parallel environment these systems would require some
form of inter-process or inter-thread communication and as a result some form of synchro-
nization. For example, in case of rehashing, each worker of TriAD has to wait in order to
receive and rehash all intermediate results from all other workers. Same kind of overheads
occur in the dynamic exchange operator where each worker must hold a queue for each
query atom, where incoming messages are put. This may lead to blocking execution until
some other worker process results for a subsequent query atom. Also, in the dynamic
exchange operator approach detecting termination is not trivial and requires a round of
message exchanging. Our method ensures parallel execution of arbitrary multi-join BGPs
without any form of communication or synchronization between the workers (in our case
threads) while at the same time avoiding expensive preprocessing like graph partitioning.
Furthermore, we adaptively decide to scan the corresponding partitions when it is prefer-
able, instead of always using index-based nested loops as done by the dynamic exchange
operator approach. This adaptive cache-friendly method can take advantage of existing
(even partial) sorting of RDF triples, that further improves our join implementation. An
auxiliary bit vector index can be used to avoid binary search and improve efficiency.

Regarding the physical data storage, our approach is inspired by column-store systems
such as MonetDB [43] and C-Store [98], as we first use vertical partitioning [1] to create a
separate table for each property, and then keep subjects and objects for each property in
separate arrays so that each tuple can be reconstructed by relating entities at the same
positions in these arrays, reminiscent of the virtual IDs of column stores. This physical
design compactly stores RDF data in memory, in order to increase spatial locality during
join processing. For example, for scale 10240 of the LUBM dataset with about 1.4 billion
triples, excluding dictionary, the storage requirements are only 22 GB (50GB if we include
the dictionary). Also, we allocate a single array position for each distinct subject or ob-
ject as a simple form of column specific compression (reminiscent of the POS and PSO
indexes used by Hexastore [102]) and we keep two replicas of each two-column table in
different sort orders.

D. Bilidas 106

Database Techniques for Ontology-based Data Access

Finally, PARJ is able to perform scalable query answering with respect to large class and
property hierarchies by providing virtually complete data over these hierarchies. Specifi-
cally, during join processing, we incorporate on-the-fly union computations over our phys-
ical data storage without impairment of the pipelined execution model. Our architecture is
based on [82], modified in order to use our in-memory system as a triple-store, instead of
a relational database, in order to perform query answering over OWL2-QL ontologies. Our
approach does not require expensive preprocessing in the form of materializing ontology
inferences via forward chaining, and at the same time it only has an 10-20% overhead
in query execution time in comparison with complete materialization of ontological hierar-
chies. Our experimental evaluation provides the fastest execution times over the LUBM∃
[63] OWL benchmark, outperforming state of the art systems based on materialization or
query rewriting.

This chapter is an extension of publication [13], where an initial version of PARJ had been
presented, by adding the following novel contributions:

• An experimental evaluation with larger (LUBM 20480) and real-world (YAGO2)
datasets that confirms the scalability and applicability of our approach

• A method for incorporating information about ontological type and property hierar-
chies during the join processing without any additions to the physical data storage
layout and without affecting the scalability and effective parallelization of execution

• An implementation that couples PARJ with Ontop[21], a state of the art tool for
Ontology-Based Data Access (OBDA), enabling PARJ to act as an efficient RDF
store, answering queries over OWL2-QL ontologies. We also perform an experi-
mental evaluation and comparison of our implementation with other state of the art
systems for OWL2-QL query answering.

In Section 5.2 we present details of the physical data storage and execution model and
in Section 5.3 we present details of the adaptive join method that allows for incorporating
parallelism into processing. Query answering approach over ontological hierarchies for
OWL 2 QL ontologies is described in Section 5.4. We present implementation details and
experimental evaluation in Section 5.5.

5.2 Physical Data Storage and Execution Model

In this section we present our physical data storage and give an overview of the join
method that allows incorporation of parallelism. First, following the common practice used
by many systems, we use dictionary encoding, by assigning an integer value to each value
encountered in the RDF data. We use common numbering for values appearing in the sub-
ject and object positions and a different numbering for values appearing in the property
position, but for ease of presentation here we assume common numbering for all values.
Thus, after parsing of an RDF dataset that contains N distinct values, our dictionary will

107 D. Bilidas

Database Techniques for Ontology-based Data Access

contain integer IDs from 1 to N . Then, we apply vertical partitioning [1] to create a sepa-
rate two-column table for each property defined in the data. We keep two replicas of each
two-column table, the first sorted on subject and then on object, and the second sorted
first on object and then on subject. Given that a property P is assigned to integer i from
our dictionary encoding, we will refer to the first replica of two-column table for P as propi
and to the second replica as propi− and we will call the tables first sorted on subject S-O
tables and tables first sorted in object O-S tables.

Consider for example the following RDF data (IRIs are omitted):

ProfessorA teaches Mathematics
ProfessorB teaches Chemistry
ProfessorC teaches Literature
ProfessorA teaches Physics
ProfessorA worksFor University1
ProfessorB worksFor University2
ProfessorC worksFor University2

The dictionary encoding of the data is given in Table 5.1. Using this encoding, the two-
column tables prop2 and prop9 that correspond to properties teaches and worksFor will be
created.

Integer Value
1 ProfessorA
2 teaches
3 Mathematics
4 ProfessorB
5 Chemistry
6 ProfessorC
7 Literature
8 Physics
9 worksFor
10 University1
11 University2

Table 5.1: Example of Dictionary Encoding

For each table, we store a sorted integer array with the distinct subjects (for S-O tables)
or distinct objects (for O-S tables). We also store a second array of same length with the
first. Each position of this second array contains a pointer to a sorted integer array and an
integer denoting the length of this array. This is a pointer to the objects (for S-O tables) or
subjects (for O-S tables) that correspond to the subject (respectively object) located at the
same position of the first array. The reason that we keep two separate arrays has simply
to do with compactly storing the integers of the first array and improving spatial locality
during the join processing. We also keep track of the length of the first array, using an
array of length 2 ∗ (number of properties) that contains this information for all properties.

D. Bilidas 108

Database Techniques for Ontology-based Data Access

1|·

8

8

40

3

9

40 22

5

Figure 5.1: Example of Physical Data Storage for a Property Partition

Getting this information involves a simple lookup at a specific position, for example, to
get the number of subjects for prop7, we should look at position 2 ∗ 7, whereas to get the
number of objects for prop7− we should look at position (2 ∗ 7) + 1.

Figure 5.1 contains an example of physical storage for a property table. Assuming that
the specific table has been created for property prop3, then it contains the following triples:
5 prop3 8, 7 prop3 8, 7 prop3 34, 13 prop3 40, 18 prop3 3, 24 prop3 9, 24 prop3 16, 24 prop3 41,
29 prop3 40, 33 prop3 22, 45 prop3 4. Note that in order to avoid memory fragmentation,
the different object arrays of this example can be allocated to a continuous memory area.
In this case, instead of having different pointers for each position of the second array, we
can keep a single pointer to the start of this memory area and only keep offsets in each
position of the second array.

Our execution models targets multi-threaded environments, where each thread operates
on the common data without any form of inter-thread communication. To achieve this, our
join method resembles an index-based nested loops join (or merge join when possible
- this will be discussed later), such that each thread is assigned a different shard of the
first (leftmost) table in the join, and runs in parallel, by probing the next table to be joined
for each tuple. Given a number of available threads, the first table of a join is virtually
partitioned in an equal number of shards, such that every shard contains about the same
number of tuples. In this way our method operates on left-deep query join trees as shown
in Example 3.

Example 3. Consider a SPARQL query:

SELECT ?x ?y ?z
WHERE {

?x teaches ?z .
?x worksFor ?y . }

Also suppose that the join order chosen by the optimizer (see Section 5.4.3) is the same
with the order of the triples in the text of the query. This will be translated to a join
prop2 ▷◁subject=subject prop9. If there are two available threads, our algorithm will start con-
currently scanning two different shards of prop2. For each tuple encountered during this

109 D. Bilidas

Database Techniques for Ontology-based Data Access

process, it will probe, using binary search, table prop9. This process can be decomposed
into completely independent tasks that start from different shards and operate on read-
only common data, and thus it straightforward to be implemented using threads (as it is our
current execution model and implementation) or separate processes with shared memory.
It is even straightforward to be implemented on different machines using complete data
replication and parallelize the query across machines without any communication.

Note that for the given query, the degree of parallelism depends on the number of different
shards of the first table. For more selective queries a different strategy may be needed as
shown in Example 4.

Example 4. Consider the following query, that contains an extra filter:

SELECT ?x ?z
WHERE {

?x teaches ?z.
?x worksFor University1 . }

In this case, suppose that the optimizer chooses the inverse join order, as it is reasonable
that the filter will limit the results of the second triple pattern. In this case, table prop9
should be scanned first. One first observation is that instead of scanning the whole table,
we can search for tuples where object is equal to 10. To do so it is better to use the replica
that is first ordered by object. After we search prop9− for object = 10, we obtain the vector
of subjects that correspond to object = 10 (in our case it is only value 1). Then we start
scanning this vector and probing table prop2 using these values. In this way we do not
obtain any level of parallelism for this query, as we start from a specific value of the first
table. It is easy though to recover the parallelism, if we start scanning concurrently different
shards of the vector that corresponds to object = 10. If the query contains a triple pattern
with variable in the predicate position, then a union over all properties will be needed, but
this is rarely encountered in real world queries[1]. In any case, if the number of distinct
predicates encountered in the dataset is very large, an ID-Predicate index similar to the
one use in [106] can be useful. Also note that the exact number of threads that will be
used is independent of our physical data storage and can be decided on a per query basis
after data loading in memory. In our current implementation (Section 5.5) we choose to
execute each query with the same number of threads (optimally this should be equal to
the number of available processing cores or greater in case hyper-threading is supported
as shown in Section 5.5.2.3), but an extension such that very simple and selective queries
could be executed with fewer resources is possible.

5.3 Query Processing

The approach followed by RDF stores like RDF-3X and TriAD, is to take advantage of initial
sorting of RDF triples, and performmerge joins when possible. Hash join is preferred when

D. Bilidas 110

Database Techniques for Ontology-based Data Access

inputs are not sorted on the join key. On the other hand, the dynamic exchange operator
approach always uses index-based nested loops aiming at low memory consumption and
avoiding blocking operators. Our system uses a combination of these two approaches,
by taking into consideration the following points:

• When both inputs are already sorted on the join key, merge join is preferable over
hash join.

• For main memory systems, index-based nested loops (in our case in the form of
binary searches over the inner table stored as an array) does not exploit data locality
and also it is not amenable to efficient data prefetching due to conditional branching.
Nevertheless, for very selective joins, it may still be faster than merge join.

• For RDF data processing, where the initial triples are sorted in all three subject,
predicate and object columns, even if the whole input is not sorted on the join key of
a subsequent join, large portions of the input can still be sorted as it is demonstrated
in the following example.

Example 5. Consider the following SPARQL query:

SELECT ?x ?y
WHERE {

?x prop1 ?y .
?x prop2 ?z .
?z prop3 ?w . }

If the selected join order is as shown in text of the query, S-O tables will be used for all
properties. As shards of prop1 are scanned, for each thread of execution, prop2 will be
probed for values sorted on ?x, but for the second join, probing prop3 will not in general
be sorted on ?z. Nevertheless, for each distinct ?x, prop3 probing will still be sorted on
?z and if each subject of prop3 is connected to many objects, it may be more efficient to
avoid binary search on prop3 and switch to scanning for each distinct ?x.

A single join operator has been implemented in our system, that adaptively during run-time,
for each search key, decides if it will switch to binary search (a behavior similar to index-
based nested loops) or keep scanning the input in the form of sequential search, continuing
from the position that the cursor has been left from a previous search (a behavior similar
to merge join).

5.3.1 Adaptive Join Processing

Given a left-deep join tree produced from the optimizer, each worker starts scanning a
shard of the first relation, or a specific shard of an object/subject vector of the first S-O/O-
S relation in case a filter exists, and searching the subsequent relations for each produced

111 D. Bilidas

Database Techniques for Ontology-based Data Access

tuple. The search procedure is presented in Algorithm 5. The algorithm takes as input a
pointer to current cursor position (cursor_position), which corresponds to the position of
the last accessed element for the array, and decides if it will use binary or sequential
search. The cursor_position is updated each time for both successful and unsuccessful
searches inside the functions Sequential_Search and Binary_Search.

Obtaining an exact cost-model in order to take the correct decision is an involved process
that needs to take into consideration factors such as the exact cache hierarchy, the size
and bandwidth estimation for each cache level for both sequential access (scanning) and
random access, cache line size, the replacement of cache entries from operations other
than the join under consideration (for example subsequent joins of the same query) and
the existence in cache of relevant entries from previous operations (for example scanning
of the same relation in a previous query). Obtaining such cost models for hierarchical
memory systems has been studied in [65], where cost functions are defined for basic
access patterns and then combinations of these functions can be used to derive the cost of
complex compound access patterns. As a prerequisite, specific hardware measurements
should be known, which can be obtained through a separate calibration program that
estimates cache and CPU characteristics.

In our case, decision has to be made during runtime for each produced tuple and each join
of the query. Instead of using an analytical cost model, we opt for a fast and lightweight
method using two assumptions: a uniform distribution of integers in the first array of each
table and that existing cache contents have an impact proportional to the cost of either
binary search or scanning. The second assumption simply denotes that existing cache
contents can improve both methods, but they will not change which the methods is more
efficient in each case. For example, if binary search is preferable with completely empty
cache, it will remain so independently of the cache contents and vice versa. As a result we
base our decision on the difference between the last accessed element and the element
that we are currently searching for. Specifically, we pass as argument to the algorithm
a threshold which is computed during data loading for each table. This threshold takes
into consideration an estimation about the maximum distance of the position of the last
accessed element and the position of the element to be found in the array, in order for
sequential search to be preferable. To switch from distance in the array to the actual
arithmetic distance of the two numbers, we use the uniform distribution assumption, which
leads to an estimation that the difference between an element and its subsequent one
is (array[size − 1] − array[0])/size. Note that in Algorithm 5, if Distance > Threshold
then we could perform binary search using as starting position the position denoted by
CursorPosition instead of 0, and ifDistance < −Threshold we could use CursorPosition
as the end position instead of size. In theory this reduces the steps needed from binary
search, but in practice it is not efficient, as always performing binary search on the whole
array leads to the array positions visited during the first steps to frequently occur in cache.

Regarding the determination of the threshold, a calibration process shown in Algorithm 6
is used. This process takes place after data loading, prior to query execution, and tries to
determine a distance (called WindowSize) such that when searching for a value ToFind
in the Array and the position of ToFind is at distance WindowSize from the position of

D. Bilidas 112

Database Techniques for Ontology-based Data Access

the last accessed element (CursorPosition), then BinarySearch and SequentialSearch
perform roughly the same. Specifically, the ratio of the larger to the smaller execution
times of these two methods should be smaller than a value close to 1.0 which is spec-
ified in the input of the algorithm (Threshold). For each calibration step, each process
is called NoOfSearches times, each time searching for a value whose distance from the
previous one is estimated to be equal to CurrentWindowSize. If the ratio is larger than
the Threshold, calibration continues such that the window size is multiplied by this ratio (in
case time spent on binary search is larger) or divided (otherwise). This calibration process
is different from a calibration needed when using an analytical cost model, in the sense
that we directly make an estimation for a value related to processing, instead of estimating
values about several hardware characteristics. Once the calibration process terminates,
we precompute the estimated value distance (corresponding to the position distance that
we obtained) for each property, such that during query execution we only need to perform
one integer subtraction, one absolute value computation and one comparison for each
tuple (lines 2-3 of Algorithm 5).

Algorithm 5: Adaptively switching between binary and sequential search
1 Search (Array, V alue, CursorPosition, Threshold, Size);
Input : Array: an array of integers (subjects of an S-O table or objects of an O-S table), V alue:

integer value to find, CursorPosition:pointer to current cursor position, Threshold: integer,
Size: size of array

Output: nonnegative integer corresponding to the position of V alue in Array or a negative integer if
V alue is not present in the Array

Uses : Binary_Search(Array, V alue, CursorPosition, Size), Sequential_Search(Array, V alue,
CursorPosition, Size)

2 Distance := Array[CursorPosition]− V alue;
3 if |Distance| <= Threshold then
4 return Sequential_Search(Array, V alue, CursorPosition, Size);
5 else
6 return Binary_Search(Array, V alue, CursorPosition, Size);
7 end

5.3.2 ID-to-Position Index

Our join method takes advantage of initial sorting and performs cache-friendly joins even
when only a partial order of input triples is possible, but when ordering does not help we
must resort to binary search. In this section we describe the structure of an ID-to-Position
index that is used to avoid binary search and directly locate the position of a given integer
on the property array. A separate such ID-to-Position index must be built for each S-O or
O-S table, but its usage is auxiliary, in the sense that our system can operate without all or
some of these indexes. Given an RDF dataset with N distinct values and a corresponding
dictionary with IDs from 1 to N , in order to directly locate the position of a given value in a
table, we need to store an integer array of lengthN , such that the value at index p denotes
the exact position at the table where it is located the resource whose ID value according

113 D. Bilidas

Database Techniques for Ontology-based Data Access

Algorithm 6: Calibration Process
1 Calibrate (Array,NoOfSearches,

StartingWindowSize, Threshold);
Input : Array: an array of integers (subjects of an S-O table or objects of an O-S table),

NoOfSearches: number of times to run sequential and binary search in each calibration step,
StartingWindowSize: initial window size used in first step of calibration, Threshold: A
threshold ratio to stop calibration

Output: integer corresponding to the window size such that if two values in array are longer apart then
binary search is preferable

2 NextWindowSize = StartingWindowSize;
3 AvgGap = (Array[Size− 1]−Array[0])/Size;
4 do
5 WindowSize = NextWindowSize;
6 TotalGap = AvgGap ∗WindowSize;
7 PreviousSearchPosition = 0;
8 StartT ime = getT imeNow();
9 ToFind = Array[0];
10 for K ← 0 to NoOfSearches do
11 Binary_Search(Array, ToFind, 0, &PreviousSearchPosition);
12 ToFind+ = TotalGap;
13 end
14 TimeBinary = getT imeNow()− StartT ime;
15 toF ind = Array[0];
16 PreviousSearchPosition = 0;
17 StartT ime = getT imeNow();
18 for k ← 0 to noOfSearches do
19 Sequential_Search(array, toF ind, &PreviousSearchPosition);
20 ToFind+ = TotalGap;
21 end
22 TimeScan = getT imeNow()− StartT ime;
23 TimeDiff = |TimeBinary − TimeScan|;
24 if TimeBinary > TimeScan then
25 Fraction = TimeBinary/TimeScan;
26 NextWindowSize = WindowSize ∗ Fraction;
27 else
28 Fraction = TimeScan/TimeBinary;
29 NextWindowSize = WindowSize/Fraction;
30 end
31 while Fraction > Threshold;
32 return WindowSize;

D. Bilidas 114

Database Techniques for Ontology-based Data Access

to the dictionary is p, or a special value to denote absence of the specific resource from
the table.

For example, given the property shown in Figure 5.1 and supposing that the maximum
ID contained in the dictionary is 45, we would need an array of integers with length 45,
such that at position 5 of the array we would have the value 0, at position 7 the value 1, at
position 13 the value 2 and so on for positions 18, 24, 29, 33 and 45, and all other position of
the array would have a value denoting absence. If we useM -byte integers, then for each
table the memory requirement would be M ∗ N bytes. In order to save space, we use
a different layout on out ID-to-Position index, such that we only use an integer to denote
the position of the property table at specific intervals, and for all other positions we use a
bit value to simply denote presence or absence of value from the property table. Finding
the exact position for a value requires reading the previous integer and then counting bits
set to 1 up to the position of the ID-to-Position Index corresponding to the value. For
example, if we choose the interval to be equal to 8, then our index will store the integer
−1 at start, followed by bit values 0, 0, 0, 0, 1, 0, 1, 0, then integer value 1 and bit values
0, 0, 0, 0, 1, 0, 0, 0, then integer value 2 and bit values 0, 1, 0, 0, 0, 0, 0, 1, then integer value
4 and bit values 0, 0, 0, 0, 1, 0, 0, 0, then integer value 5 and bit values 1, 0, 0, 0, 0, 0, 0, 0 and
finally integer value 6 and bit values 0, 0, 0, 0, 1. If we want to find the position of value 29
at the property we can directly check bit at position ((29÷ 8) + 1) ∗M ∗ 8 + 29. If bit is not
set, then value is not present in property table. If bit is set we read integer value that starts
at bit position (29÷ 8) ∗M ∗ 8 + (29÷ 8) ∗ 8 at the array and we add to this the number of
bits that are set after this number for 29mod 8 positions. With this layout, given an interval
A we only need N/8 + ((N/A) ∗M) bytes. Also, given that the integer and the number of
bits followed up to the next integer fit into a single cache line (with proper alignment of the
index in the memory), we only need one memory access and some computation that can
be done efficiently as a popcount operation in order to determine the position.

As an example, using the dataset LUBM 10240 described in Section 5.5, which contains
about 1.4 billion triples, 17 distinct properties and about 336 million distinct resources,
using 4-byte integers and choosing the interval to be 480 we only need 44.8 MB for each
property, leading to a total memory usage of about 1.5 GB if we choose to create all pos-
sible indexes for S-O and O-S tables, in contrast to a memory requirement of 45.7 GB if
we had used the simple layout.

Regarding modification of the join processing in case the ID-to-Position index is used, the
only change that needs to be addressed is a different threshold resulted from calibration
process. Specifically, since we anticipate that using the index will have better behavior in
comparison with binary search, we need to estimate two different thresholds with regards
as to when sequential search is preferable, with the threshold when ID-to-Position index
is used being smaller than the threshold when binary search is used.

115 D. Bilidas

Database Techniques for Ontology-based Data Access

5.4 Query Execution Over Ontological Hierarchies

We begin this section by describing the system design and general architecture of our ap-
proach which is based on [82]. Essentially, it modifies the mentioned system by removing
the external RDBMS that stores RDF data with the semantic index schema, and replac-
ing it with an extension of PARJ, able to provide access to virtually complete ontological
hierarchies in an efficient manner.

5.4.1 System Design

Three main reasons for the presence of long, and as a result highly inefficient, rewritings
have been specified in [82]: i) subqueries with existentially quantified variables, ii) large
ontological hierarchies and iii) multiple mappings for each ontology term. The last reason
is usually relevant when arbitrary relational schemas are used as the target storage. In
our case, where we have a specialized triple store as a back-end, a single trivial mapping
has to be created for each predicate, with the exception of the rdf:type property, where
a separate mapping has to be created for each distinct object, but this does not create
problems as we will see later. Regarding the first reason, it is observed that exponential
number of rewritings due to existential quantification seems to be rarely observed in real
world ontologies and queries, leaving the second reason to be the most commonly en-
countered, as it is demonstrated in the following example. Consider the following OWL
statements:

AssistantProfessor rdfs:subClassOf Professor
FullProfessor rdfs:subClassOf Professor
teaches rdfs:domain Professor
hasBScDegreeFrom rdfs:subPropertyOf degreeFrom
hasMScDegreeFrom rdfs:subPropertyOf degreeFrom
hasDoctoralDegreeFrom rdfs:subPropertyOf degreeFrom
FullProfessor rdf:subClassOf _R1
_R1 owl:onProperty hasDoctoralDegreeFrom
_R1 owl:someValuesFrom University

The first (resp. second) OWL statement declares that if an individual is an assistant pro-
fessor (resp. full professor), then he is a professor. The third statement declares that if an
individual teaches something, then he is a professor. The next three statements declare
that if an individual has a Bsc, Msc or doctoral degree from a given entity, then this indi-
vidual has (in general) a degree from this entity. Finally, the last three statements encode
the knowledge that if an individual is a full professor, then there exists a university such
that this individual has a doctoral degree from this university. In DL parlance this is de-
noted as: FullProfessor ⊑ ∃hasDoctoralDegree.University. The first three statements
correspond to three axioms defining a class hierarchy, the next three statements corre-
spond to three axioms defining a property hierarchy, whereas the last three statements

D. Bilidas 116

Database Techniques for Ontology-based Data Access

correspond to an axiom involving existential quantifier. Following [82], the main observa-
tion upon which we base the architecture of our approach is that if the underlying data are
(virtually or actually) complete with respect to class and property hierarchies, then during
query rewriting all ontology axioms related to these hierarchies (in our example the first six
statements) can be ignored, and we can use any rewriting method (tree-witness rewriting
[52] is used in our case) for OWL2 QL ontologies to perform query rewriting with respect to
the remaining axioms. Then, the produced rewriting is transformed to the query language
of the underlying query execution engine using R2RML 1 mappings.

As Ontop is designed to work with R2RMLmappings to an external relational database, we
provide to it an abstraction of PARJ consisting of relational tables according to the vertical
partitioning schema as presented in Section 5.2. In other words, we present each property
as a relational table with two columns (subject and object) and provide SQL mappings
over these tables, whereas in reality the underlying storage schema is the one described
in Section 5.2. During system startup we automatically create the following mappings,
without any manual user intervention, based on the data stored in PARJ:

• For each distinct property P defined in the ontology we add the mapping
P (x, y)←

SELECT d1.value as x, d2.value as y
FROM propI, dictionary d1, dictionary d2
WHERE propI.subject=d1.id and
propI.object=d2.id

where propI is the table corresponding to property P

• For each distinct named class C in the ontology we add the mapping
C(x)←

SELECT d.value as x
FROM propT, dictionary d
WHERE propT.object=N and
propT.subject=T.id

where propT is the table corresponding to the rdf : type property andN is the integer
value that corresponds to class C. During startup we prefetch these values for all
the named classes of the ontology.

In the abstraction of the PARJ schema that it is provided to Ontop, there is no distinction
between the S-O and O-S table replicas. The exact access methods will be decided
internally by PARJ after the final rewriting has been produced. Also, as the id column of the
dictionary table is unique, it can be considered a primary key, with both columns subject

1https://www.w3.org/TR/r2rml/

117 D. Bilidas

Database Techniques for Ontology-based Data Access

Professor(x) ← SELECT subject as x
FROM PropT where object=t1

/*t1 corresponds to Professor*/
Professor(x) ← SELECT subject as x

FROM PropT where object=t2
/*t2 corresponds to FullProfessor*/
Professor(x) ← SELECT subject as x

FROM PropT where object=t3
/*t3 corresponds to AssistantProfessor*/
Professor(x) ← SELECT DISTINCT subject as x

FROM PropN
/*table PropN corresponds to property teaches*/

Figure 5.2: T -Mappings entry for class Professor

and object of all property tables to be foreign key referencing this primary key. As a result,
when joining subject or object values obtained from different mappings in a query, joins can
be performed directly on IDs instead of URIs, and only use the dictionary tables for lookups
on the IDs that exist in the SELECT clause of the final query. For ease of presentation, in
what follows we omit explicit references to the dictionary table. After these initial mappings
have been declared, Ontop compiles knowledge about ontological hierarchies into the
mappings in order to obtain the so-called T -Mappings. Given the ontological axioms from
the previous example, for the class Professor three extra mappings will be added to the T -
Mappings, one containing as body the SQL query corresponding to the initial mapping for
AssistantProfessor, one for the class FullProfessor and one for the property Teaches,
leading to four mappings in total, including the initial mapping for class Professor, as
shown in Figure 5.2. Essentially, in order to obtain all professors from the data according
to the property hierarchy, one should take the union of the four SQL queries in the body of
the mappings (including duplicate elimination in the final result). In this case, for the first
three mappings, two OR conditions could be introduced in the WHERE clause, instead
of union.

5.4.2 Union Wrappers for Ontology Hierarchies

As an end-to-end example regarding query rewriting, consider the following query from
Example 6 over the ontology, asking for individuals x that work for an entity u and these
individuals are professors and have a degree from the same entity u:

Example 6. Consider the following query, that contains an extra filter:

SELECT ?x ?u
WHERE {
?x worksFor ?u.
?x rdf:type Professor .
?x degreeFrom ?u. }

D. Bilidas 118

Database Techniques for Ontology-based Data Access

First, the query will be rewritten with respect to axioms not involving hierarchies. In our
case the result of this process will be the query unchanged, as the relevant axiom invovling
existential quantifier is not applicable. Then, the query will be unfolded with respect to the
T -Mappings. One way to obtain the final query is to perform the union of each query atom
first, and then perform the joins on these intermediate results. On the other hand, one
could choose to flatten the queries by pushing the joins inside the unions. In our example,
with four mappings for Professor, four mappings for degreeFrom and one mapping for
worksFor, this would result to a union of 16 queries. Finally one could follow a hybrid
approach, based on some cost estimation. When a relational back-end stores the data,
all these approaches can be highly inneficient. In the first case, a separate union with du-
plicate elimination should be performed for each atom with more than one mapping, and
temporary results should be created and possibly indexed in order to perform subsequent
joins efficiently. On the other hand, in the second approach the number of subqueries
can be very large, with common tasks (for example a table scan) performed many times.
Furthermore, duplicate answers coming from different subqueries lead to redundant pro-
cessing and also a duplicate elimination must be performed to the final result. Having
PARJ as the back-end, we chose to follow the first approach, having implemented a vir-
tual union wrapper operator that eliminates the mentioned disadvantages, and at the same
time it keeps the advantages of the standard PARJ design. Specifically out approach: i)
performs pipelined union along with duplicate elimination ii) uses the original index (sort
order) and adaptively decides for the access method iii) provides results in sorted order
for subsequent operators as much as possible and iv) can be parallelized efficiently.

The main idea is to create a union wrapper for each class or property hierarchy encoun-
tered in a query. This wrapper acts as a virtual table that contains the complete answers
for the given predicate. As an example, the union wrapper for the query atom Professor
is shown in Figure 5.3. This wrapper, as all wrappers that correspond to a class hierar-
chy, defines a virtual table with only one column and it provides two operations: i) scan
the virtual table and return an iterator with the ordered distinct values that it contains and
ii) search for a specific integer value and return it if it is contained in the virtual table,
otherwise return an empty answer. The first operation is used when the union wrapper
is the leftmost table in query execution according to the join order, whereas the second
operation is used in all other cases. In our example the union wrapper contains four input
vectors: the subject vectors of the O-S replica of the rdf:type property for the objects that
correspond to values Professor, AssistantProfessor and FullProfessor and the subjects
for the S-O replica of property teaches. We use the S-O replica of teaches that contains
the distinct subjects, as Professor is defined to be the domain of the teaches property. If it
was the range of the property, the distinct objects array of the O-S replica would be used
instead. During scan, all input vectors are scanned, and current value for each one is sent
to a min heap implemented with a priority queue, that sorts them and outputs the minimum
value. Only the first time a value is encountered it is sent to output, in order to have distinct
results. When the minimum value of the min heap is being sent to output (or discarded)
the input vector that provided that value sends the next one. In the case of search, all
input vectors are searched using the adaptive search algorithm from the previous section.
Search stops as soon as the value is found to at least one of the input vectors and the

119 D. Bilidas

Database Techniques for Ontology-based Data Access

given value is sent to output terminating the operation. In case of search, an alternative
can be more efficient depending on the number of input vectors that correspond in the
rdf:type property. For the specific example, the first three vectors can be replaced by the
object vector of the S-O replica of the rdf:type property for the subject that corresponds
to the value we are searching for and perform set intersection between this vector and
a vector containing the values corresponding to Professor, AssistantProfessor and Full-
Professor. This way we can avoid three different searches and only perform one search
in the form of merge join (assuming that we first sort these three values) that terminates
upon outputting the first result.

In case of the union wrappers for property hierarchies, such as the degreeFrom, the virtual
table contains two columns and are three different operations: i)scan the whole table and
provide an ouptut sorted on both columns, ii)search for a specific value in the first column
and provide the output corresponding to this value sorted on the second column and iii)
search for a specific pair of values. In the first case, we use a min heap with two input
values sorting output to both, in the second case we search the input tables for the specific
value in the first column and we use a min heap with one value, and in the last case we
search the input tables for both values and stop the operation upon finding the first such
result.

Regarding intra-query parallelism, incorporating the union wrappers does not require mod-
ifications to the approach described in Section 5.2, with the exception of scanning a union
wrapper table in case it is the leftmost table according to join order. In this case, special
effort is needed in order to ensure that the same values residing in different input tables
will be produced from the same thread, so that duplicate elimination in the min heap will
work properly, otherwise duplicate answers may be present in results of different threads.
As a solution, we modify the way we assign a different portion of the first array of each
input table to each thread. Instead of using positions in the array, we assign specific value
intervals in each thread, based on the minimum and maximum values encountered in all
input tables.

5.4.3 Join Ordering and Selectivity Estimation

As in RDF-3X and TriAD, we employ a bottom-up dynamic programming optimizer. As the
level of parallelism during execution is determined by the number of threads, we assume
that the benefit of each possible join order from parallelism will be a fixed proportion of its
centralized cost, that is the execution cost if we consider that each property is consisting of
a single shard. As a result of this assumption, we disregard parallelism during optimization.
During cost estimation, we assume that a specific choice will be followed for all tuples of a
join, either binary search or scanning. The latter will only take place when the join inputs
are already fully sorted and it is estimated to be cheaper than binary search. Adaptivity
during execution is expected to give a cost equal or lower to this estimation. For each
property of a specific join order we choose to use the replica that leads to more efficient
search. When we search for a specific subject or object, the choice is straightforward.
When we are searching for both values, we use the replica that searches for ordered

D. Bilidas 120

Database Techniques for Ontology-based Data Access

Figure 5.3: Union Wrapper for Class Professor

values according to the previous join. When we scan a table (leftmost table in the join
order) we use the replica tha provides values sorted for the subsequent join. In union
wrappers for property hierarchies, for some of the input tables we should use the S-O
replicas and for others the O-S replicas. This decision is defined by the combination of
two factors. First, whether we search for the subject or object of the given property and
second, if the inverse of a subproperty is used in the definition of the hierarchy.

Regarding selectivity estimation, in order to estimate the sizes of intermediate results we
use equi-depth histograms for each property. Such histograms are also built for the union
wrappers, based on information about the hierarchies that can be found in the ontology.
The reason for this is that the exact size of tuples in a union wrapper can be very difficult
to estimate, as the common tuples in the different input tables that introduce duplicate
results are discarded. Consequently, the final size can vary significantly and this can lead
to very poor execution plans. In the two extremes, the final result size can be the sum
of all input tables (no duplicates at all), or can be equal to the size of the larger input
table. For this reason we take a sample and estimate the number of distinct tuples that
will be produced from each union wrapper. These histograms are built after the initial
data loading, and similar to the analyze command in RDBMSs they do not need to be
recomputed, unless the underlying data are subject to significant change. As it is known
that often estimates based on such histograms may not be accurate especially in the case
of RDF data [70], we precompute some cardinalities between pairs of properties during
data loading and use these as a corrective step. Specifically, for each pair of properties
propi and propj we compute the cardinality of propi ▷◁subject=subject propj, propi ▷◁subject=object

121 D. Bilidas

Database Techniques for Ontology-based Data Access

propj, propi ▷◁object=subject propj and propi ▷◁object=object propj. All these computations can
be done in parallel and also, using our storage schema, we do not need to access the
second array of storage at all, as we only need the number of objects for joins on subjects
and the number of subjects for joins on objects. We plan to implement more elaborate
techniques for cardinality estimation in the future, like for example estimations based on
characteristic sets [69] or RDF data summaries [97].

5.5 Experiments

In this section we present an experimental evaluation of our approach. One first objective
is to compare both versions our system (PARJ and PARJ-Ontop) with other centralized and
distributed state of the art systems of similar functionality, in terms of query execution time.
Furthermore, we aim to investigate the scalability of PARJ by performing experiments with
varying number of datasets and threads, and also examine the effect of the ID-to-Position
index during query execution. Finally, we want to empirically evaluate the effect of the
adaptive query processing method in comparison with standard binary and sequential
search

In-memory data storage and query processing for PARJ have been implemented in C as an
extension of a SQLite, which is used as disk-based storage. Disk-based tables are created
and saved during data import from RDF files. On application start-up the in-memory data
structures are created reading from the tables. The dictionary can either be loaded in
memory or kept in disk where for IRI-to-ID transformation (during query optimization) a
clustered B+ tree on IRI is used and for ID-to-IRI transformation (during IRI construction
of answer tuples) a clustered B+ tree on id. PARJ is called through a wrapper written in
Java, where also query parsing and optimization is implemented.

All experiments were conducted on a 16-core server with Intel E5-4603 processors at 2.20
GHz and 128 GB RAM running Debian 8. We used the popular Lehigh University Bench-
mark (LUBM) [38] and Waterloo SPARQL Diversity Test Suite (WatDiv) [6] benchmarks,
as well as the real-world YAGO dataset [40] which contains data fromWikipedia, WordNet
and GeoNames. Our implementation of PARJ is publicly available and open-source, and
all material required to reproduce the experiments is available online 2.

5.5.1 Setup

We have carried out experiments with both the stand-alone version of PARJ, which is
not capable of reasoning, and also with our PARJ-Ontop implementation which is able
to perform OWL2-QL query answering. Results for the latter version are presented in
section 5.5.2.4. Regarding the stand-alone version, we compare PARJ to other systems
that do not support OWL2-QL reasoning in two sets of experiments: in the first one we
test the efficiency of our approach in the single-thread setting. In this setup we use as

2https://github.com/dbilid/experiments

D. Bilidas 122

Database Techniques for Ontology-based Data Access

competitors the in-memory RDF store RDFox (SVN version: 2776) and also RDF-3X [70]
(version 0.3.8) for comparison with a state of the art disk-based system. The second setup
is about multi-threaded execution. In the second setup we use as competitor the TriAD
system which in [39] it is shown to outperform all competitors in the centralized parallel
setting. We have used the optimized build for TriAD, as it is suggested in the installation
manual.

Due to a hard-coded limit in the TriAD source code, we could not execute queries us-
ing more than 20 workers3. Note that in PARJ, each worker corresponds exactly to one
thread, so given that hyper-threading is enabled, we found that the optimal performance
was achieved when we used two threads for each processing core, resulting in 32 worker-
s/threads in our testing machine. More details regarding the behavior of PARJ for different
number of threads are given in Section 5.5.2.3. For TriAD it was not clear which number
of workers should be the optimal, as this could be query depended. This is also the rea-
son that we do not use TriAD in the single-thread setting. To have a better image and
find the optimal setup, we executed TriAD with different number of workers, and we also
modified the hard-coded limit and tried with up to 32 workers. For most queries, TriAD
performance is degrading for more than 20 workers. From our testing we found that the
overall best performance was achieved for 16 workers and this is the setup we used for
TriAD in our experiments. Also, we present results for both TriAD settings: with summary
mode enabled and disabled. For summary mode, we used the same number of partitions
used in [39]: 200K for LUBM 10240 and 70K for WatDiv 1000.

Regarding result handling, as our intention is to concentrate in join processing, all systems
were tested in the so called ”silent“ mode, that is we do not include the time for dictionary
lookups and result tuple construction. In multi threaded execution this also means that
we do not measure the time to aggregate the results together. Each query was executed
10 times and the average execution time is shown. We have deployed RDF-3X using
an in-memory filesystem and as a result there is no need to report cold and warm cache
times.

5.5.2 Results

We present results for scale 10240 of the LUBM benchmark in Table 5.2 (about 1.4 billion
triples), for YAGO2 in Table 5.3 and for scale 1000 of the WatDiv benchmark (about 110
million triples). For WatDiv we used both basic test workload (Table 5.4) and incremental
linear and mixed linear extensions of basic workload (Table 5.5). For WatDiv we gener-
ated all the queries proposed in the workloads. For LUBM we used the seven queries
commonly used to test systems that do not perform reasoning tasks, which can be found
in [107], and are labeled LUBM1-LUBM7, and we also used three extra queries from [78]
(LUBM8-LUBM10). A timeout of 30 minutes was used for all queries. For YAGO2 we
used the same raw data (about 285 million triples) and queries as in [2].

Regarding single thread execution, we first observe that RDFox is comparable to PARJ
3This was verified with the TriAD implementors

123 D. Bilidas

Database Techniques for Ontology-based Data Access

for some queries, but for other queries, especially for queries from the WatDiv incremen-
tal and mixed linear extensions, is highly inefficient. This confirms that this system is not
optimized for query answering, but instead, it aims at efficient parallel materialization of
RDF implications. Regarding RDF-3X, we can see that it performs more than one or-
der of magnitude slower from PARJ for most queries. The reason is that despite the fact
that it is deployed in an in-memory filesystem, its processing is oriented towards optimiz-
ing disk access, as it is not aware that it operates in memory. For example, it uses B+
trees to minimize the number of disk pages needed, it skips records with its sideways-
information passing optimization only when it reads a new disk-page into memory, it uses
compression on a per page basis and also its cost estimation is based on disk access.
Nevertheless, there are some queries, for example queries in the ML-2 set or LUBM8,
where RDF-3X outperforms the single-threaded PARJ execution. These are queries with
large intermediate results, but only few final answers, where the record skipping using
sideways information passing in RDF-3X results in substantial gains.

Regarding multi-thread execution we can see that for most queries the summary mode
of TriAD is inferior to the simple mode, sometimes by a large margin. For example, for
query LUBM 3 in Table 5.2 the execution time increases from 2 seconds to more than 15
seconds. For the specific query we saw that execution over the summary graph takes up
most of the execution time. In any case, the results show that for parallel execution on a
centralized environment the pruning from the graph summaries does not contribute to an
important improvement which can justify the overhead of graph partitioning.

A comparison of PARJ with the best TriAD mode shows that we outperform TriAD by
more than an order of magnitude for the average execution time of the LUBM 10240
queries: from 838 milliseconds for PARJ to 13263 for TriAD (Table 5.2). For basic WatDiv
testing (Table 5.4), though TriAD performs slightly better for simple queries, PARJ performs
better overall with a total average execution time of 11.27 ms (geomean: 7.76) whereas
TriAD has a total average execution time of 13.95 (geomean: 6.8). For the more complex
queries of WatDiv extended workloads (Table 5.5) PARJ clearly outperforms TriAD. For
some queries the difference is more than two orders of magnitude. As an example, for
query ML1-7 the time increases from 7 ms to 2154. The specific query contains a series of
subject-object joins, which leads TriAD to perform blocking data transfers betweenworkers
and rehashing over large intermediate results, though the final result is relatively small.

Regarding the difference between the silent mode and the full result handling, we have
executed all queries with full result handling (except from printing) in PARJ. That is we
include answer tuple construction, dictionary lookups and sending all results to the coor-
dinating thread. We do not include these results, as we saw that for most queries, usually
with results up to a few thousand tuples, the difference is not important, but for queries
with many million results the difference can be significant. This can be seen especially
for query 2 from the LUBM benchmark (about 10M results) where execution time in multi
threaded execution increases from 151 milliseconds in silent mode to 610 milliseconds in
full result handling. The same holds for queries C3 (about 4.3M results) and IL-3-5 to IL-
3-10 from WatDiv which have more than 50M results. Query IL-3-8 has by far the largest
number of results (about 1.6 billion tuples with 9 columns). This is the reason that TriAD

D. Bilidas 124

Database Techniques for Ontology-based Data Access

Single Thread Multi-Thread
PARJ RDFox RDF-3X PARJ-32 TriAD TriAD-SG 200K

LUBM1 15369 96677 1329510 800 4188 4467
LUBM2 2437 40368 21870 151 965 1101
LUBM3 5338 136554 23179 605 2004 15243
LUBM4 5 1 8 10 12 5
LUBM5 1 1 6 4 2 2
LUBM6 3 3 190 5 95 5
LUBM7 9213 31180 68769 473 13400 14125
LUBM8 9899 44144 6485 1336 2838 3906
LUBM9 58082 187192 208839 4014 42932 32982
LUBM10 14606 26690 51235 982 65925 41510
Avg 11495 56281 171009 838 13263 11334
Geomean 864 2536 5581 180 1071 881

Table 5.2: Results for LUBM 10240 (times in ms)

Single Thread Multi-Thread
PARJ RDFox RDF-3X PARJ-32 TriAD TriAD-SG 200K

Y1 9 56 102 11 12 8
Y2 11 2390 380528 13 830 1381
Y3 165 1409 2915 20 280 137
Y4 5 20 110 10 9 3
Avg 48 969 95914 14 283 382
Geomean 17 248 1878 13 71 46

Table 5.3: Results for YAGO2 (times in ms)

runs out of memory for the specific query, since even in silent mode, each worker keeps
in memory all the results instead of using an iterator to send the results to the master (or
discard the results in silent mode) as they are produced, as it is the approach used by
PARJ. Execution times for the full result handling mode of PARJ are included in the online
material to reproduce experiments.

5.5.2.1 Effect of Runtime Join Optimization

In order to examine the effect of our adaptive join method, we have executed the queries of
both datasets using four different strategies as shown in Table 5.6. For WatDiv benchmark
we only report the average and geometric mean of all execution times. In the first (Binary)
column we report the execution times when we always use binary search. In the second
column (AdBinary) we use our adaptive join method in order to switch from binary to se-
quential search. In third column (Index) we always use the ID-to-Position index, whereas
in the last column (AdIndex) we use the adaptive join method in order to switch from ID-to-
position index to sequential search. One can observe that the impact of the adaptive join
method is more important when binary search is employed (comparison of first and sec-

125 D. Bilidas

Database Techniques for Ontology-based Data Access

Single Thread Multi-Thread
PARJ RDFox RDF-3X PARJ-32 TriAD TriAD-SG 200K

L1 5 5 40 10 3 5
L2 8 43 30 5 5 6
L3 2 244 13 4 2 3
L4 3 7 19 4 2 8
L5 9 57 40 6 3 46
Avg 5 71 28 6 3 14
Geomean 5 29 26 5 3 8
S1 49 1209 18 47 34 116
S2 3 284 27 3 4 17
S3 4 17 7 3 2 18
S4 4 153 10 5 5 29
S5 4 1* 14 4 4 20
S6 1 5 8 5 2 3
S7 1 695 7 5 2 3
Avg 9 338* 13 10 8 29
Geomean 4 61* 12 6 4 15
F1 5 24 15 6 5 19
F2 12 153 27 10 37 13
F3 3 59 73 9 29 74
F4 56 249 83 19 9 66
F5 3 10 108 7 40 58
Avg 16 99 61 10 24 46
Geomean 8 56 48 9 18 37
C1 21 50 140 12 39 598
C2 76 178 441 16 40 1574
C3 266 4810 127 45 43** 527**
Avg 121 1679 236 24 41** 900**
Geomean 75 350 199 21 41** 792**

* RDFox returns an empty result-set for query S5, whereas the correct
answer is not empty.

** TriAD returns only distinct answers for query C3, even though modifier
DISTINCT is not present in the SPARQL query. The number of results

returned is only 8162 instead of 4335801.
Table 5.4: Results for WatDiv Basic Workload scale 1000 (times in ms)

D. Bilidas 126

Database Techniques for Ontology-based Data Access

Single Thread Multi-Thread
PARJ RDFox RDF-3X PARJ-32 TriAD TriAD-SG 200K

IL-1 5 3 27617 1339 5 584 5082
IL-1 6 4 204898 1832 4 1482 11814
IL-1 7 8 669099 1272 7 1862 14950
IL-1 8 3 700199 1633 5 1615 21238
IL-1 9 26 728518 1396 11 630 23844
IL-1 10 29 734363 1923 9 618 25752
Avg 12 510782 1566 7 1132 17113
Geomean 8 335194 1546 6 1002 15068
IL-2 5 2 6574 1525 6 476 5340
IL-2 6 5 62149 2046 4 952 11156
IL-2 7 2 78211 1794 3 344 58749
IL-2 8 4 80453 1865 16 1148 62448
IL-2 9 9 86995 1998 6 1062 67045
IL-2 10 4 87872 1867 5 1093 70658
Avg 4 67042 1849 7 846 45899
Geomean 4 51948 1841 6 770 31807
IL-3 5 13259 187101 542948 1494 11195 17093
IL-3 6 58379 397964 357310 7070 13603 25492
IL-3 7 23208 342533 Timeout 1192 1809 23492
IL-3 8 71918 1214564 Timeout 4903 Out Of Memory Out Of Memory
IL-3 9 26437 966919 Timeout 2082 7182 39462
IL-3 10 41867 951513 175247 1882 8118 46593
Avg 39178 676766 3104
Geomean 33565 552681 2496
ML-1 5 2 11481 163 2 56 374
ML-1 6 2 2 83 2 33 1152
ML-1 7 1 1 728 7 2154 4646
ML-1 8 2 1 824 4 103 2018
ML-1 9 5 98058 994 4 198 11766
ML-1 10 4 14111 1482 3 930 9841
Avg 3 20609 712 4 579 4966
Geomean 2 178 478 3 206 2786
ML-2 5 3175 1136335 936 201 413 1849
ML-2 6 2 12182 166 5 92 1041
ML-2 7 121 27151 678 15 296 895
ML-2 8 69 818424 2863 19 1996 24500
ML-2 9 4335 919541 282 259 330 1587
ML-2 10 52 849283 1952 9 728 32449
Avg 1292 627153 1146 85 643 10387
Geomean 151 249327 741 30 419 3599

Table 5.5: Results for WatDiv Incremental and Mixed Linear Workloads scale 1000 (times in ms)

127 D. Bilidas

Database Techniques for Ontology-based Data Access

Query Binary AdBinary Index AdIndex
LUBM1 22186 15454 16557 15369
LUBM2 2877 2443 2535 2437
LUBM3 6562 5491 6415 5338
LUBM4 5 7 7 5
LUBM5 1 1 1 1
LUBM6 2 2 2 3
LUBM7 12246 11866 9197 9213
LUBM8 15725 9782 10420 9899
LUBM9 77468 63586 58171 58082
LUBM10 22359 14892 16217 14606
Avg 15943 12352 11952 11495
Geomean 1034 892 898 864
Watdiv1000 Avg 8439 8003 5013 4869
WatDiv 1000 Geomean 33 28 25 23

Table 5.6: Impact of Adaptive Processing for LUBM 10240 andWatDiv 1000 (times in ms) for 1 thread

ond column), whereas when the ID-to-Position index is used (comparison between third
and fourth column) its contribution to better performance is smaller. This is in line with the
result of our calibration method, where when binary search is used, the result threshold
is about 200 positions, whereas when ID-to-Position index is used the threshold is about
20 positions. Also, it seems that the impact is more important for LUBM queries, where
in case of binary search it leads to a decrease of 23% in average execution time. The
reason for that is that the average execution time for WatDiv queries is heavily affected by
the IL-3 queries, where the impact of the adaptive method is not important, as sequential
search can rarely be used in these queries. This is also the reason for the great reduction
in average execution time of WatDiv queries when the ID-to-Position index is used, as the
aforementioned queries are greatly profit from the index.

5.5.2.2 Effect of ID-to-Position Index

We now proceed to describe the evaluation of our ID-to-Position Index compared to stan-
dard binary search using the LUBM 10240 dataset in the single-thread setting. Table 5.7
shows the number of binary searches and the number of sequential searches which were
performed using the decision of our adaptive join method, using a threshold of about 200
computed with our calibration algorithm. The fact that sequential searches heavily out-
number binary searches provides a strong indication that ordering is present in the RDF
dataset. In order to compare our index with binary search, we kept the threshold the same
as computed in the case of binary search, and executed the queries by performing our
index based lookup instead of binary search, measuring the exact number of total execu-
tion cycles used in the index lookup or binary search procedure each time, as well as the
cache misses for each cache level. If we exclude queries no 1 and 3-6, as they nearly
perform only sequential searches, we can see that our ID-to-Position index results in more

D. Bilidas 128

Database Techniques for Ontology-based Data Access

Query #Binary #Sequential Binary Search ID-to-Position Index
Cycles L1 M L2 M L3 M Cycles L1 M L2 M L3 M

LUBM1 1 107525748 2236 130 49 9 3135 102 43 8
LUBM2 204795 10854018 502M 26.7M 10.8M 3.5M 355M 18.3M 4.4M 543K
LUBM3 1 33169741 2401 140 50 8 4175 139 42 3
LUBM4 4 68 38745 666 368 235 16862 469 182 34
LUBM5 1 10 2423 94 29 0 2395 162 83 5
LUBM6 1 570 2033 106 26 0 2003 130 48 0
LUBM7 2257238 28768005 2.95B 254M 80.1M 2.30M 2.12B 211M 58.9M 1.08M
LUBM8 8645 84755793 17.4M 1.20M 682K 84.1K 11.2M 841K 351K 21.7K
LUBM9 409590 351307982 1.06B 53.6M 19.7M 2.92M 655.7M 39.1M 11.18M 639.7K
LUBM10 558279 116015419 1.22B 66.7M 24.2M 2.98M 798.2M 50.76M 12.7M 634.3K
Table 5.7: Number of binary searches and sequential searches for LUBM10240 chosen by out adap-
tive join method and comparison of binary search with ID-to-Position index with respect to total
execution cycles and L1, L2 and L3 cache misses

than 30% decrease in total execution cycles and similar or larger decrease in the number
of cache misses for all levels of cache hierarchy.

5.5.2.3 Scalability

In this section we experimentally show the scalability of PARJ with regard to a varying
number of threads and varying dataset size. As far as the first issue is concerned, we
can already observe from Section 5.5.2 and specifically from Tables 5.2, 5.4 and 5.5, that
running PARJ in multi threaded mode with 32 threads performs on average about 15 times
better than the single thread version, but for the simple queries, when execution time is less
than few tens milliseconds, multi-threaded execution does not seem to provide important
gains. There are two reasons for that. The first one is the overhead of spawning multiple
threads and the second is that query parsing and optimization take up a large fragment of
the total execution time, which cannot be avoided in multi-threaded execution. The best
example of this is query S1 from WatDiv benchmark which is a star join query with 9 triple
patterns and more than 40 milliseconds of the reported time of 49 milliseconds is spent
on producing the join order in the optimizer.

In order to better examine the behavior of PARJ for a varying number of threads we have
executed the queries from LUBM benchmark for scale 10240 with 1, 2, 4, 8 and 16 threads
as shown in Figure 5.5. We exclude from this presentation simple and very selective
queries L4, L5 and L6 that do not appear to improve from parallelism, since already in the
single-threaded execution their execution time is only a few milliseconds, much of which
is due to query parsing and optimization. On the other hand, complex queries L1, L3,
and L7-L10, and also the simple but not selective query L2 show large and nearly linear
improvement. The reason that we do not show results beyond 16 threads in Figure 5.5
has to do with the capabilities of our testing machine, which has exactly 16 processing
cores. As stated before, best results were obtained with 32 threads as hyper-threading

129 D. Bilidas

Database Techniques for Ontology-based Data Access

Figure 5.4: LUBM 32 threads execution times in ms for different dataset sizes

was enabled, but improvement from 16 to 32 threads cannot be evaluated and interpreted
reliably for the specific scalability experiment, as here we aim to examine the behavior of
PARJ for a varying number of threads given that the underlying hardware can provide full
processing resources to each thread.

We have also examined the scalability of our system for a varying dataset size. Findings in
Figure 5.4 show a similar situation for a varying number of universities up to 20480 (about
2.83 billion triples) in the execution with 32 threads, confirming the excellent scalability of
PARJ.

5.5.2.4 Results for Query Execution over OWL2 QL Ontologies

In this section we provide experimental comparison of our approach for query execution
over OWL2 QL ontologies with other state of the art methods. We use the name PARJOntop

for our prototype as described in Section 5.4. As in the stand-alone version of PARJ, this
implementation is publicly available 4. As main competitors we have used the semantic
indexmode of Ontop with PostgreSQL 10 as backend and a commercial RDF store provid-
ing support for OWL2 QL query answering via query rewriting, which we will call system A,
as due to its license we cannot reveal its real name when providing experimental results.
System A is a disk-based system, but for the experiments we have deployed its database

4https://github.com/dbilid/PARJ-Ontop

D. Bilidas 130

Database Techniques for Ontology-based Data Access

100

1000

10000

100000

1 2 4 8 16

E
x
e
c
u
ti
o
n

 T
im

e
 (

m
s
)

lo
g

s
c
a
le

Number of Threads

LUBM 10240

L1

L2

L3

L7

L8

L9

L10

Figure 5.5: LUBM 10240 execution times in ms for different number of threads

in an in-memory filesystem. We have also tried to use a second commercial system which
is based mainly on materialization, but for the dataset used in our experiments data load-
ing was not completed even after 8 days. For the semantic index experiments we have
used an older version of Ontop (1.12), as in latest versions the semantic index mode is
not maintained. The dataset used in the experiments is from the LUBM∃20 benchmark [63]
for scale of 1000 universities and with incompleteness ratio 5%, which contains about 147
million triples and the raw data size in NTriples format is 25.5 GB. The queries are the
same used in [82]. In contrast with the experiments described in previous sections, here,
for all the systems, we include in the results the time needed to perform dictionary lookups
and tuple construction. The reason is that we could not modify System A so as to exclude
these features. Results are presented in Table 5.8. PARJOntop was the only system that
successfully executed all queries in a 30 minutes time limit per query, as q1 was timed out
for semantic index, and q5 returned an error in System A. For the rest of the queries, even
the single thread version of PARJ is on average about an order of magnitude faster than
the other two systems. Regarding the overhead of union wrappers, we have executed
all the queries with the hierachies materialized in PARJ, in order to estimate the impact
they have on query execution. The average execution time for single thread execution
decreased from 15554 milliseconds to 13790, with the overhead being less than 13%,
even though all queries involved union wrappers of large hierarchies, some of them, like
q7, with up to six different union wrappers involved in the same query.

131 D. Bilidas

Database Techniques for Ontology-based Data Access

PARJ-1 PARJ-32 SI-PostgreSQL SystemA
q1 197997 10619 TIMEOUT 673268
q2 3977 251 32477 2610
q3 2369 190 59530 15803
q4 3890 482 2749 47029
q5 4828 459 60490 ERROR
q6 5 11 25318 240
q7 467 70 19413 8730
q8 184 26 924 7853
q9 1 1 1 145
r1 1 1 1 151
r2 522 66 3049 525
r3 3170 390 26433 30745
r4 181 25 803 797
r5 170 62 1 1505

Table 5.8: Results for LUBM∃
20 1000 (times in ms)

5.5.2.5 Comparison With Distributed RDF Stores

A comparison of a parallel centralized system with distributed systems is not straightfor-
ward, as many factors come into play in order to have a result that will be as fair and
complete as possible. In this section we attempt some first comparison of PARJ with
existing RDF stores based on a recently published survey [2] and we plan to further in-
vestigate this issue experimentally in the future. The aforementioned survey presents an
experimental comparison of 12 distributed systems designed for shared-nothing clusters,
chosen as the most competitive and innovative from a variety of approaches and charac-
teristics. The experiments were performed on a cluster with 12 servers, each with 148GB
of memory and 24 cores, using, among others, the LUBM 10240 (only queries LUBM1-
LUBM7) andWatDiv 1000 (only basic workload) benchmarks. For both these benchmarks
the single server results of PARJ (in the full result handling mode) are comparable with the
faster of the reported systems which is the non-adaptive version of AdPart (the adaptive
version is not included in the results of [2]). Specifically, the average and geometric mean
of execution times for first seven queries of LUBM 10240 are 918 and 75 milliseconds
respectively (compared with 419 and 103 for PARJ in full result handling mode) whereas
the geometric means for the 4 query categories of the basic workload of WatDiv 1000 are
9, 7, 160 and 111 milliseconds (compared with 9, 10, 12 and 48 for PARJ in full result
handling mode).

D. Bilidas 132

Database Techniques for Ontology-based Data Access

6. CONCLUSIONS AND FUTURE WORK

In this thesis we have studied the problem of efficient query answering in OBDA systems
over external data sources. For the case where we have a single relational data source,
we have identified redundant processing as a bottleneck in query processing and we have
proposed solutions to overcome this problem, by providing a complete cost-based query
translation method. We believe that using cost-based planning is a prominent direction
towards OBDA query optimization, that has not been fully explored yet. In future work, we
plan to incorporate decisions about physical database design by analyzing the mapping
assertions. One more direction regarding future research has to do with duplicate elimi-
nation in case the OBDA system is equipped with query processing capabilities, in other
words when it acts as a mediator as the Exareme OBDA mediator presented in Chapter 4.
In this setting, along with decisions regarding which query fragments should be evaluated
in external databases, one should decide when duplicate elimination should be “pushed”
to endpoints or performed by the OBDA processing engine during data import.

Regarding query processing for federated execution, as presented in Chapter 4, an in-
teresting extension has to do with the support of non-relational external sources. In the
context of OBDA there have been some first results about access to other types of data
sources, as for example NoSQL databases [19] and web data sources [10]. One useful
functionality for Exareme mediator would be to support such data sources as endpoints
and provide the user with unified access to both relational and non-relational endpoints.
In this scenario we also plan to employ PARJ as an endpoint for storing RDF data.

Regarding Chapter 5, we have presented the in-memory system PARJ for parallelizing
OBDA join queries on RDF graphs. We have shown that our design has excellent scaling
capabilities and performance. For future work, we first plan to perform a more thorough
experimental comparison with distributed RDF stores. As we mentioned, it is straightfor-
ward to extend PARJ to a “cluster” version through full replication, such that during query
execution each worker start processing from different initial shard. We plan to implement
and compare this version with the current state of the art distributed systems. We also
want to further evaluate PARJ on a high-end server with larger available memory, in or-
der to load and process larger RDF graphs. Based on the scaling capabilities presented
during the experiments, we anticipate that our approach will be able to efficiently handle
such datasets.

Another prominent research direction has to do with query optimization and support for
geospatial queries. In this case, the initial queries over the ontology can be expressed
in the query language GeoSPARQL[72], which is a geospatial extension of SPARQL and
it is standardized by the Open Geospatial Consortium (OGC). The system Ontop-spatial
[11] is a state of the art system that performs OBDA query translaton from GeoSPARQL to
SQL enhanced with spatial operators for execution in spatially enabled relational systems
like PostGIS. An interesting extension would be the support of geospatial operators in the
Exareme mediator system, where spatially enabled databases could act as endpoints,
and also spatial processing capabilities should be added to the mediator itself in order to

133 D. Bilidas

Database Techniques for Ontology-based Data Access

perform spatial joins between data coming from different endpoints. A similar extension
could be added to PARJ, in order to support GeoSPARQL queries coming from Ontop-
spatial.

D. Bilidas 134

Database Techniques for Ontology-based Data Access

ABBREVIATIONS - ACRONYMS

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

OWL Web Ontology Language

W3C World Wide Web Consortium

OGC Open Geospatial Consortium

OBDA Ontology-based Data Access

CQ Conjunctive Query

UCQ Union of Conjunctives Queries

JUCQ Join of Unions of Conjunctives Queries

NPD Norwegian Petroleum Directorate

LUBM Lehigh University Benchmark

RAM Random-Access Memory

TGD Tuple-Generating Dependency

UDF User-Defined Function

YAGO 2 Yet Another Great Ontology 2

DAG Directed Acyclic Graph

JDBC Java Database Connectivity

XML Extensible Markup Language

API Application Programming Interface

PARJ Parallel Adaptive RDF Joins

SLD-resolution Selective Linear Definite clause resolution

IRI Internationalized Resource Identifier

R2RML RDB-to-RDF Mapping Language

RML RDF Mapping Language

UoA National and Kapodistrian University of Athens

135 D. Bilidas

Database Techniques for Ontology-based Data Access

NTUA National Technical University of Athens

D. Bilidas 136

Database Techniques for Ontology-based Data Access

APPENDIX A. NPD QUERIES 31-34

SELECT DISTINCT ?q ?u
WHERE {
?q :inLithostratigraphicUnit ?u .
?u rdf:type :LithostratigraphicUnit .
}

Listing A.1: Query NPD 31

SELECT DISTINCT ?quadrant ?name
WHERE {
?quadrant rdf:type :Quadrant .
?quadrant :name ?name .
}

Listing A.2: Query NPD 32

SELECT DISTINCT ?unit ?era
WHERE {
?unit :geochronologicEra ?era .
?unit rdf:type :LithostratigraphicUnit .
}

Listing A.3: Query NPD 33

SELECT DISTINCT ?wellbore ?discovery ?year
WHERE {
?wellbore rdf:type :Wellbore .
?wellbore :wellboreForDiscovery ?discovery .
?discovery :discoveryYear ?year
}

Listing A.4: Query NPD 34

137 D. Bilidas

Database Techniques for Ontology-based Data Access

D. Bilidas 138

Database Techniques for Ontology-based Data Access

REFERENCES

[1] Daniel J. Abadi, Adam Marcus, Samuel Madden, and Katherine J. Hollenbach. Scalable semantic web
data management using vertical partitioning. In Proceedings of the 33rd International Conference on
Very Large Data Bases, University of Vienna, Austria, September 23-27, 2007, pages 411–422, 2007.

[2] Ibrahim Abdelaziz, Razen Harbi, Zuhair Khayyat, and Panos Kalnis. A survey and experimental com-
parison of distributed SPARQL engines for very large RDF data. PVLDB, 10(13):2049–2060, 2017.

[3] Razen Al-Harbi, Ibrahim Abdelaziz, Panos Kalnis, Nikos Mamoulis, Yasser Ebrahim, and Majed Sahli.
Accelerating SPARQL queries by exploiting hash-based locality and adaptive partitioning. VLDB J.,
25(3):355–380, 2016.

[4] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. Massively parallel sort-merge joins in
main memory multi-core database systems. Proceedings of the VLDB Endowment, 5(10):1064–1075,
2012.

[5] Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis, Dimitris Plexousakis, and Karsten Tolle.
The ICS-FORTH RDFSuite: Managing voluminous RDF description bases. In SemWeb, 2001.

[6] Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. Diversified stress testing of RDF
data management systems. In The Semantic Web - ISWC 2014 - 13th International Semantic Web
Conference, Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part I, pages 197–212, 2014.

[7] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng,
Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. Spark SQL: relational data processing
in spark. In SIGMOD Conference, pages 1383–1394. ACM, 2015.

[8] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary G. Ives.
DBpedia: A nucleus for a web of open data. In The Semantic Web, 6th International Semantic Web Con-
ference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November
11-15, 2007., pages 722–735, 2007.

[9] Franz Baader, Diego Calvanese, Deborah McGuinness, Peter Patel-Schneider, Daniele Nardi, et al.
The Description Logic handbook: Theory, implementation and applications. Cambridge university press,
2003.

[10] Konstantina Bereta, George Papadakis, and Manolis Koubarakis. Obda for the web: Creating virtual
rdf graphs on top of web data sources. arXiv preprint arXiv:2005.11264, 2020.

[11] Konstantina Bereta, Guohui Xiao, and Manolis Koubarakis. Ontop-spatial: Ontop of geospatial
databases. Journal of Web Semantics, 58:100514, 2019.

[12] Dimitris Bilidas and Manolis Koubarakis. Efficient duplicate elimination in SPARQL to SQL translation.
In Proceedings of the 31st International Workshop on Description Logics co-located with 16th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR 2018), Tempe, Ari-
zona, US, October 27th - to - 29th, 2018, volume 2211 ofCEURWorkshop Proceedings. CEUR-WS.org,
2018.

[13] Dimitris Bilidas and Manolis Koubarakis. Scalable parallelization of RDF joins on multicore architec-
tures. In Advances in Database Technology - 22nd International Conference on Extending Database
Technology, EDBT 2019, Lisbon, Portugal, March 26-29, 2019, pages 349–360, 2019.

[14] Dimitris Bilidas and Manolis Koubarakis. Handling redundant processing in OBDA query execution
over relational sources (currently under review). 2020.

[15] Dimitris Bilidas andManolis Koubarakis. In-memory parallelization of join queries over large ontological
hierarchies. Distributed and Parallel Databases, pages 1–38, 2020.

[16] Dina Bitton and David J DeWitt. Duplicate record elimination in large data files. ACM Transactions on
database systems (TODS), 8(2):255–265, 1983.

[17] Renata Borovica-Gajic, Stratos Idreos, Anastasia Ailamaki, Marcin Zukowski, and Campbell Fraser.
Smooth scan: Statistics-oblivious access paths. In Data Engineering (ICDE), 2015 IEEE 31st Interna-
tional Conference on, pages 315–326. IEEE, 2015.

[18] Renata Borovica-Gajic, Stratos Idreos, Anastasia Ailamaki, Marcin Zukowski, and Campbell Fraser.

139 D. Bilidas

Database Techniques for Ontology-based Data Access

Smooth scan: robust access path selection without cardinality estimation. The VLDB Journal, pages
1–25, 2018.

[19] Elena Botoeva, Diego Calvanese, Benjamin Cogrel, Julien Corman, and Guohui Xiao. A generalized
framework for ontology-based data access. In International Conference of the Italian Association for
Artificial Intelligence, pages 166–180. Springer, 2018.

[20] Damian Bursztyn, François Goasdoué, and Ioana Manolescu. Teaching an RDBMS about ontological
constraints. Proceedings of the VLDB Endowment, 9(12):1161–1172, 2016.

[21] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Davide Lanti, Martin
Rezk, Mariano Rodriguez-Muro, and Guohui Xiao. Ontop: Answering SPARQL queries over relational
databases. Semantic Web, 8(3):471–487, 2017.

[22] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.
Dl-lite: Tractable description logics for ontologies. In AAAI, volume 5, pages 602–607, 2005.

[23] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.
Tractable reasoning and efficient query answering in description logics: The dl-lite family. Journal of
Automated reasoning, 39(3):385–429, 2007.

[24] Diego Calvanese, Martin Giese, Dag Hovland, and Martin Rezk. Ontology-based integration of cross-
linked datasets. In International Semantic Web Conference, pages 199–216. Springer, 2015.

[25] Donald D. Chamberlin, Morton M. Astrahan, Mike W. Blasgen, Jim Gray, W. Frank King III, Bruce G.
Lindsay, Raymond A. Lorie, James W. Mehl, Thomas G. Price, Gianfranco R. Putzolu, Patricia G.
Selinger, Mario Schkolnick, Donald R. Slutz, Irving L. Traiger, Bradford W. Wade, and Robert A. Yost.
A history and evaluation of system R. Commun. ACM, 24(10):632–646, 1981.

[26] Surajit Chaudhuri and Moshe Y Vardi. Optimization of real conjunctive queries. In Proceedings of the
twelfth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pages 59–70.
ACM, 1993.

[27] Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou. Optimized query rewriting for OWL 2
QL. In International Conference on Automated Deduction, pages 192–206. Springer, 2011.

[28] J. Crompton. Keynote talk at the W3C workshop on sem. web in oil & gas industry, 2008. Available
from http://www.w3.org/2008/12/ogws-slides/Crompton.pdf.

[29] David DeHaan and Frank Wm Tompa. Optimal top-down join enumeration. In Proceedings of the 2007
ACM SIGMOD international conference on Management of data, pages 785–796. ACM, 2007.

[30] David J. DeWitt. The wisconsin benchmark: Past, present, and future. In Jim Gray, editor, The Bench-
mark Handbook for Database and Transaction Systems (2nd Edition). Morgan Kaufmann, 1993.

[31] Jin-Hang Du, Haofen Wang, Yuan Ni, and Yong Yu. HadoopRDF: A scalable semantic data analytical
engine. In Intelligent Computing Theories and Applications - 8th International Conference, ICIC 2012,
Huangshan, China, July 25-29, 2012. Proceedings, pages 633–641, 2012.

[32] Pit Fender, Guido Moerkotte, Thomas Neumann, and Viktor Leis. Effective and robust pruning for
top-down join enumeration algorithms. In Data Engineering (ICDE), 2012 IEEE 28th International Con-
ference on, pages 414–425. IEEE, 2012.

[33] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. Query rewriting and optimization for ontological
databases. ACM Transactions on Database Systems (TODS), 39(3):25, 2014.

[34] Goetz Graefe. The cascades framework for query optimization. IEEE Data Eng. Bull., 18(3):19–29,
1995.

[35] Goetz Graefe and William J McKenna. The Volcano optimizer generator: Extensibility and efficient
search. In Data Engineering, 1993. Proceedings. Ninth International Conference on, pages 209–218.
IEEE, 1993.

[36] Jinghua Groppe and Sven Groppe. Parallelizing join computations of SPARQL queries for large se-
mantic web databases. In Proceedings of the 2011 ACM Symposium on Applied Computing, pages
1681–1686. ACM, 2011.

[37] The W3C SPARQL Working Group. SPARQL 1.1 Overview. W3C Recommendation 21 March 2013.
Retrieved November 17, 2020, from https://www.w3.org/TR/sparql11-overview/.

[38] YuanboGuo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL knowledge base systems.
J. Web Sem., 3(2-3):158–182, 2005.

[39] Sairam Gurajada, Stephan Seufert, Iris Miliaraki, and Martin Theobald. Triad: a distributed shared-

D. Bilidas 140

http://www.w3.org/2008/12/ogws-slides/Crompton.pdf
https://www.w3.org/TR/sparql11-overview/

Database Techniques for Ontology-based Data Access

nothing RDF engine based on asynchronous message passing. In International Conference on Man-
agement of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages 289–300, 2014.

[40] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard Weikum. YAGO2: A spatially
and temporally enhanced knowledge base from wikipedia. Artificial Intelligence, 194:28–61, 2013.

[41] Dag Hovland, Roman Kontchakov, Martin G Skjæveland, Arild Waaler, and Michael Zakharyaschev.
Ontology-based data access to slegge. In International Semantic Web Conference, pages 120–129.
Springer, 2017.

[42] Jiewen Huang, Daniel J. Abadi, and Kun Ren. Scalable SPARQL querying of large RDF graphs.
PVLDB, 4(11):1123–1134, 2011.

[43] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender, and Martin L. Ker-
sten. Monetdb: Two decades of research in column-oriented database architectures. IEEE Data Eng.
Bull., 35(1):40–45, 2012.

[44] Yannis Ioannidis. The history of histograms (abridged). In Proceedings of the 29th international con-
ference on Very large data bases-Volume 29, pages 19–30. VLDB Endowment, 2003.

[45] Zachary G Ives, Daniela Florescu, Marc Friedman, Alon Levy, and Daniel S Weld. An adaptive query
execution system for data integration. ACM SIGMOD Record, 28(2):299–310, 1999.

[46] Jason St Jacques, David Toman, and Grant E Weddell. Object-relational queries over CFD∀−
nc knowl-

edge bases: OBDA for the SQL-literate. In Description Logics, 2016.
[47] Zoi Kaoudi and Ioana Manolescu. RDF in the clouds: a survey. The VLDB Journal, 24(1):67–91, 2015.
[48] Evgeny Kharlamov, Dag Hovland, Ernesto Jiménez-Ruiz, Davide Lanti, Hallstein Lie, Christoph Pinkel,

Martin Rezk, Martin G Skjæveland, Evgenij Thorstensen, Guohui Xiao, Dmitriy Zheleznyakov, and Ian
Horrocks. Ontology based access to exploration data at Statoil. In International Semantic Web Confer-
ence, pages 93–112. Springer, 2015.

[49] Evgeny Kharlamov, Dag Hovland, Martin G Skjæveland, Dimitris Bilidas, Ernesto Jiménez-Ruiz, Guo-
hui Xiao, Ahmet Soylu, Davide Lanti, Martin Rezk, Dmitriy Zheleznyakov, et al. Ontology based data
access in statoil. Journal of Web Semantics, 44:3–36, 2017.

[50] Evgeny Kharlamov, Ernesto Jiménez-Ruiz, Dmitriy Zheleznyakov, Dimitris Bilidas, Martin Giese, Peter
Haase, Ian Horrocks, Herald Kllapi, Manolis Koubarakis, Özgür Özçep, et al. Optique: Towards OBDA
systems for industry. In Extended Semantic Web Conference, pages 125–140. Springer, 2013.

[51] Evgeny Kharlamov, T Mailis, Konstantina Bereta, Dimitris Bilidas, Sebastian Brandt, Ernesto Jiménez-
Ruiz, Steffen Lamparter, Christian Neuenstadt, O Özçep, Ahmet Soylu, et al. A semantic approach to
polystores. In 2016 IEEE International Conference on Big Data (Big Data), pages 2565–2573. IEEE,
2016.

[52] Stanislav Kikot, Roman Kontchakov, and Michael Zakharyaschev. Conjunctive query answering with
OWL 2 QL. In Thirteenth International Conference on the Principles of Knowledge Representation and
Reasoning, 2012.

[53] Changkyu Kim, Tim Kaldewey, Victor W Lee, Eric Sedlar, Anthony D Nguyen, Nadathur Satish, Jatin
Chhugani, Andrea Di Blas, and Pradeep Dubey. Sort vs. hash revisited: fast join implementation on
modern multi-core CPUs. Proceedings of the VLDB Endowment, 2(2):1378–1389, 2009.

[54] Herald Kllapi, Dimitris Bilidas, Ian Horrocks, Yannis Ioannidis, Ernesto Jiménez, Evgeny Kharlamov,
Manolis Koubarakis, Dmitriy Zheleznyakov, et al. Distributed query processing on the cloud: the optique
point of view (short paper). 2013.

[55] Herald Kllapi, Eva Sitaridi, Manolis M Tsangaris, and Yannis Ioannidis. Schedule optimization for data
processing flows on the cloud. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data, pages 289–300, 2011.

[56] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Zakharyaschev. The
combined approach to ontology-based data access. In Twenty-second international joint conference on
artificial intelligence, 2011.

[57] Manolis Koubarakis and Kostis Kyzirakos. Modeling and Querying Metadata in the Semantic Sensor
Web: The Model stRDF and the Query Language stSPARQL. In ESWC, 2010.

[58] Davide Lanti, Martin Rezk, Guohui Xiao, and Diego Calvanese. The NPD benchmark: Reality check
for OBDA systems. In Proc. of the 18th Int. Conf. on Extending Database Technology (EDBT), 2015.

[59] Davide Lanti, Guohui Xiao, and Diego Calvanese. Cost-driven ontology-based data access. In The

141 D. Bilidas

Database Techniques for Ontology-based Data Access

Semantic Web - ISWC 2017 - 16th International Semantic Web Conference, Vienna, Austria, October
21-25, 2017, Proceedings, Part I, volume 10587 of Lecture Notes in Computer Science, pages 452–470.
Springer, 2017.

[60] John W Lloyd. Foundations of logic programming. Springer Science & Business Media, 2012.
[61] John W. Lloyd and John C Shepherdson. Partial evaluation in logic programming. The Journal of Logic

Programming, 11(3-4):217–242, 1991.
[62] Yongming Luo, François Picalausa, George HL Fletcher, Jan Hidders, and Stijn Vansummeren. Storing

and indexing massive RDF datasets. In Semantic search over the web, pages 31–60. Springer, 2012.
[63] Carsten Lutz, Inanç Seylan, David Toman, and Frank Wolter. The combined approach to OBDA: Tam-

ing role hierarchies using filters. In International semantic web conference, pages 314–330. Springer,
2013.

[64] Stefan Manegold, Peter Boncz, and Martin Kersten. Optimizing main-memory join on modern hard-
ware. IEEE Transactions on Knowledge and Data Engineering, 14(4):709–730, 2002.

[65] Stefan Manegold, Peter Boncz, and Martin L Kersten. Generic database cost models for hierarchi-
cal memory systems. In VLDB’02: Proceedings of the 28th International Conference on Very Large
Databases, pages 191–202. Elsevier, 2002.

[66] Jose Mora and Óscar Corcho. Engineering optimisations in query rewriting for OBDA. In Proceedings
of the 9th International Conference on Semantic Systems, pages 41–48. ACM, 2013.

[67] Jaeseok Myung, Jongheum Yeon, and Sang-goo Lee. Sparql basic graph pattern processing with
iterative mapreduce. In Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud.
ACM, 2010.

[68] Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu, and Jay Banerjee. RDFox: A highly-
scalable RDF store. In International Semantic Web Conference, pages 3–20. Springer, 2015.

[69] Thomas Neumann and Guido Moerkotte. Characteristic sets: Accurate cardinality estimation for RDF
queries with multiple joins. In ICDE, pages 984–994. IEEE Computer Society, 2011.

[70] Thomas Neumann and Gerhard Weikum. Scalable join processing on very large RDF graphs. In
SIGMOD Conference, pages 627–640. ACM, 2009.

[71] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins. Pig latin:
a not-so-foreign language for data processing. In SIGMOD Conference, pages 1099–1110. ACM, 2008.

[72] Open Geospatial Consortium. OGC GeoSPARQL - A geographic query language for RDF data. OGC®

Implementation Standard, 2012.
[73] Nikolaos Papailiou, Dimitrios Tsoumakos, Ioannis Konstantinou, Panagiotis Karras, and Nectarios

Koziris. H2RDF+: an efficient data management system for big RDF graphs. In SIGMOD Conference,
pages 909–912. ACM, 2014.

[74] Jooseok Park and Arie Segev. Using common subexpressions to optimize multiple queries. In Data
Engineering, 1988. Proceedings. Fourth International Conference on, pages 311–319. IEEE, 1988.

[75] Arjan Pellenkoft, César A Galindo-Legaria, and Martin Kersten. The complexity of transformation-
based join enumeration. In VLDB, pages 306–315, 1997.

[76] Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik. Efficient query answering for owl 2. The Semantic
Web-ISWC 2009, pages 489–504, 2009.

[77] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Riccardo Rosati. Linking data to ontologies. In Journal on data semantics X, pages 133–173. Springer,
2008.

[78] Anthony Potter, Boris Motik, Yavor Nenov, and Ian Horrocks. Distributed RDF query answering with
dynamic data exchange. In International Semantic Web Conference (1), volume 9981 of Lecture Notes
in Computer Science, pages 480–497, 2016.

[79] Roshan Punnoose, Adina Crainiceanu, and David Rapp. SPARQL in the cloud using Rya. Inf. Syst.,
48:181–195, 2015.

[80] Wilson Qin and Stratos Idreos. Adaptive data skipping in main-memory systems. In Proceedings of
the 2016 International Conference on Management of Data, pages 2255–2256. ACM, 2016.

[81] Padmashree Ravindra, HyeongSik Kim, and Kemafor Anyanwu. An intermediate algebra for optimizing
RDF graph pattern matching on mapreduce. In ESWC (2), volume 6644 of Lecture Notes in Computer
Science, pages 46–61. Springer, 2011.

D. Bilidas 142

Database Techniques for Ontology-based Data Access

[82] Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev. Ontology-based data ac-
cess: Ontop of databases. In International Semantic Web Conference, pages 558–573. Springer, 2013.

[83] Mariano Rodríguez-Muro and Martin Rezk. Efficient SPARQL-to-SQL with R2RML mappings. Web
Semantics: Science, Services and Agents on the World Wide Web, 33:141–169, 2015.

[84] Kurt Rohloff and Richard E. Schantz. High-performance, massively scalable distributed systems using
the mapreduce software framework: the SHARD triple-store. In PSI EtA, page 4. ACM, 2010.

[85] Kurt Rohloff and Richard E. Schantz. Clause-iteration with mapreduce to scalably query datagraphs
in the SHARD graph-store. In DICT@HPDC, pages 35–44. ACM, 2011.

[86] Riccardo Rosati and Alessandro Almatelli. Improving query answering over DL-Lite ontologies. In
Twelfth International Conference on the Principles of Knowledge Representation and Reasoning, 2010.

[87] Prasan Roy, Sridhar Seshadri, S Sudarshan, and Siddhesh Bhobe. Efficient and extensible algorithms
for multi query optimization. ACM SIGMOD Record, 29(2):249–260, 2000.

[88] Alexander Schätzle, Martin Przyjaciel-Zablocki, and Georg Lausen. PigSPARQL: mapping SPARQL
to Pig Latin. In SWIM, page 4. ACM, 2011.

[89] Alexander Schätzle, Martin Przyjaciel-Zablocki, Simon Skilevic, and Georg Lausen. S2RDF: RDF
querying with SPARQL on spark. PVLDB, 9(10):804–815, 2016.

[90] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. Adoption of the linked data best prac-
tices in different topical domains. In Semantic Web Conference (1), volume 8796 of Lecture Notes in
Computer Science, pages 245–260. Springer, 2014.

[91] Timos K Sellis. Multiple-query optimization. ACM Transactions on Database Systems (TODS),
13(1):23–52, 1988.

[92] Juan F Sequeda, Marcelo Arenas, and Daniel P Miranker. OBDA: query rewriting or materialization?
in practice, both! In International Semantic Web Conference, pages 535–551. Springer, 2014.

[93] Juan F Sequeda and Daniel P Miranker. Ultrawrap: SPARQL execution on relational data. Web
Semantics: Science, Services and Agents on the World Wide Web, 22:19–39, 2013.

[94] Leonard Shapiro, David Maier, Paul Benninghoff, Keith Billings, Yubo Fan, Kavita Hatwal, QuanWang,
Yu Zhang, H-M Wu, and Bennet Vance. Exploiting upper and lower bounds in top-down query optimiza-
tion. InDatabase Engineering and Applications, 2001 International Symposium on., pages 20–33. IEEE,
2001.

[95] Yasin N Silva, P-A Larson, and Jingren Zhou. Exploiting common subexpressions for cloud query
processing. In Data Engineering (ICDE), 2012 IEEE 28th International Conference on, pages 1337–
1348. IEEE, 2012.

[96] Dominik Ślezak, Jakub Wróblewski, Victoria Eastwood, and Piotr Synak. Brighthouse: an analytic data
warehouse for ad-hoc queries. Proceedings of the VLDB Endowment, 1(2):1337–1345, 2008.

[97] Giorgio Stefanoni, Boris Motik, and Egor V Kostylev. Estimating the cardinality of conjunctive queries
over RDF data using graph summarisation. In Proceedings of the 2018 World Wide Web Conference on
World Wide Web, pages 1043–1052. International World Wide Web Conferences Steering Committee,
2018.

[98] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack, Miguel Ferreira,
Edmond Lau, Amerson Lin, Samuel Madden, Elizabeth J. O’Neil, Patrick E. O’Neil, Alex Rasin, Nga
Tran, and Stanley B. Zdonik. C-store: A column-oriented DBMS. In VLDB, pages 553–564. ACM, 2005.

[99] Julien Subercaze, Christophe Gravier, Jules Chevalier, and Frederique Laforest. Inferray: fast in-
memory RDF inference. Proceedings of the VLDB Endowment, 9(6):468–479, 2016.

[100] Arun Swami and K Bernhard Schiefer. On the estimation of join result sizes. In International Confer-
ence on Extending Database Technology, pages 287–300. Springer, 1994.

[101] Manolis M Tsangaris, George Kakaletris, Herald Kllapi, Giorgos Papanikos, Fragkiskos Pentaris, Paul
Polydoras, Eva Sitaridi, Vassilis Stoumpos, and Yannis E Ioannidis. Dataflow processing and optimiza-
tion on grid and cloud infrastructures. IEEE Data Eng. Bull., 32(1):67–74, 2009.

[102] CathrinWeiss, Panagiotis Karras, and AbrahamBernstein. Hexastore: sextuple indexing for semantic
web data management. PVLDB, 1(1):1008–1019, 2008.

[103] Kevin Wilkinson, Craig Sayers, Harumi A. Kuno, and Dave Reynolds. Efficient RDF storage and
retrieval in jena2. In SWDB, pages 131–150, 2003.

[104] Guohui Xiao, Dag Hovland, Dimitris Bilidas, Martin Rezk, Martin Giese, and Diego Calvanese. Ef-

143 D. Bilidas

Database Techniques for Ontology-based Data Access

ficient ontology-based data integration with canonical IRIs. In European Semantic Web Conference,
pages 697–713. Springer, 2018.

[105] Guohui Xiao, Davide Lanti, Roman Kontchakov, Sarah Komla-Ebri, Elem Güzel-Kalaycı, Linfang
Ding, Julien Corman, Benjamin Cogrel, Diego Calvanese, and Elena Botoeva. The virtual knowledge
graph system Ontop. ISWC 2020 - 19th International Semantic Web Conference, 2020.

[106] Pingpeng Yuan, Pu Liu, BuwenWu, Hai Jin, Wenya Zhang, and Ling Liu. Triplebit: a fast and compact
system for large scale RDF data. Proceedings of the VLDB Endowment, 6(7):517–528, 2013.

[107] Kai Zeng, Jiacheng Yang, HaixunWang, Bin Shao, and ZhongyuanWang. A distributed graph engine
for web scale RDF data. PVLDB, 6(4):265–276, 2013.

[108] Jingren Zhou, P-A Larson, and Ronnie Chaiken. Incorporating partitioning and parallel plans into the
SCOPE optimizer. In Data Engineering (ICDE), 2010 IEEE 26th International Conference on, pages
1060–1071. IEEE, 2010.

[109] Jingren Zhou, Per-Ake Larson, Johann-Christoph Freytag, andWolfgang Lehner. Efficient exploitation
of similar subexpressions for query processing. In Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 533–544. ACM, 2007.

D. Bilidas 144

	CONTENTS
	INTRODUCTION
	Contributions
	Publications
	Thesis structure

	BACKGROUND AND RELATED WORK
	RDF and SPARQL
	Ontology-based Data Access (OBDA)
	Systems and approaches for RDF Storage and SPARQL query processing
	In-memory data processing

	HANDLING REDUNDANT PROCESSING IN OBDA QUERY EXECUTION OVER RELATIONAL SOURCES
	Introduction and Outline
	Preliminaries
	Databases.
	Queries.
	Ontology and Mappings.
	Logic Programs

	Unfolding Queries Through Partial Evaluation
	Offline Duplicate Elimination With Materialized Views
	Pushing Duplicate Elimination Before IRI Construction
	Cost-Based Selection of Query Translation
	Analyzing External Tables
	Early Duplicate Elimination of Intermediate Results
	Cost-based Translation

	Implementation and Experimental Evaluation
	Experiments with NPD and LUBM Benchmarks
	Queries and Mappings
	Overhead in Setup and Optimization
	Results

	Comparison with the JUCQ Approach
	Performance gain
	Evaluating the Duplicate Elimination Heuristic

	Related Work and Conclusions

	FEDERATED OBDA QUERY EXECUTION
	Introduction
	Background
	The Optique Platform
	The Exareme System
	Language and Optimization:
	Execution Engine:
	Worker Pool:
	Data / Stream Connector:
	 Data Import:
	 Query Execution:

	Overview
	Federated Analyzer
	Common Subexpression Identification
	Pushing processing to endpoints
	Caching Intermediate Results

	Query Optimization in the OBDA Mediator
	Transformation-Based Optimization
	Incorporating Partitioning Information in the Search and Pruning
	Adapting Volcano-style Search in Exareme
	Search with Materialized Results
	Improving Common Subexpression Identification

	Experimental Evaluation
	Experiments in the Statoil Optique Use-Case
	Experiments using Canonical IRIs

	Conclusions

	IN-MEMORY PARALLELIZATION OF JOIN QUERIES OVER LARGE ONTOLOGICAL HIERARCHIES
	Introduction
	Physical Data Storage and Execution Model
	Query Processing
	Adaptive Join Processing
	ID-to-Position Index

	Query Execution Over Ontological Hierarchies
	System Design
	Union Wrappers for Ontology Hierarchies
	Join Ordering and Selectivity Estimation

	Experiments
	Setup
	Results
	Effect of Runtime Join Optimization
	Effect of ID-to-Position Index
	Scalability
	Results for Query Execution over OWL2 QL Ontologies
	Comparison With Distributed RDF Stores

	CONCLUSIONS AND FUTURE WORK
	ABBREVIATIONS - ACRONYMS
	APPENDICES
	NPD Queries 31-34
	REFERENCES

