
iThink: A Library for Classical Planning

in Video-Games

Vassileios-Marios Anastassiou, Panagiotis Diamantopoulos,
Stavros Vassos, and Manolis Koubarakis

Department of Informatics and Telecommunications
National and Kapodistrian University of Athens

Athens 15784, Greece
{astyanax,panos 10d,stavrosv,koubarak}@di.uoa.gr

Abstract. Academic artificial intelligence (AI) techniques have recently
started to play a more central role in the development of commercial
video games. In particular, classical planning methods for specifying a
goal-oriented behavior have proven to be useful to game developers in
an increasingly number of cases. Motivated by the fact that there is no
clear standard for developing a goal-oriented behavior in video games, we
present iThink, a framework that allows the use of academic techniques
for classical planning in order to achieve goal-oriented behavior in a real
game developing environment. In our work we focus on STRIPS, a well-
studied framework for classical planning, and Unity3D, a popular game
engine that is becoming an emerging standard for, so-called, “indie” game
development. Except for being a useful tool for game developers, we
believe that iThink can be used in education, providing a modern and
fun environment for learning and experimenting with classical planning.

1 Introduction

Traditionally, the artificial intelligence (AI) methods used in video games have
not relied on techniques that have been developed in the academic field of AI.
Essentially, game developers create an illusion of intelligence using a few pro-
gramming tricks without the need to rely on deliberation or other sophisticated
techniques from academic AI [6,13]. As a fast and robust implementation is very
critical for the video game industry, this approach proved to be effective and
convenient. In particular, this meant that for most video games the behavior of
non-player characters (NPCs) involved a number of pre-programmed responses
that vary depending on conditions about the game-world and the player.

This was not a problem for many years as the video game industry was able
to evolve remarkably well based on the advances in other areas such as computer
graphics whose impact on the game-play was celebrated by the players. The de-
sign of more challenging NPCs was typically counter-weighed by giving them
more power than the human players (e.g., extra strength or speed, omniscience).
Nonetheless, it seems that in the last few years the game industry has reached a
point where more sophisticated techniques for NPC behavior are necessary. This

I. Maglogiannis, V. Plagianakos, and I. Vlahavas (Eds.): SETN 2012, LNAI 7297, pp. 106–113, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

iThink: A Library for Classical Planning in Video-Games 107

has been acknowledged both by gamers who thirst for smarter opponents that
give the perception of truly autonomous human-like entities with their own agen-
das and realistic acting and sensing capabilities [4,7], as well as game developers
who seek a scalable, maintainable, and reusable decision-making framework for
implementing NPCs as the complexity of the game-world increases [9].

A notable academic AI technique that proved to be useful for this purpose
is classical planning, which is often referred to in video game industry as goal-
oriented action planning (GOAP). The main idea of this technique is to provide
an NPC with a set of actions, a description of the effects of these actions in the
game-world, and a goal the NPC should try to achieve by using the available
actions. This approach has received much attention in the video game industry
mainly due to the noted case of the commercial game “F.E.A.R.” [8] that used
a simplified version of STRIPS planning [3] for NPC behavior.

The implementation of STRIPS planning in the game of “F.E.A.R” relies
on important restrictions and optimizations in order to achieve real-time per-
formance. Similarly, in subsequent games that planning has been used, the im-
plementation is game-specific and cannot easily be reused in other games. On
the other hand, existing academic frameworks for classical planning that aim
for generality, such as planners that conform to the Planning Domain Definition
Language (PDDL) [5], cannot be directly used in a game engine: apart from per-
formance issues that cannot be easily overcome (e.g., academic planners typically
assume no restrictions in memory resources), a major problem is connecting the
“real” objects in a game-world with their corresponding “symbolic” ones in the
underlying logic-based representation used for planning.

In this paper we address the practical problem of providing an planning frame-
work that can be used in a wide game development environment. We report on
our work on developing iThink, a STRIPS planning framework that aims for gen-
erality, ease of use, and is integrated in a real game engine. iThink is targeted
to Unity3D, a popular game engine that is becoming an emerging standard for,
so-called, “indie” game development but is also used in “AAA” titles, that is,
commercial games of the highest quality. Except for being a useful tool for game
developers, we believe that iThink can be used in education, providing a modern
and fun environment for learning and experimenting with classical planning.

The rest of the paper is organized as follows. In Section 2 we go over the basic
details of STRIPS planning. In Section 3 we present the iThink framework that
implements STRIPS planning in the game engine Unity3D. In Sections 4 and 5
we discuss related and future work, and in Section 6 we draw some conclusions.

2 STRIPS Planning

In the area of classical planning one is faced with the following task: given i) a
complete specification of the initial state of the world, ii) a set of action schemas
that describe how the world may change, and iii) a goal condition, one has to
find a sequence of actions such that when applied one after the other in the
initial state, they transform the state into one that satisfies the goal condition.

108 V.-M. Anastassiou et al.

In this work we focus on the STRIPS formalism for representing planning
tasks [3]. In STRIPS, the representation of the initial state, the action schemas,
and the goal condition is based on literals from predicate logic. For example, in
a video game scenario the positive literal Gun(o) may be used to represent that
o is a gun, and Holding(knife23) to represent the fact that the NPC is holding
a particular knife. Similarly, the negative literal ¬Holding(o) may be used to
represent that the NPC is not holding the gun o.

The initial state is specified as a set of positive literals. This set provides a
complete specification of the state based on a closed-world assumption. That is,
for all ground literals not included in the set, it is assumed that the negative
version of the literal is true. The actions then of the domain affect the current
state by means of adding and deleting literals. For example, pick-up(o, room1)
may be used to represent the action of the NPC picking up the gun o that is
located in room1, which affects the current state by adding the literal Holding(o).

The action schemas are the general rules that specify the available ground
actions in the domain. For pick-up(o, room1), the corresponding action schema
may look like pick-up(x1, x2), followed by two sets of literals that specify the
preconditions and the effects of any particular action that is a ground instance
of this schema. The set of preconditions specifies what literals need to be present
in a state in order for the action to be executable in that state. The set of effects
specifies how the state should be transformed when the action is executed: posi-
tive literals are added in the state description, and negative literals are removed.

Finally, a goal condition is also a set of positive literals, and the intuition is
that the goal is satisfied in a state if all the literals listed in the goal condition are
included in the set that describes the state. A solution then to a planning problem
is a sequence of actions such that if they are executed sequentially starting
from the initial state, checking for corresponding preconditions and applying
the effects of each action one after the other, they lead to a state description
that satisfies the goal condition.

In the next section we will present iThink, a framework for STRIPS planning
that is embedded in the Unity3D game developing environment.

3 The iThink Framework in Unity3D

Unity3D1 is an integrated authoring tool that provides out-of-the-box functional-
ity for building video-games and simulations. Unity3D implements a
full-featured high-quality game engine, and provides tools for developing and
managing content. The developers can code the functionality of the game-world
using Javascript, C#, and Boo (a python-inspired .Net language), in a program-
ming environment that is based on the FOSS Mono platform.

A free license supporting a basic feature set is available, providing easy access
to any developer. Along with its potential portability across different systems,
Unity3D is a promising ground for easy development and deployment of edu-
cational, research or commercial projects. The features of Unity3D along with

1 http://unity3d.com/

iThink: A Library for Classical Planning in Video-Games 109

the increasing popularity and the extensive documentation freely available on-
line led us to choose Unity3D as the ideal game developing environment for
implementing iThink.

3.1 iThink Overview

The development of iThink was done with two goals in mind. The first one
concerns game developing and aims for ease of use and modularity for the pro-
grammers, while the second concerns academic research and aims for providing
the ground for studying planning techniques in a real software development set-
ting. In order to achieve these (sometimes contradictory) goals, we had to make
a few compromises so as to serve both worlds.

iThink provides the necessary methods for specifying a STRIPS planning
problem about elements of the game-world in Unity3D. As STRIPS is based on
predicate logic, we had to come up with a convenient way of initializing logical
literals that refer directly to objects in the software programming sense. For this
purpose we utilized the tag functionality of Unity3D according to which any
object of the game-world (including items, way-points, NPCs, and the human
player) may be associated with a number of tags. Using the integrated developing
environment of Unity3D, a developer can specify easily the types of available
objects, which iThink can then use for planning purposes. For instance, for a
particular object o that is tagged with the label “gun”, the literal Gun(o) will
be added to the iThink knowledge base to be used for planning purposes.

The initial state of the planning problem is specified using literals that are
built automatically using the specified tags, as well as others that are specified by
the developer via appropriate methods. Similarly, the goal condition is specified
by the developer as a set of literals. The tag functionality is also used in the
specification of action schema strings in order to restrict the generated actions
to those that make sense in the current state of the game-world. For example,
the pick-up(x1, x2) action schema may only be used to instantiate actions where
x1 is an item and x2 a location of the game-world.

As far as finding a solution to a planning problem is concerned, iThink pro-
vides methods for employing a forward-search method that works in the state-
space in a breadth-first or depth-first manner for the uninformed case and a
best-first manner when a heuristic is provided[12]. Note that iThink is general
enough to allow the implementation of other available methods for classical plan-
ning as well. iThink classes are organized in a way that can be easily extended
and adapted to meet the particular needs of the developer. Each iThink class im-
plements an atomic building block for representing STRIPS planning problems
in Unity3D and effectively searching for solutions. The most important classes of
iThink are presented in the next section.The full implementation is available on-
line at the project’s webpage: http://code.google.com/p/ithink-unity3d/

3.2 Implementation Details of iThink

The core functionality of iThink is implemented in nine C# classes as follows.

http://code.google.com/p/ithink-unity3d/

110 V.-M. Anastassiou et al.

1 public class SimpleFPSAgent : MonoBehaviour
2 {
3 iThinkBrain bra in ;
4 public s t r i n g [] schemaList = {
5 ”ActionMove−3−Tag˜ loc−Tag˜ loc−Tag˜ d i r ” ,
6 ”ActionTurn−2−Tag˜ dir−Tag˜ d i r ” ,
7 ”ActionShoot−4−Tag˜ loc−Tag˜ loc−Tag˜ dir−Tag˜gun” ,
8 ”ActionStab−2−Tag˜ loc−Tag˜ kn i f e ” ,
9 ”PickUp−2−Tag˜ kn i f e−Tag˜ l o c ” ,

10 ”ActionPickUp−2−Tag˜gun−Tag˜ l o c ”
11 } ;
12 public void Awake () // execu ted when NPC i s cons t ruc t ed
13 {
14 bra in = new iThinkBrain () ;
15
16 Lis t<Str ing> tags = new List<Str ing >() ;
17 tags .Add(” d i r ”) ; tags .Add(” l o c ”) ; tags .Add(” p layer ”) ;
18 tags .Add(”npc”) ; tags .Add(”gun”) ; tags .Add(” kn i f e ”) ;
19 bra in . sensorySystem . OmniUpdate (this . gameObject , tags) ;
20
21 bra in . ActionManager = new iThinkActionManager () ;
22 bra in . ActionManager . i n i tA c t i o nL i s t (
23 this . gameObject ,
24 schemaList ,
25 bra in . getKnownObjects () ,
26 bra in . getKnownFacts ()
27) ;
28 }
29 public void Update () // execu ted at every frame o f the game
30 {
31 // . . . code t ha t s p e c i f i e s the i n i t i a l s t a t e and goa l
32
33 bra in . p lanner . forwardSearch (// invokes p lanner
34 bra in . s t a r tS ta t e ,
35 bra in . goa lState ,
36 bra in . ActionManager ,
37 1) ; // s p e c i f i e s the search method
38 bra in . p lanner . getPlan () . debugPrintPlan () ;
39
40 // . . . code t ha t uses the p lan f o r NPC behav ior
41 }
42 }

Fig. 1. Example of iThink usage in a simplified game-world

– iThinkFact is used to specify STRIPS literals. An iThinkFact instance spec-
ifies the predicate name of the literal, a collection of game objects as the
arguments of the literal, and the polarity of the literal (positive or negative).

– iThinkState is used to specify STRIPS states. An iThinkState instance is
simply a set of literals, i.e., iThinkFacts instances.

iThink: A Library for Classical Planning in Video-Games 111

– iThinkAction is used to specify ground actions. An iThinkAction instance
specifies the name of the action, a set of preconditions as a set of positive
literals, and a set of effects as a set of positive and negative literals.

– iThinkActionSchema is used to specify STRIPS action schemas. An in-
stance of iThinkActionSchema specifies the name of the action schema, the
number of arguments, and the type of objects that can be used as arguments
when generating a ground action using the schema. This information is given
to the constructor of the class using a properly formatted string.

– iThinkActionManager generates and stores a collection of all the avail-
able ground actions that can be generated using the information about the
available action schemas and the iThink knowledge base of available objects.

– iThinkSensorySystem facilitates an automatic generation of literals that
describe the current state of the game-world using Unity3D tags on objects.

– iThinkPlan is used to specify STRIPS plans, that is, solutions to a STRIPS
planning problem. An instance of iThinkPlan specifies a sequence of actions,
i.e. iThinkAction instances, and is also used to represent partial plans.

– iThinkPlanner provides search utilities and is responsible for the execution
of the planning process. Currently, a forward-search method is implemented
that works in a breadth-first or depth-first manner for uninformed search
and in a best-first manner when a heuristic is provided.

– iThinkBrain is the main class that manages a planning problem using the
other iThink classes. iThinkBrain can be the basis of specifying any planning
problem that concerns objects of the game-world.

We proceed to show the usage of iThink with an example involving an NPC.

3.3 iThink Usage Example

An intended use of iThink is to associate an instance of iThinkBrain with an
NPC. In this case, whenever the NPC needs to find a high-level plan for achieving
a goal in the game-world, the implementation of the NPC can use the iThink
functionality to update the initial state of the planning problem according to the
current state of the game-world, specify a goal, and use the available planning
methods to find a sequence of actions that achieves this goal.

In Figure 1 we show an example, omitting some details due to space limita-
tions. The main tasks that the developer needs to do are the following.

1. Define an NPC class that contains an iThinkBrain object (lines 1–3).
2. Specify, as properly formatted strings, the action schemas that iThinkBrain

will evaluate. The strings show the available actions and the types of objects
of the game-world that can be used to initialize them (lines 4–11).

3. In the initialization of the NPC, use a sensor method of iThinkSensorySystem
to identify the available objects of the game-world (lines 16–19), and initialize
the iThinkActionManager that generates the available actions (lines 21–27).

4. In the method that updates the behavior of the NPC, inform iThinkBrain
about the initial state and the desired goal condition to pursue (insert code
at line 31), invoke the iThinkBrain planner (lines 33–38), and then use the
result to specify the NPC behavior (insert code at line 40).

112 V.-M. Anastassiou et al.

4 Related Work

There are many implementations of planning techniques in the literature. The
novelty of iThink is that it departs from the strictly symbolic approach typically
adopted in academic AI and aims for a planning capability that operates directly
on the software programming objects. In order to embed the symbolic STRIPS
approach in Unity3D in a way that is easy to inter-operate with the existing
methods and tools of the developing environment, we had to deal with problems
that are usually not considered in academic AI research. This is often no easy
task and our approach succeeded in remaining faithful to the original STRIPS
formalism, while providing a programming framework that expresses the logical
background of STRIPS using familiar constructs such as tags and variables.

Similarly, there are a few approaches that attempt the incorporation of GOAP
in video games. Orkin used a simplified STRIPS approach in the notable case
of the game “F.E.A.R.’ [8]. Bjarnolf investigated threat analysis using a GOAP
system that worked in an “Observe, Orient, Decide, Act” manner [1]. Long com-
pared a GOAP implementation with a finite-state machine implementations,
suggesting that planning techniques are superior when considering both practi-
cality and performance [2]. Peikidis investigated the application of GOAP tech-
niques in a strategy game [10] and Pittman studied command hierarchies in a
GOAP setting as a solution to code maintenance issues [11].

All these approaches follow closely the architectural decisions of F.E.A.R in
order to achieve real-time efficiency. Nonetheless, these approaches are based
on strong simplifications of the STRIPS paradigm that drastically reduce the
expressiveness of the approach. Moreover, each approach focuses on specific game
constructs and details, essentially making it appropriate only for the particular
application case. In contrast, iThink aims for generality and modularity. By
being faithful to the STRIPS logical background, iThink provides a powerful
framework for representing different planning environments in Unity3D.

5 Future Work and Extensions

Our ultimate goal is to evolve iThink into an efficient AI module that can be
used in the development of commercial video games. For our future work we
intend to implement and experiment with heuristic planning methods that are
specifically tailored for particular video game genres, such as for example the
first-person shooter (FPS) genre. We also want to investigate how iThink may
be extended to account for planning that involves multiple agents using a black-
board architecture and the possibility of taking advantage of multi-threading for
achieving better performance and response times.

There are also some parts of iThink that we want to improve, such as for
example the way the action schemas are specified in the current version. Our
intention is to fully integrate iThink in the Unity3D editor so that the developer
can specify such information using a visual interface that will further simplify
the modeling of the underlying planning domain. Along these lines, we also plan
on building debugging tools for testing and visualizing the planning process.

iThink: A Library for Classical Planning in Video-Games 113

6 Conclusions

Classical planning has proven to be useful for achieving a dynamic, emergent
behavior for NPCs in video games. Our approach is a novel way of employing
academic techniques for classical planning in a real video game developing en-
vironment. iThink aims for generality and modularity, providing the means for
specifying a wide range of planning problems according to the particular needs of
game developing. Except for being a useful tool for game developers, we believe
that iThink can be used in education, providing a modern and fun environment
for learning and experimenting with classical planning.

References

1. Bjarnolf, P.: Threat analysis using goal-oriented action planning. B.Sc. Thesis,
University of Skovde, School of Humanities and Informatics (2008)

2. Edmund, L.: Enhanced NPC Behaviour using Goal Oriented Action Planning.
Master’s thesis, University of Abertay Dundee, School of Computing and Advanced
Technologies, Division of Software Engineering (2007)

3. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2, 189–208 (1971)

4. Funge, J.D.: Artificial Intelligence For Computer Games: An Introduction. A.K.
Peters, Ltd., MA (2004)

5. Mcdermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld,
D., Wilkins, D.: PDDL - the planning domain definition language. Tech. rep., CVC
TR-98-003/DCS TR-1165, Yale Center for Comp. Vision and Control (1998)

6. Millington, I., Funge, J.: Artificial Intelligence for Games, 2nd edn. Morgan Kauf-
mann Publishers Inc., San Francisco (2009)

7. Nareyek, A.: Artificial intelligence in computer games - State of the art and future
directions. ACM Queue 10(1), 58–65 (2004)

8. Orkin, J.: Three states and a plan: The AI of F.E.A.R. In: Proceedings of the
Game Developer’s Conference, GDC (2006)

9. Orkin, J.: Agent architecture considerations for Real-Time planning in games. In:
Artificial Intelligence & Interactive Digital Entertainment, AIIDE (2005)

10. Peikidis, P.: Demonstrating the use of planning in a video game. B.Sc. Thesis,
University of Sheffield, CITY Liberal Studies, Dept. of Computer Science (2010)

11. Pittman, D.L.: Enhanced NPC Behaviour using Goal Oriented Action Planning.
Master’s thesis, University of Nebraska-Lincoln (2007)

12. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.
Prentice Hall (2002)

13. Schaeffer, J., Bulitko, V., Buro, M.: Bots get smart. IEEE Spectrum 45(12), 44–49
(2008)

	iThink: A Library for Classical Planning
in Video-Games
	Introduction
	STRIPS Planning
	The iThink Framework in Unity3D
	iThink Overview
	Implementation Details of iThink
	iThink Usage Example

	Related Work
	Future Work and Extensions
	Conclusions
	References

