
12

FoXtrot: Distributed Structural and Value XML Filtering

IRIS MILIARAKI and MANOLIS KOUBARAKIS, National and Kapodistrian University of Athens

Publish/subscribe systems have emerged in recent years as a promising paradigm for offering various
popular notification services. In this context, many XML filtering systems have been proposed to efficiently
identify XML data that matches user interests expressed as queries in an XML query language like
XPath. However, in order to offer XML filtering functionality on an Internet-scale, we need to deploy such
a service in a distributed environment, avoiding bottlenecks that can deteriorate performance. In this
work, we design and implement FoXtrot, a system for filtering XML data that combines the strengths of
automata for efficient filtering and distributed hash tables for building a fully distributed system. Apart
from structural-matching, performed using automata, we also discuss different methods for evaluating
value-based predicates. We perform an extensive experimental evaluation of our system, FoXtrot, on a local
cluster and on the PlanetLab network and demonstrate that it can index millions of user queries, achieving
a high indexing and filtering throughput. At the same time, FoXtrot exhibits very good load-balancing
properties and improves its performance as we increase the size of the network.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval—Information filtering; H.3.4 [Information Storage and Retrieval]: Systems and Software—
Distributed systems; Current awareness systems (selective dissemination of information–SDI); Performance
evaluation

General Terms: Algorithms, Design, Experimentation

Additional Key Words and Phrases: XML filtering, automata, load-balancing, distributed hash tables

ACM Reference Format:
Miliaraki, I. and Koubarakis, M. 2012. FoXtrot: Distributed structural and value XML filtering. ACM Trans.
Web 6, 3, Article 12 (September 2012), 34 pages.
DOI = 10.1145/2344416.2344419 http://doi.acm.org/10.1145/2344416.2344419

1. INTRODUCTION

As the Web is growing continuously, a great amount of data is available to users, mak-
ing it more difficult for them to discover interesting information by searching. For this
reason, publish/subscribe systems, also referred to as information filtering systems,
have emerged in recent years as a promising paradigm. In a publish/subscribe system,
users express their interests by submitting a continuous query or subscription, and
wait to be notified whenever an event of interest occurs or some interesting piece of
information becomes available. Applications of such systems include popular notifica-
tion services such as news monitoring, blog monitoring, and alerting services for digital
libraries. Since XML is widely used for data exchange on the Web, a lot of research has
focused on designing efficient and scalable XML filtering systems.

This is a revised and extended version of the paper by Miliaraki et al. [2008].
This work was supported by Microsoft Research through its Ph.D. Scholarship Programme.
Authors’ address: I. Miliaraki and M. Koubarakis, Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens, Athens, Greece.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1559-1131/2012/09-ART12 $15.00

DOI 10.1145/2344416.2344419 http://doi.acm.org/10.1145/2344416.2344419

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

12:2 I. Miliaraki and M. Koubarakis

In XML filtering systems, subscribers submit continuous queries, expressed in
XPath/XQuery, asking to be notified whenever their queries are satisfied by incom-
ing XML documents. In recent years, many centralized approaches like YFilter [Diao
et al. 2003] and XTrie [Chan et al. 2002] have been presented for providing efficient
filtering of XML data against large sets of continuous queries. However, in order to
offer XML filtering functionality on an Internet-scale and avoid the typical problems
of centralized solutions, such as single point of failure, lack of scalability, and network
bottlenecks, this functionality should be offered in a distributed environment. Con-
sequently, systems like XNet [Chand and Felber 2008] and ONYX [Diao et al. 2004]
that implement distributed XML filtering have been proposed. The majority of the
distributed approaches assume an overlay network with content-based routers respon-
sible for forwarding XML data towards interested subscribers. For example, in the
ONYX system, each broker keeps a broadcast tree for reaching all other brokers in the
network, and uses a routing table for forwarding messages only to interested brokers.
To achieve this, brokers in ONYX use instances of the YFilter engine [Diao et al. 2003]
as routing tables.

Two important decisions in the above proposals is how to distribute queries among
the brokers and what paths XML data follows in the network during filtering. De-
pending on these decisions, the brokers can suffer different amounts of load. The load
of a broker includes indexing queries, filtering of incoming XML data, and delivering
notifications to interested users whenever a query is matched. Consider for exam-
ple the case of tree-based overlays where load imbalances occur, since the brokers
closer to the root suffer more load either for routing queries or for forwarding XML
data towards their destination. Unbalanced load can cause a performance deteriora-
tion to these tasks, especially as the size of the query set increases, incoming data
arrives at a high rate or a large number of notifications is generated. As a result,
part of the network becomes overloaded. In ONYX, the authors use a centralized com-
ponent for assigning queries and data sources to the brokers of the network using
criteria like topological distances and bandwidth availability in order to minimize la-
tencies, but without actually dealing with load distribution. Other systems, like the
one of Gong et al. [2005] do not deal at all with the amount of load suffered by each
broker.

Load balancing in a distributed setting can be crucial for achieving high performance
and scalability. With this in mind, we propose an alternative architecture that exploits
the power of distributed hash tables (DHTs), a well-known class of structured overlay
networks, to overcome the weaknesses of other proposals and develop a fully distributed
load-balanced system. Our design allows us to apply simple yet effective load-balancing
techniques using replication for achieving an equal distribution of load among the
network peers.

Since automata and tree-based structures have proven to be highly efficient ways by
many state-of-the-art XML filtering systems like YFilter [Diao et al. 2003] and XPush
[Gupta and Suciu 2003] for indexing path queries, the main idea of our approach is to
adopt such a technique and study how to implement it by exploiting the distributed
setting of a DHT. For this purpose, we design and implement FoXtrot (Filtering of XML
data on top of structured overlay networks), a system used for XML filtering on top of a
network of peers organized using a DHT overlay. We propose to use a nondeterministic
finite automaton (NFA) as in the state-of-the-art filtering engine, YFilter. We describe
how to construct, maintain, and execute an NFA which encodes a set of XPath queries
on top of a DHT. This distributed NFA is maintained by having peers responsible for
overlapping fragments of the corresponding NFA. The size of these fragments is a
tunable system parameter that allows us to control the amount of generated network
traffic and load imposed on each peer.

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

FoXtrot: Distributed Structural and Value XML Filtering 12:3

Apart from using the distributed NFA for representing a set of queries and effi-
ciently identifying XML documents that structurally match XPath queries, we also deal
with the evaluation of value-based predicates (called value matching). Value match-
ing is important because typical queries, apart from defining a structural path (e.g.,
/bib/article/citation), also contain value-based predicates (e.g., /bib/article[@year >
2007] /author[text() = “John Smith”]). Depending on the selectivity of these predi-
cates, the number of queries which are only structurally matched (i.e., false positives),
might be large. For this reason, the benefit of using a filtering engine, for structural
matching only, can be diminished. To the best of our knowledge, the only approach that
deals explicitly with the evaluation of value-based predicates in a distributed environ-
ment is the XNet system [Chand and Felber 2008]. Value-based predicates are handled
in XNet by associating each node of the tree structure used for organizing the queries
with a set of predicates.

The main contributions of this article are the following.

—We design and implement a fully-distributed system, called FoXtrot, for efficient fil-
tering of XML data on very large sets of XPath queries. To achieve this, we utilize the
successful automata-based XML filtering engine, YFilter, distribute the automaton
among the network peers, and design methods that exploit the inherent parallelism
of an NFA. This way different peers participate in the filtering process by executing
in parallel several paths of the NFA.

—We show that our approach overcomes the weaknesses of typical content-based XML
dissemination systems built on top of meshes or tree-based overlays, while paying
special attention to load balancing. The design of FoXtrot allows us to employ simple
yet effective replication methods for achieving a balanced load distribution among
the network peers. In addition, there is no need for any kind of centralized component
to assign the queries to the network peers, since queries are distributed using the
underlying DHT infrastructure.

—We demonstrate that, apart from structural matching, our system FoXtrot can also
deal in an efficient way with value-based predicates. We briefly describe our different
methods for value-matching and discuss our recent results on the topic [Miliaraki
and Koubarakis 2010; Miliaraki 2011]. We select one of the proposed evaluation
methods for inclusion in FoXtrot.

—We perform an extensive experimental evaluation in both the controlled environ-
ment, provided by a local cluster and PlanetLab which represents the real-world
conditions of the Internet. We demonstrate that FoXtrot can index millions of user
queries, achieving a high throughput of around 1000 queries per second in the local
cluster, and outperforming other related systems. With respect to filtering, FoXtrot
generates and disseminates more than 1500 notifications per second for the filtering
scenarios we consider. We also show that our system exhibits scalability with respect
to the network size, improving its performance as we add more peers to the network.

—We provide an extensive survey of related work ranging from centralized and
distributed XML filtering methods to works that distribute several kinds of tree
structures on top of DHTs.

Preliminary results of this research have appeared in our previous work [Miliaraki
et al. 2008]. The current article revises that work and presents the following modi-
fications, extensions, and additional contributions. First, while we initially designed
and tested our methods using a simulated Chord network [Stoica et al. 2001], in this
work we have fully implemented an XML filtering system called FoXtrot on top of
Pastry DHT [Rowstron and Druschel 2001] using FreePastry release [2009]. Addition-
ally, we provide a more detailed description of our algorithms including pseudocode.
Even though we implement our system using an open-source implementation of Pastry,

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

12:4 I. Miliaraki and M. Koubarakis

our techniques are DHT-agnostic and any other implementation could be used instead.
We also include a brief description of our different methods for combining structural
and value XML filtering in a distributed way and discuss our recent results on the
topic [Miliaraki and Koubarakis 2010]. Second, we study load-balancing techniques
aiming to distribute in a uniform way the different loads of the network peers by
extending and modifying the techniques presented in our previous work [Miliaraki
et al. 2008]. Apart from the techniques that aim to balance storage load in specific
DHT overlays, we design replication techniques based on the properties of the NFA
structure which is distributed among the peers in FoXtrot. Third, with respect to the
evaluation of FoXtrot, while we previously tested our algorithms using simulations,
in this work we provide an extensive experimental evaluation of our implementation
using the controlled environment of a local shared cluster and the worldwide testbed
provided by the PlanetLab network. We include results demonstrating how various
settings can impact the performance of FoXtrot and explain why this happens. In our
previous study, we demonstrated the performance of our methods while varying the
size of the indexed query set and the size of the network. In this work we also extend
our evaluation by studying how the system parameter l, which tunes the size of the
NFA fragments that each peer is aware of, affects the performance of the system and
demonstrate the scalability of FoXtrot with respect to network size in a real environ-
ment. In addition, we study how the various characteristics of both the indexed queries
and the documents being filtered (e.g., query depth, predicates per query, document
depth) affect the performance of our system. Finally, we provide an extensive survey of
related work, including centralized and distributed XML filtering approaches, related
peer-to-peer systems, since FoXtrot is built on top of a DHT, and other approaches that
distribute tree-like structures in such settings.

The organization of the article. In Section 2, we briefly describe the XML data model
and the subset of XPath query language that we allow in FoXtrot, and also provide
some background knowledge about nondeterministic finite automata and distributed
hash tables. Section 3 describes in detail our methods for performing structural match-
ing in FoXtrot; while Section 4 discusses the methods used for value matching. In
Sections 5 and 6, we describe our experimental setting and present the results of our
evaluation. Section 7 provides a survey of related work in the area of XML filtering
and distributed publish/subscribe systems in general. Finally, Section 8 concludes the
article and discusses future work.

2. BACKGROUND

In this section we give a short introduction to the XML data model, the subset of XPath
we allow, nondeterministic finite automata, and distributed hash tables.

2.1. XML and XPath

An XML document can be represented using a rooted, ordered, labeled tree where
each node represents an element or a value and each edge represents relationships be-
tween nodes such as an element–subelement relationship. Element nodes may contain
attributes which describe their additional properties or textual data.

XPath [Clark and DeRose 1999] is a language for navigating through the tree struc-
ture of an XML document. XPath treats an XML document as a tree and offers a way
to select paths of this tree. Each XPath expression consists of a sequence of location
steps. We consider location steps of the following form:

axis nodetest [predicate1] . . . [predicaten]

where axis is a child (/) or a descendant (//) axis, nodetest is the name of the node or the
wildcard character “*”, and predicatei is a predicate in a list of one or more predicates

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

FoXtrot: Distributed Structural and Value XML Filtering 12:5

used to refine the selection of the node. Each predicate is either an attribute predicate of
the form [attr op value] where attr is an attribute name, value is an attribute value and
op is one of the basic logical comparison operators {=,>,>=,<,<=,<>} or a textual
predicate of the form [text() op value] where value is a string value and op is a string
operator, as defined in Clark and DeRose [1999].

A linear path query q is an expression of the form l1l2 . . . ln, where each li is a location
step. In this article, queries are written using this subset of XPath, and we will refer to
such queries as path queries or XPath queries interchangeably. Example path queries
for a bibliographic database are

Q1: /bib/phdthesis[@published=2005]/author[@nationality=greek]
which selects PhD theses published in year 2005 by Greek authors.

Q2: /bib/*/author[text()="John Smith"]
which selects any publication of author John Smith.

2.2. Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q, �, δ, q0, F), where Q is
a finite set of states, � is a finite set of input symbols, q0 ∈ Q is the start state, F ⊆ Q
is the set of accepting states, and δ, the transition function, is a function that takes as
arguments a state in Qand a member of �∪{ε} and returns a subset of Q [Hopcroft et al.
2000]. The language L(A) of an NFA A = (Q, �, δ, q0, F) is L(A) = {w | δ̂(w, q0) ∩ F �= 0}.
L(A) is the set of strings w in � ∪ {ε} such that δ̂(q0, w) contains at least one accepting
state, where δ̂ is the extended transition function constructed from δ. Function δ̂ takes a
state q and a string of input symbols w, and returns the set of states that the NFA is in,
if it starts in state q and processes the string w. Typically, NFAs allowing ε-transitions
(transitions without receiving an input symbol) are called ε-NFAs. However, throughout
this article we will use the term NFA for actually referring to an ε-NFA.

Any path query can be transformed into a regular expression, and consequently there
exists an NFA that accepts the language described by this query [Hopcroft et al. 2000].
Following YFilter [Diao et al. 2003], for a given set of path queries, we will construct
an NFA A = (Q, �, δ, q0, F), where � contains element names and the wildcard (*)
character, and each path query is associated with an accepting state q ∈ F. An example
of this construction is depicted in Figure 1. The figure also shows the different location
steps and the corresponding NFA fragments.

2.3. Distributed Hash Tables

DHTs have emerged as a promising way of providing a highly efficient, scalable, robust,
and fault-tolerant infrastructure for the development of distributed applications. Al-
though there have been many proposals of DHTs such as Chord [Stoica et al. 2001],
Pastry [Rowstron and Druschel 2001], and CAN [Ratnasamy et al. 2001] which differ
in their technical details, but all try to solve the following lookup problem: given a
data item x stored in a network of peers, find x. The core idea in all different DHTs is
to solve this search problem by offering a kind of distributed hash table functionality
where data items are uniquely identified by keys and DHT peers cooperate to store
these keys. This is achieved by providing a lookup(k) operation returning a pointer to
the DHT node responsible for key k. In Pastry [Rowstron and Druschel 2001], each peer
and each data item is assigned a unique m-bit identifier. The identifier of a peer can
be computed by hashing its IP address and is used to indicate its position in a circular
identifier space ranging from 0 to 2m − 1. For data items, we first have to compute a
key and then hash this key to obtain the identifier. Pastry routes messages to the peer
whose identifier is numerically closest to the given key, using a technique called prefix

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

12:6 I. Miliaraki and M. Koubarakis

4

0

6

1

7

8

2

9

5

3
Q1

Q2

Q3

Q4

bib

e

article

phdthesis
author

author
article

*

*

conference

Basic location steps as NFA fragmentsExample NFA

a/a

/*

//a

//*

e

e

a

*

*

*

*

Q1: /bib/phdthesis[@published=2005]/author[@nationality=greek]
Q2: /bib/*/author[text()="John Smith"]
Q3: /bib/article/conference[text()="WWW 2010"]
Q4: //article[@year>2009]

Q1: /bib/phdthesis[@published=2005]/author[@nationality=greek]
Q2: /bib/*/author[text()="John Smith"]
Q3: /bib/article/conference[text()="WWW 2010"]
Q4: //article[@year>2009]

Fig. 1. An example NFA constructed from a set of XPath queries.

routing. Such requests can be done in O(log n) steps, where n is the number of nodes in
the network.

In the rest of the article we use Pastry as the underlying DHT and implement our
system using FreePastry release [2009]. However, our techniques are DHT-agnostic;
they can be implemented on any DHT that offers the standard lookup operation. For
more details on DHTs and peer-to-peer systems in general, the interested reader can
see the survey of Lua et al. [2005] or other more detailed studies on DHTs like the one
from Balakrishnan et al. [2003].

3. STRUCTURAL MATCHING

In this work we design and implement FoXtrot, a system for filtering XML data against
a set of XPath queries. FoXtrot supports queries that consist of both structural and
value predicates, as described in our data model. In this section we focus on the methods
used for structural matching. Automata and tree-based structures have proven to
be efficient ways for indexing path queries by many state-of-the-art XML filtering
systems like YFilter [Diao et al. 2003], XTrie [Chan et al. 2002], XPush [Gupta and
Suciu 2003], and Index-Filter [Bruno et al. 2003]. For this reason, we decided to use
an NFA-based model, similar to the one used in YFilter, for indexing path queries
in our system and performing structural matching. The NFA is constructed from a
set of XPath queries and used as a distributed matching engine that scans incoming
XML documents and discovers matching queries. In this section we describe in detail
how the NFA corresponding to a set of XPath queries is constructed, maintained, and
executed by the network peers for providing XML filtering functionality in FoXtrot.
Value-matching is briefly discussed in the next section, while our methods for load-
balancing are described in Section 6 before our experimental evaluation.

3.1. Distributing the NFA

The NFA corresponding to a set of path queries is essentially a tree-like structure
that needs to be traversed both for indexing a query during NFA construction and for
finding matches against incoming XML data during NFA execution. In FoXtrot, we
distribute an NFA on top of Pastry and provide efficient ways of supporting these two
basic operations. Our main motivation for distributing the automaton derives from the
nondeterministic nature of NFAs that allows them to be in several states at the same

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

FoXtrot: Distributed Structural and Value XML Filtering 12:7

time, resulting in many different parallel executions. We also preferred to use an NFA
instead of its equivalent DFA for reducing the number of states. Since we distribute
the NFA on top of a Pastry network, we use the term distributed NFA to refer to it.

The distribution of the NFA among the network peers in FoXtrot is done at the level
of the NFA states by assigning them to the network peers, as follows. Each state qi
along with every other state included in δ̂(qi, w), where w is a string of length l included
in � ∪ {ε}, is assigned to a single peer in the network. Note that l is a parameter that
determines how large a part of the NFA is the responsibility of each peer. If l = 0,
each state is indexed only once at a single peer, with the exception of states that are
reached by an ε-transition, which are also stored at the peers responsible for the state
that contains the ε-transition. Recall that the ε-transition represents a transition that
can be followed without receiving an input symbol. For larger values of l, each state
is stored at a single peer along with other states reachable from it by following a path
of length l. This results in storing each state at more than one peer. Therefore, peers
store overlapping fragments of the NFA, and parameter l characterizes the size of these
fragments. Apart from parameter l, we also employ replication techniques to achieve a
balanced load in the system. These techniques are complementary to the methods we
describe here, and are discussed in detail in Section 6.

To determine which peer will be responsible for each state, we uniquely identify each
state with a key. The responsible peer for state with key k is the peer whose identifier
is numerically closest to Hash(k), where Hash() is the DHT hash function. The key
of an automaton state is formed by the concatenation of the labels of the transitions
included in the path leading to the state. For example, the key of state 2 in Figure 1
is the string ‘start’+‘bib’+‘phdthesis’, the key of the start state is ‘start’ and state 9 has
key ‘start’+‘$’, since we choose to represent ε-transitions using character $. Operator +
is used to denote the concatenation of strings. Each peer p keeps a hash table, denoted
by p.states, which contains the states assigned to p indexed by their keys. For each
state st included in states we keep the transitions from st, including potential self-loops,
and, if st is an accepting state, we also keep the identifiers and the subscribers of the
relevant queries. Recall that a query matches a document if, during the execution of
the NFA, the accepting state for that query is reached. We denote the list containing
these queries as st.queries.

Example. Figure 2 illustrates how an example NFA is distributed on top of Pastry
when l = 1. We assume a network of 9 peers and depict where each state is stored on
the Pastry ring. Notice that state 10 is included in P7.states = [0, 1, 9, 10] because the
ε-transition does not contribute to the specified length l. To ease readability, we use
unique integers to represent the state keys.

3.2. Constructing the Distributed NFA

In this section we describe how we achieve the distribution of the NFA among the DHT
peers in FoXtrot as queries arrive in the system and the automaton is incrementally
constructed.

To help the reader understand this process, we first describe how the NFA is con-
structed without considering the fact that the states are distributed and will be stored
at different peers. This process is identical to the construction process in the central-
ized environment of YFilter. A location step in a query can be represented by an NFA
fragment [Diao et al. 2003]. The NFA for a path query can be constructed by concate-
nating the NFA fragments of the location steps it consists of, and making the final
state of the NFA the accepting state of the path query. Inserting a new query into an
existing NFA requires us to combine the NFA of the query with the already existing
one. So to insert a new query represented by an NFA S to an existing NFA R, we start

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

12:8 I. Miliaraki and M. Koubarakis

0

7

5

6

84

3

2

9

1

10

bib

e

article

author

*

phdth
esis

article

author

author

cite

*

P2
P1

P7

P4

P9 P5

P6
P8

P3

Distributed NFA

Q1

Q7

Q2
Q3

Q5,Q6

Q4

Q1: /bib/phdthesis[@published=2005]/author[@nationality=greek]
Q2: /bib/*/author[text()="Michael Smith"]
Q3: /bib/*[@conf=www]
Q4: /bib/article[@year=2009]/author[@degree-from="UOA"]
Q5: /bib/article[@year=2009]/cite[@paper-id=2392]
Q6: /bib/article/cite[@paper-id=2770]
Q7: //article[@year=2007]

Q1: /bib/phdthesis[@published=2005]/author[@nationality=greek]
Q2: /bib/*/author[text()="Michael Smith"]
Q3: /bib/*[@conf=www]
Q4: /bib/article[@year=2009]/author[@degree-from="UOA"]
Q5: /bib/article[@year=2009]/cite[@paper-id=2392]
Q6: /bib/article/cite[@paper-id=2770]
Q7: //article[@year=2007]

FoXtrot network

Queries

P7

P8
P9

P1

P2

P3

P4

P5

P6

5
8

84

76

9

52
10 9

21 43

10

10

763

Fig. 2. Distributing an NFA in FoXtrot (l = 1).

a b
a

b

e

*
a

e

*
b

e

*
a

b

Combining NFA fragments

Q1: /bib/phdthesis[@published=2005]/author[@nationality=greek]
Q2: /bib/*/author[text()="John Smith"]
Q3: /bib/article/conference[text()="WWW 2010"]
Q4: //article[@year>2009]
Q5: //masterthesis[@school=University of Athens]

Q1: /bib/phdthesis[@published=2005]/author[@nationality=greek]
Q2: /bib/*/author[text()="John Smith"]
Q3: /bib/article/conference[text()="WWW 2010"]
Q4: //article[@year>2009]
Q5: //masterthesis[@school=University of Athens]

4

0

6

1

7

8

2

9

5

3
Q1

Q2

Q3

Q4

bib

e
article

phdthesis

author

author

article

*

*

conference

10
masterthesis Q5

NFA construction

e

*
a

b

e

b

*
a

Fig. 3. NFA construction.

from the common start state shared by R and S, and we traverse R until we either
reach the accepting state of S or a state for which there is no transition that matches
the corresponding transition of S. If the latter happens, a new transition is added to
that state in R. Formally, if L(R) is the language of the NFA already constructed by
previously inserted queries, and L(S) is the language of the NFA of the query being
indexed, then the resulting NFA has language L(R) ∪ L(S). Examples of how different
NFA fragments are combined are shown in Figure 3. We also depict the NFA of Figure 1
after inserting query Q5.

Let us now describe how we traverse the distributed NFA for inserting a query q. The
main idea is that whenever we want to visit a particular NFA state during indexing q,
we first discover and contact the peer responsible for that state. If the state does not

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

FoXtrot: Distributed Structural and Value XML Filtering 12:9

ALGORITHM 1: IndexQuery(): Indexing a query
1 procedure peer.IndexQuery(q, d, st, sid, l, f irstCall)
2 if peer.states does not contain st then
3 add st to peer.states;
4 else
5 st := peer.states.get(st.key);
6 if d == q.length then
7 add q to st.queries;
8 else
9 t := transition label of q at depth d;

10 if no transition exists labeled t from st to st′ then
11 add transition labeled t from st to st′;
12 if t == $ then
13 st′ := st.getTransition(t);
14 st′.selfChild := true;
15

16 else st′ := st.getTransition(t);
17 if t == $ then
18 t′ := transition label of q at depth d + 1;
19 if no transition exists labeled t′ from st′ to st′′ then
20 add transition labeled t′ from st′ to st′′;
21

22 if f irstCall is true then
23 nextPeer := Lookup(st′.key);
24 nextPeer.Route(IndexQueryMesg(q, d+1, st′, sid));
25 else
26 if l > 0 then
27 if t == $ then
28 peer.IndexQuery (q, d+1, st′, sid, l, false);
29 else
30 peer.IndexQuery (q, d+1, st′, sid, l − 1, false);
31

32

33

34

exist, the relevant peer creates it. If the state exists, then the peer may need to update
it by adding a new transition. The exact steps followed are depicted in Algorithm 1.
Algorithms in this article are described using a notation where p.Proc() means that
peer p receives a message and initiates execution for procedure Proc().

Suppose s is the subscriber peer for query q. Using Pastry, peer s sends a message
IndexQueryMesg(q, d, st, sid) to peer r, where q is the query being indexed in the form of
an NFA, d is the current depth of the query NFA reached, st is the state at this depth,
and sid is the identifier of the subscriber peer. Initially d = 0, st is the start state, and
r is the peer responsible for it. Starting from this peer, each peer r that receives an
IndexQueryMesg message, executes locally the corresponding procedure IndexQuery(q,
d, st, sid, l, f irstCall), where l is value of the system parameter l and f irstCall is
a Boolean parameter initially true. If l is larger than 0, then r recursively calls this
procedure and stores locally the additional states as defined by l. To distinguish between
the first call of the procedure and the recursive calls, we use parameter f irstCall.

The details of the local procedure IndexQuery executed at each peer for a state st
are as follows. At first, the peer checks whether st is already stored locally. Recall
that each NFA state is identified by a sequence of transition labels. If st is not stored
locally, it creates it (lines 2-5). If st is the accepting state of q, q is inserted in the
list st.queries and execution ends (lines 6,7). At this point, the responsible peer can
notify the subscriber peer that q is successfully indexed. Otherwise, query indexing
continues with the next state. Let t be the label of the transition from state st to a
target state st′. Then, if there is no such transition from st, a new transition is added

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

12:10 I. Miliaraki and M. Koubarakis

from state st to st′ with label t (lines 10-11). If this transition is an empty transition,
then a self-loop transition is also added to state st′ to represent a “//” step (lines 12-15).
In addition, we need to fix the local transition table of the next state st′ (lines 17-20).
Finally, indexing proceeds by sending a new IndexQueryMesg(q, d + 1, st′, sid) message
to the next responsible peer (i.e., the peer responsible for st′) increasing query depth
by 1 (lines 22-24). If l is larger than 0, the procedure is called recursively l additional
times by the peer to store locally the extra states (lines 25-30).

Constructing the NFA as described above, requires sending as many IndexQueryMesg
messages as the number of states in the NFA of query q. The number of messages that
travel through the network during the construction of the NFA is independent of the
value of l, while l affects the time spent by each peer during the local processing of the
indexing request.

3.3. Executing the Distributed NFA

In this section we describe how we execute the distributed NFA during XML filtering
for discovering matching queries. We first describe how the NFA is executed without
considering the fact that the states are distributed. This process is similar to the
execution process in the centralized environment of YFilter. Then, we describe two
different methods for executing the distributed NFA, namely the iterative and the
recursive methods.

The NFA execution proceeds in an event-driven fashion. As the XML document is
parsed, the events produced are fed, one event at a time, to the NFA to drive its tran-
sitions. Parsing is performed using a SAX parser that produces events of the following
types: StartOfElement, EndOfElement, StartOfDocument, EndOfDocument, and Text.
The nesting of elements in an XML document requires that when an EndOfElement
event is raised, the NFA execution should backtrack to the states it was in when the cor-
responding StartOfElement was raised. For achieving this, YFilter maintains a stack,
called the runtime stack, during the execution of the NFA. Since many states can be
active at the same time in an NFA, the stack is used for tracking multiple active paths.
The states placed on the top of the stack will represent the active states, while the states
found during each step of execution after following the transitions caused by the input
event, will be called the target states. Execution is initiated when a StartOfDocument
event occurs and the start state of the NFA is pushed into the stack as the only active
state. Then, each time a StartOfElement event occurs for an element e, all active states
are checked for transitions labeled with e, wildcard, and ε-transitions. In case of an
ε-transition, the target state is recursively checked one more time. All active states
containing a self-loop are also added to the target states. The target states are pushed
into the runtime stack and become the active states for the next execution step. If an
EndOfElement event occurs, the top of the runtime stack is popped and backtracking
takes place. Execution proceeds in this way until the document has been completely
parsed or the stack becomes empty.

As with the YFilter, for executing the distributed NFA in FoXtrot we need to maintain
a stack containing the states for backtracking. For each active state we need to retrieve
all target states reached after feeding the corresponding parsing event to the NFA.
Since states are distributed among the network peers, at each step of the execution,
the relevant parsing event should be forwarded to the peers responsible for the active
states. We identify two ways for executing the NFA: the first proceeds in an iterative
way, while the other executes the NFA in a recursive fashion.

3.3.1. Iterative Method. In this method, the publisher peer is responsible for parsing
the document, maintaining the runtime stack, and forwarding the parsing events to
the responsible peers to get the target states and continue execution. As a result,

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

FoXtrot: Distributed Structural and Value XML Filtering 12:11

ALGORITHM 2: PublishIterative(): Publishing an XML document - Iterative way
1 procedure peer.PublishIterative(doc)
2 parsingEvents = parse(doc);
3 publisherId = peer.getId();
4 if l == 0 then
5 pathLength := 1;
6 else
7 pathLength := l;
8 f irstPeer := Lookup(“start”);
9 Mesg := GetStateMesg (“start”) ;

10 startState := f irstPeer.Route(Mesg);
11 add startState to activeStates;
12 while parsingEvents.size ! = 0 do
13 initialize event,currentEvents;
14 while currentEvents.size < pathLength do
15 event = parsingEvents.getNext() ;
16 if event is endElement then
17 break;
18 else
19 add event to currentEvents;
20

21 foreach state in activeStates do
22 responsiblePeer := Lookup(state.key);
23 Mesg := GetTargetStatesMesg (state, currentEvents, publisherId));
24 targetStates.add(responsiblePeer.Route(Mesg);

25 foreach state in targetStates do
26 if state.queries > 0 then
27 notify interested subscribers;
28

29 runtimeStack.push(targetStates);
30 if parsingEvents.getNext() is endElement then
31 runtimeStack.pop();
32 activeStates := runtimeStack.getTopElement();

the execution of the NFA proceeds in a similar way as described previously, with the
exception that the target states cannot be retrieved locally but need to be retrieved from
other peers of the network. Also since parameter l allows peers to keep larger fragments
of the NFA, a peer responsible for an active state during execution can exploit the whole
relevant NFA fragment kept locally (i.e., the NFA fragment beginning at that state) and
perform several subsequent expansions. Algorithm 2 describes the actions required by
the publisher peer.

The publisher peer p publishes a document by following the steps described in pro-
cedure PublishIterative(doc) where doc is the XML document being published. At
first, p parses the XML document and stores the corresponding parsing events in a list
(line 2). Then, it initializes a variable called pathLength using the value of parameter
l. If l is equal to 0, then, along with each active state, the peer will send a single doc-
ument element (from the parsing events) to the responsible peer. Else, if l is greater
than 0, the publisher peer will send more than one element with each active state,
since the responsible peer will be able to perform more expansions (lines 4-7). At first p
communicates with the peer responsible for the start state to retrieve it and adds it to
the active states to initiate NFA execution (lines 8-11). Next, peer p begins reading the
parsing events and inserts them in a list called currentEvents until either pathLength
elements are inserted or an EndElement event is read (lines 12-20). Then, p sends
a GetTargetStatesMesg message to each peer responsible for an active state. During
the first iteration, only the start state is active. Each responsible peer proceeds with
the expansion of the relevant states and returns the corresponding target states back
to the publisher. Again, depending on the value of l, each peer may perform multiple

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

12:12 I. Miliaraki and M. Koubarakis

ALGORITHM 3: PublishRecursive(): Publishing an XML document using recursive method
1 procedure peer.PublishRecursive(doc)
2 enrichedEvents := constructIndex(doc.parsingEvents);
3 f irstPeer := Lookup(“start”);
4 currentIndex := 0;
5 parentIndex := -1;
6 Mesg := RecExpandStateMesg (“start”, enrichedEvents, 0, −1) ;
7 f irstPeer.Route (Mesg);

expansions by itself. The states are stored in the list targetStates (lines 21-24). Next,
for each target state, p checks whether there are any queries matched and notifies
interested subscribers (lines 25-28). The target states are pushed on the runtime stack
and become the active states for the next iteration of the execution (line 29). If the
next parsing event is an EndElement event, the stack is popped (lines 30-31). Execu-
tion continues until the document has been completely parsed or the runtime stack
becomes empty.

The iterative method imposes the majority of the load on the publisher peer, which is
responsible for contacting several network peers and retrieving the states that are not
locally stored. We expect and demonstrate experimentally that the iterative method
will perform poorly, since the publisher peer can become a bottleneck, we presented it
here to assist the reader in understanding the details of the recursive method.

3.3.2. Recursive Method. There can exist multiple active paths during NFA execution
where each active path consists of a chain of states, starting from the start state and
linking it to the target states. We design this method by exploiting the fact that these
active paths are independent and can be executed in parallel by different peers. We
achieve this as follows. The publisher peer forwards the XML document to the peer
responsible for the start state to initiate the execution of the NFA. The execution
continues recursively, with each peer responsible for an active state continuing the
execution. Notice that the run-time stack is not explicitly maintained in this case, but
it implicitly exists in the recursive executions of these paths. The execution of the
NFA is parallelized in two cases. The first case is when the input event processed
has siblings with respect to the position of the element in the tree structure of the
XML document. In this case, a different execution path will be created for each sibling
event. The second case is when more than one target state results from expanding
a state. Then, a different path is created for each target state, and a different peer
continues the execution for each such path. To efficiently check structural relationships
between elements, the publisher peer enriches the parsing events StartOfElement and
EndOfElement with a positional representation. Specifically, the events are enriched
with the position of the corresponding element with a pair (L:R,D), where L and R are
generated by counting tags from the beginning of the document until the start tag and
the end tag of this element, and D is its nesting depth. The publisher peer is responsible
for enriching the parsing events. This representation was introduced by Consens and
Milo [1994] and it requires an additional pass over the XML document.

Peer p publishes the XML document doc, following the steps described in
Algorithm 3. First, p enriches the parsing events using a positional representation
to enable efficient checking of structural relationships (line 2). Then, peer p sends a
message, RecExpandStateMesg(‘start’, enrichedEvents, currentIndex, parentIndex), to
peer r which is responsible for the start state, where enrichedEvents is the list with the
enriched parsing events of the XML document; currentIndex refers to the event that
needs to be processed next (in this case 0 refers to the first element) and parentIndex

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

FoXtrot: Distributed Structural and Value XML Filtering 12:13

ALGORITHM 4: RecExpandState(): Recursively expand states at each execution path -
Recursive way
1 procedure peer.RecExpandState(stateKey, enrichedEvents, currentIndex, parentIndex)
2 st := peer.states.get(stateKey);
3 add st to activeStates;
4 if l == 0 then pathLength := 1 else pathLength := l;
5 elementsProcessed := 0;
6 while elementsProcessed < pathLength && enrichedEvents.size ! = 0 do
7 currEvent = enrichedEvents.getNext();
8 if currEvent.isEndElement() then break;
9 if currEvent.hasSiblings() then

10 siblings := siblings of currEvent;
11 foreach siblingEvent in siblings do
12 compute targetStates from each st in activeStates for input siblingEvent;
13 foreach state in targetStates do
14 if state.queries > 0 then notify interested subscribers;

15 break;
16 else
17 siblings := currEvent;
18 compute targetStates from each st in activeStates for input currEvent;
19 foreach state in targetStates do
20 if state.queries > 0 then notify interested subscribers;

21 activeStates := targetStates ;
22 elementsProcessed++;

23 for i=0 to siblings.size do
24 currEvent := siblings.get(i);
25 nextEvent := siblings.get(i+1);
26 if nextEvent is endElement then continue;
27 nextIndex := nextEvent.getIndex();
28 nextParentIndex := currEvent.getIndex();
29 foreach nextState in targetStates do
30 nextPeer = Lookup(nextState.key);
31 Mesg := RecExpandStateMesg(nextState.key, enrichedEvents, nextIndex, nextParentIndex)

nextPeer.Route(Mesg);

refers to its parent event (lines 3-7). At first, parentIndex is −1, since the root element
of the document has no parent element.

When a peer receives a RecExpandStateMesg message, it executes the local procedure
RecExpandState, depicted in Algorithm 4. First, peer r retrieves st from its local store
and adds it to a list containing the active states of the execution (lines 2-3). Similar
to the iterative approach, r initializes a variable, called pathLength, using the value of
l (line 4). If l is equal to 0, then r can perform a single expansion by itself. Else, if l
is greater than 0, r can perform multiple expansions. Peer r also keeps the number of
the elements it has already processed, initially 0 (line 5). Next, r begins the execution
of the NFA in the relevant path starting with state st until either it performs the
relevant number of expansions or it reaches the end of the document being filtered.
If the corresponding element has no siblings, r computes the expansions by itself in
this single execution path and notifies the interested subscribers (lines 16-20). If the
element has siblings, then it computes separately the expansions for each different
sibling (lines 6-15). Suppose e1, . . . , es are the sibling events and T S(e1), . . . , T S(es)
represent the sets with the target states computed by each event. These target states
may have been computed either after a single expansion or after multiple expansions.
Peer r will forward

∑ | T S(ei) | different RecExpandStateMesg messages, one for each
of the different execution paths (lines 23-31). The execution for each path continues
until the document fragment has been completely parsed. Peers that participate in

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

12:14 I. Miliaraki and M. Koubarakis

P7

P8

P9
P1

P2

P3

P4

P5

P6

26

4

1

0

35

9

10 P10
7

11

12

2

2

3

3

4
4

P7

P8

P9
P1

P2

P3

P4

P5

P6

26

4

1

0

35

9

10
P10

7

11

1
5

2

3

6

4

7

3

Iterative method Recursive method

Fig. 4. Executing the distributed NFA.

the execution process are also responsible for notifying the subscribers of the satisfied
queries.

Note that the recursive method assumes that the XML document being filtered is
relatively small, and this is the reason for deciding to forward the whole document at
each step of execution. In realistic scenarios, XML documents are usually small, as
discussed by Barbosa et al. [2006]. However, in the case we want to filter larger XML
documents, our method could be adjusted so that we forward smaller fragments of the
document. This process is typically referred to as XML message transformation, and
has been studied in related systems like ONYX [Diao et al. 2004].

Example. We demonstrate using an example of how peers communicate during the
execution of the NFA in FoXtrot in both of the above cases. As Figure 4 illustrates,
peer P10 is the publisher of an XML document. When the iterative method is used,
all communications are initiated by the peer P10, which contacts 7 different peers and
retrieves the corresponding states. With the recursive method, execution begins with
P10 contacting P3, which is responsible for the start state. P3, continues execution
by forwarding the corresponding filtering requests to peers P5 and P9. Then, filtering
is continued in parallel by P5 and P9. In this example, we omit the details of the
execution and focus on the sequence of the different communications occurring among
the peers to demonstrate how these two methods compare.

4. VALUE MATCHING

In the previous section, we described how structural matching is performed in FoXtrot.
While our approach and other similar approaches that employ automata or similar in-
dices have been used with success for representing a set of queries and identifying XML
documents that structurally match XPath queries, little attention has been paid to the
evaluation of value-based predicates, especially in distributed settings. Consider for ex-
ample query q:/bib/article[@conf = WWW]/author[text() =“John Smith”], which selects the
articles of the author “John Smith” published in a WWW conference. Filtering incoming
XML data against this query requires checking whether the data structurally matches
the query and also whether the value-based predicates of the query are satisfied. This
can be an important problem because, depending on the selectivity of these predicates,
the number of queries which are only structurally matched (i.e., false positives), might
be large. Our goal is to design a system that scales with respect to both the number of
the queries indexed and the number of the predicates included in the queries. For this
reason, we support techniques for dealing with the evaluation of value-based predi-
cates together with structural matching in FoXtrot. In this section, we briefly consider

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

FoXtrot: Distributed Structural and Value XML Filtering 12:15

different ways for achieving this. The following techniques are described in detail in
our recent work [Miliaraki and Koubarakis 2010; Miliaraki 2011].

Our first technique evaluates predicates after performing structural matching. Such
a technique operates in a top-down fashion, processing incoming XML documents from
the root towards their leaves. We use the distributed NFA to identify the subset of
queries that structurally match incoming XML documents, and then evaluate the
predicates of this subset of queries. Hence, this method evaluates predicates after the
execution of the NFA. Since in FoXtrot structural matching is performed in parallel by
multiple peers, each of these peers identifies a different subset of structurally-matched
queries. Whenever a peer identifies such a set, it is also responsible for the predicate
evaluation. We refer to this method as top-down evaluation.

To overcome possible shortcomings of top-down evaluation caused by spending too
much effort on structurally matching queries with predicates that are not satisfied by
incoming XML data, we also propose the following optimization. By using a compact
summary of predicate information, we stop the execution of the distributed NFA (i.e.,
prune this execution path) whenever we can deduce that no match can be found if
the execution continues. At each step of the execution, we consider that a part of the
distributed NFA has been revealed while the rest part is not. We utilize Bloom filters
for summarizing these NFA fragments with respect to the predicates they contain.
Then, we decide whether or not we will continue execution by consulting these filters.
Note that this method is only applicable to equality predicates, and we refer to it as
top-down evaluation with pruning.

Following a widely used strategy from relational query optimization, where selec-
tions are applied as early as possible, we can check the value-based predicates before
proceeding with the structural matching following a bottom-up approach. Such an ap-
proach evaluates XML documents in a bottom-up way, since in a tree representation,
element values are placed in the leaves of the tree. In contrast to the other methods,
where the indexing of the queries is done using the distributed NFA, a different in-
dexing algorithm is required in this case. To first discover queries that contain specific
predicates, indexing is based on these predicates. Such an indexing algorithm resem-
bles work presented for information filtering (IF) on top of DHTs, including the work of
Tryfonopoulos et al. [2005], where queries are expressed using a simple attribute-value
data model and attribute values are used to map queries to peer identifiers. We refer
to this method as bottom-up evaluation. A drawback of this approach is that, even
though the heuristic of pushing selections early works well in the case of relational
query processing, in our case peers may put a lot of effort in evaluating predicates for
queries whose structure may not be matched later on.

Furthermore, considering that XPath queries consist of distinct steps and each step
may be associated with one or more value-based predicates, we can perform, at each step
of the NFA execution, structural matching simultaneously with predicate evaluation.
Therefore, in this case we evaluate predicates during the NFA execution. We consider
that the latter approach performs XML filtering in a step-by-step fashion.

Finally, since in our case the XPath queries are indexed using an NFA, we could
perform predicate evaluation directly with the automaton by adding extra transitions
for the predicates. An expected drawback of such a method comes from the fact that
the elements in a set of XPath queries represent a rather small set, since they are
constrained by the schema, while the values of the predicates may form a really large
set. This could result in a huge increase of the NFA states and, at the same time,
destroy the sharing of path expressions for which the NFA was selected to begin with.
For this reason, we have not studied this method any further.

In our recent study [Miliaraki and Koubarakis 2010], we compared the above meth-
ods, namely top-down, top-down with pruning, bottom-up, and step-by-step, by fully

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

12:16 I. Miliaraki and M. Koubarakis

implementing them in our system, FoXtrot. The top-down method outperforms the
others in terms of both network traffic and filtering latency. Since the emphasis of
the present article is on structural matching, we consider the detailed comparison of
the former methods outside of our scope, and point the reader to our recent study for
more details. With respect to our experimental evaluation of FoXtrot, which follows,
value matching is performed using one of the preceding methods, namely, top-down
evaluation with pruning.

5. EXPERIMENTAL SETUP

In this section, we describe our experimental setting. We implemented FoXtrot in
Java using FreePastry release [2009]. We ran our experiments in two different
environments, the worldwide testbed for large-scale distributed systems provided
by the PlanetLab network (http://www.planet-lab.org/) and a local shared cluster
(http://www.grid.tuc.gr/).

5.1. Network setup

In the case of PlanetLab, we used 396 nodes that were available and lightly loaded at
the time of the experiments. Note that PlanetLab nodes are geographically distributed
among four continents and shared by many users. We also ran our experiments on a
cluster that consists of 41 computing nodes connected by a Gigabit ethernet connection
(1000Mbps). Each node is a server blade machine with two processors at 2.6GHz and
4GB memory. In this case, we used 28 of these machines, running up to 4 peers per
machine, that is, 112 peers in total.

5.2. Document and Query Generation

We generated two different synthetic data sets using the IBM XML Generator [1999],
namely, the mixed dataset and the NITF dataset. Each set consisted of 1000 documents.
The mixed dataset is created using a set of 10 DTDs, including DBLP DTD, NITF
(News Industry Text Format) DTD, ebXML DTD (Electronic Business using eXtensible
Markup Language) and the Auction DTD from the XMark benchmark [XMark 2001].
Using this dataset, we study the performance of our approach in a realistic scenario
where users subscribe to FoXtrot to receive notifications concerning various interests
of theirs (e.g., information about scientific papers and news feeds). The second dataset
is created using only the NITF DTD, which has been used in many works [Chan et al.
2002; Diao et al. 2003; Hou and Jacobsen 2006]. The NITF DTD allows 123 different
element tags, 513 attributes, and represents an interesting case where a large fraction
of XML elements are allowed to be recursive. The average document size for the mixed
dataset is equal to 37.8 Kb, and for the NITF workload is 15 Kb.

The same DTDs were used to generate different sets of 106 path queries with varying
characteristics using the XPath generator available in the YFilter release [2004]. Each
query set contained only distinct queries, in other words, there are no duplicates. In
a realistic scenario where users share interests, such a query set can represent the
interests of millions of users.

The values of the parameters used for generating both the document and the query
sets are shown in Table I. The depth of a path query refers to the number of location
steps contained in the query. The depth of an XML document is the longest nesting
of an element appearing in the document. Note that queries also contain a number of
value-based predicates.

5.3. Evaluation Metrics

We evaluated the performance of FoXtrot by measuring both the time spent and the
network traffic generated during indexing XPath queries and filtering XML data. We

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

FoXtrot: Distributed Structural and Value XML Filtering 12:17

Table I. Dataset Generation Parameters

Parameter Default Range
Number of documents 102 10−103

Document depth 10 5−25
Number of queries 106 105−106

Query depth 12 5−15
Predicates per query 2 1−3
Wildcard probability 0.2 0.2
Desc. axis probability 0.2 0.2

are also interested in how this traffic is distributed among the network peers. More
formally, the metrics used in the experiments are the following. The indexing latency
for a set of queries Q is measured as the amount of time spent until all queries of Q
are indexed in the system. Indexing throughput is measured as the number of queries
indexed over a specified time period. The filtering latency for a set of XML documents
D is measured as the amount of time spent until all notifications are dispatched to the
interested subscribers for the queries matched by the documents of D.

The network traffic is measured as the total number of messages generated by net-
work peers during indexing queries and filtering incoming XML data. We also distin-
guish the following types of peer load. First, the filtering load of a peer is measured
as the total number of messages a peer sends during a filtering operation. Then, the
storage load of a peer is measured as the total number of states it stores locally. Finally,
we will use the term NFA size to refer to the total number of states included in the
distributed NFA that is shared by the peers.

5.4. FoXtrot Setup

To carry out our experiments we execute the following steps. We create a network
of n peers connected using the Pastry DHT and implementing the functionality of
FoXtrot. Then, we index a set of queries Q in the system using randomly selected
peers as subscribers and study the performance of FoXtrot with respect to the metrics
just described. Finally, we filter a set of XML documents D, using random peers as
publishers, and measure again all relevant metrics.

We have implemented only the recursive method in FoXtrot, since as expected and
demonstrated through simulation results in our previous work [Miliaraki et al. 2008],
it outperforms the iterative one in terms of latency because it distributes the load
more evenly and generates less network traffic. Figure 5 presents two graphs from our
previous work [Miliaraki et al. 2008] that illustrate this clearly.

In addition, we have designed a number of different techniques for value-matching.
As shown in our recent study [Miliaraki and Koubarakis 2010], depending on which
technique we employ, the generated network traffic varies, and different latencies are
observed during indexing and filtering operations. Since we consider the comparison
of these methods outside our scope, we only used the method, referred to as top-down
evaluation with pruning, which has proven to perform best under various filtering
scenarios. The default values for setting up FoXtrot, including the value of parameter
l, are shown in Table II.

6. EXPERIMENTAL RESULTS

Our main goal during experimental evaluation is to demonstrate the scalability of
FoXtrot and its load-balancing properties under various scenarios including a very
large set of queries and a high rate of incoming data. The following experiments are
divided into three groups. We begin our evaluation with load-balancing techniques for
distributing the load imposed on the network peers aiming to improve the overall per-
formance of FoXtrot. In the second group, we study the performance of FoXtrot during

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

12:18 I. Miliaraki and M. Koubarakis

200000 400000 600000 800000 1000000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Queries

N
et

w
or

k
tr

af
fic

 (
m

es
sa

ge
s)

Iterative method
Recursive method

(a) Network traffic

200000 400000 600000 800000 1000000
0

200

400

600

800

1000

1200

Queries

La
te

nc
y

(h
op

s)

Iterative method
Recursive method

(b) Latency

Fig. 5. Iterative vs. recursive method [Miliaraki et al. 2008]

Table II. FoXtrot Setup Parameters

Parameter Default
Network size (Cluster) 112
Network size (PlanetLab) 396
Structural matching Recursive method
Value matching Top-down with pruning
Parameter l 2

query indexing. Then, in the third group of experiments, we demonstrate how FoXtrot
operates during XML filtering. Finally, we summarize our evaluation by discussing our
results. Unless otherwise stated, our results are obtained by running the experiments
on the cluster. In cases where we observed differences among the experiments in the
two environments, we point out these differences and discuss them in detail.

6.1. Load-Balancing

A core issue that arises in a distributed filtering system like FoXtrot is having peers
sharing the load equally. This is important because if a fraction of peers becomes
overloaded, the overall performance of the system can deteriorate. In systems like
ONYX [Diao et al. 2004], it is required that a strategy be adopted for deciding where to
store queries and how to deliver XML data using criteria like the topological distance
between the broker and the data source, the available bandwidth, the content of the
query, and the location of the subscriber. In ONYX, this selection process is performed by
a centralized component. Instead, FoXtrot exploits the DHT mechanism and distributes
a single NFA indexing all queries among the peers in a random way. This leads to a
fairly uniform distribution of storage load among the network peers without requiring
any additional action.

However, even when peers share the fragments of the NFA equally (i.e., storage load
is evenly distributed), filtering load distribution can be very unbalanced. This is due to
the tree-like structure of the NFA which causes peers responsible for the states with
smaller depth to suffer more load than the others. Also, the distribution of element
names in the XML document set being filtered can be skewed, causing the relevant
states to be accessed more frequently. The same holds for the distribution of element
names in the query set. Our main concern is balancing the filtering task that is the
heaviest, consisting of both retrieving and executing the NFA states and dispatching
notifications if a match is found.

In the following, we first describe the load-balancing methods we employ and then
evaluate them experimentally. Note that we design our methods assuming a network

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

FoXtrot: Distributed Structural and Value XML Filtering 12:19

consisting of peers with similar capabilities and that our goal is to evenly distribute
the load among them. We do not consider the case where the network consists of a
heterogeneous group of peers.

6.1.1. Static Replication. Our state distribution technique assigns each state to one
responsible peer. Increasing parameter l can also affect the distribution of load, since
peers are able to perform execution at a larger NFA fragment. However, this is not
sufficient for achieving a uniform load distribution, and so we also exploit additional
replication techniques.

Our first method, called static replication, creates a fixed number of r replicas, where
r is called the replication factor, for each NFA state. Replication takes place during
query indexing and whenever a peer creates a state. This is accomplished by indexing
each state st with key k using the additional keys k1 = k + 1, k2 = k + 2, . . . , kr = k + r,
where operator + denotes string concatenation. These correspond to the replication
keys and lead to the peers responsible for the replicated states. During filtering, when
a peer wants to forward a request for state st, it will choose randomly among the r peers
and the load that would be suffered by one peer is now distributed among the r + 1
peers. An obvious drawback of static replication is the extra storage overhead suffered
by the peers as we increase the replication factor. Even if this overhead is considered
negligible, it causes an increased latency during indexing, since r times more states
need to be created and stored. We demonstrate this in detail during our evaluation.

6.1.2. Dynamic Replication. To avoid the excessive storage requirements of static repli-
cation, which can cause latencies during indexing, we improve our method as follows.
We assume that the frequency of visiting an NFA state during filtering is inversely
proportional to the depth of this state. This assumption is made having in mind that
the tree structure of the NFA is the main reason causing the load imbalances (e.g., if
r > 0, one of the r peers responsible for the start state will receive a filtering request
each time an XML document arrives at the system). For this reason we create a differ-
ent number of replicas for each state depending on its NFA depth. So, instead of having
a fixed number of replicas for each NFA state, we create a number of r/d replicas for
each NFA state of depth d. We refer to this method as dynamic replication. Another
interesting case is when the frequencies of visiting the NFA states are not dependent
on the depth of the states but follow a different distribution. In this case, the number
of the replicas for a state should be proportional to its access frequency f . Estimating
these frequencies is an interesting problem, which we leave for future work.

6.1.3. Evaluation. In the following experiments, we evaluate our load-balancing meth-
ods using the following steps. We create a network of 112 peers, index 5 ∗ 105 path
queries, and publish 100 XML documents simultaneously using random peers as
publishers.

We begin with the evaluation of static replication while varying the number of repli-
cas r from 0 to 15. The results are presented in Figure 6. In Figure 6(a) we show the
10 peers that suffer the most load in a descending order of their filtering load. As we
can see, when no replication is used, a fraction of peers is overloaded, receiving a large
number of requests, while other peers receive only a small proportion of the total load.
By adding even a small number of replicas in FoXtrot, load distribution is considerably
improved. When 15 replicas are created, the 10 most loaded peers receive almost equal
loads, eliminating potential bottlenecks.

In Figure 6(b) we show the overall load distribution. On the x-axis, peers are ranked
starting from the peer with the most filtering load. The y-axis represents the cumulative
filtering load, that is, each point (x,y) in the graph represents the sum of filtering load
y for the x most loaded peer. When no replication is used, the filtering load is very

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

12:20 I. Miliaraki and M. Koubarakis

10987654321
0

20

40

60

80

100

Peers

F
ilt

er
in

g
lo

ad

No replication
Static replication (r=5)
Static replication (r=10)
Static replication (r=15)

(a) Most loaded peers (static)

561 28 84 112
0

200

400

600

800

1000

1200

1400

Peers
F

ilt
er

in
g

lo
ad

No replication
Static replication (r=5)
Static replication (r=10)
Static replication (r=15)

(b) Filtering load (static)

No replication r=5 r=10 r=15
0

1

2

3

4

5

6

7

8
x 10

5

Number of replicas

T
ot

al
 N

F
A

 s
ta

te
s

replicas
states

(c) Storage overhead

Fig. 6. Load-balancing (I).

10987654321
0

20

40

60

80

100

Peers

F
ilt

er
in

g
lo

ad

No replication
Dynamic replication (r=10/d)
Dynamic replication (r=20/d)
Dynamic replication (r=30/d)

(a) Most loaded peers (dynamic)

561 28 84 112
0

200

400

600

800

1000

1200

1400

Peers

F
ilt

er
in

g
lo

ad

No replication
Dynamic replication (r=10/d)
Dynamic replication (r=20/d)
Dynamic replication (r=30/d)

(b) Filtering load (dynamic)

r=15 r=10/d r=20/d r=30/d
0

1

2

3

4

5

6

7

8
x 10

5

Number of replicas

T
ot

al
 N

F
A

 s
ta

te
s

replicas
states

(c) Storage overhead

Fig. 7. Load-balancing (II).

unbalanced and many peers receive very few or no requests at all. In particular, more
than 40 peers do not receive any filtering request from the total 1350 requests that are
generated during filtering in FoXtrot (see the straight line segment when x > 70). By
using replication, we quickly observe a more even distribution of load which improves
as we increase the replication factor, and in addition all peers participate in the filtering
process. We also measured the variation of the different peer loads using the metric
of standard deviation (σ) and observed that deviation is decreased as we increase the
number of replicas per state. For example, when no replication is used σ 	 20, while
when r = 15, σ 	 8.

However, the price we pay for a more uniform distribution of the load is the large
storage overhead suffered by the peers as we increase the total number of replicas.
We are concerned with this mainly because it can delay indexing, since actual storage
costs are negligible (measured in MBs). As shown in Figure 6(c), the number of replicas
is high—to illustrate, when r = 15, the storage overhead is more than 6 ∗ 105 replica
states. Note that storage load includes some redundant states due to parameter l, as
discussed in Section 3.1. However, we do not create replicas for these states, and that
is the reason a replica factor r results in less than r times the number of states.

We now continue with the evaluation of the dynamic replication method. We run the
same experiments as before (the results are presented in Figure 7). We first demon-
strate how load is distributed among the 10 peers that suffer most of the load. As we
observe in Figure 7(a), as the replication factor is increased, the peer that receives
the most filtering requests suffers less load. At the same time, the load is distributed
in a more uniform way. Static and dynamic replication techniques exhibit a similar
performance when r = 15 and r = 30/d, respectively (see also Figure 6(a)). The main

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

FoXtrot: Distributed Structural and Value XML Filtering 12:21

561 28 84 112
10

3

10
4

10
5

10
6

Peers

S
to

ra
ge

 lo
ad

No replication
Static replication (r=15)
Dynamic replication (r=30/d)

Fig. 8. Load-balancing (III): Storage load distribution.

advantage of dynamic replication is that we achieve this while keeping storage over-
head low. As Figure 7(c) shows, a replication factor of 30/d almost triples the NFA states
stored by the peers. This compares favorably with static replication, which achieves a
similar load distribution for the case of 15 replicas (see Figure 6(b)), but the resulting
amount of storage overhead is 9 times the number of states (see first bar of Figure 7(c)).

As previously, we also show the overall load distribution in Figure 7(b). Creating a
varying number of replicas, depending on the depth of each NFA state, results in a
more even distribution of load which improves as we increase the replication factor
(from r = 10/d to r = 30/d). When we use dynamic replication, all peers participate in
the filtering process. We also measured the variation of the different peer loads using
standard deviation and observed that deviation is relatively low. For instance, when
r = 30/d, σ ≈ 10 (the total number of filtering load is 1350 requests).

Storage Load. For completeness we also demonstrate in this group of experiments
the storage load distribution in FoXtrot. The results are shown in Figure 8. We plot our
results on a logarithmic scale because the total storage load differs considerably among
the different load-balancing techniques. Again, the y-axis represents the cumulative
load with peers ranked on the x-axis in descending order of their load. We can see in
Figure 8 that even when no replication is used, as expected, storage load is distributed
in a fairly uniform way due to the randomness of our distribution method. We report
that a small group of peers stores a larger fraction of the total states, however in case of
storage load, as we explained previously, these differences can be considered negligible
(measured in MBs).

6.2. Indexing Queries

In this section we demonstrate how FoXtrot performs during query indexing. We are
mainly interested in the number of messages that travel through the network and the
time spent when indexing a set of queries.

Network Traffic. In this group of experiments, we study the network traffic that is
generated during query indexing. We begin by examining the impact of query depth on
the generated traffic and continue with how the number of predicates per query affects
network traffic.

We create a network of 112 peers and index three different query sets containing
queries with depths 5, 10, and 15, respectively. The results are shown in Figure 9(a)
for the cases where 5 ∗ 105 and 106 queries are indexed in FoXtrot. The graph shows
the total amount of network traffic generated during the indexing of queries. In both
cases, as Figure 9(a) depicts, the network traffic generated scales linearly with the
depth of the queries being indexed. Particularly, for the case of 106 indexed queries, as

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

12:22 I. Miliaraki and M. Koubarakis

5 10 15

2

4

6

8

10

12

14

16

18
x 10

6

query depth

N
et

w
or

k
tr

af
fic

 (
in

 m
es

sa
ge

s)
1000000 queries
500000 queries

(a) Network traffic (I)

1 2 3

1

2

3

4

5

6

7

8
x 10

6

predicates per query

N
et

w
or

k
tr

af
fic

 (
in

 m
es

sa
ge

s)

1000000 queries
500000 queries

(b) Network traffic (II)

Fig. 9. Indexing operation (I).

we increase the query depth from 5 to 15, FoXtrot generates from 6 ∗ 106 to 16 ∗ 106

messages, respectively. This is due to the fact that indexing a single query of depth d
requires sending at most d + 1 messages, that is, one message to the peer responsible
for the start state and d additional messages to the peers responsible for the other d
states. These messages either update or create the corresponding NFA states. In some
cases the messages actually sent may be slightly less, since peers can be responsible
for subsequent states and less than d + 1 messages are needed for a query of depth d.
Note that, for the purposes of this experiment, we prefer to index queries one at a time
in each iteration. However, if queries arrive in chunks, we can decrease the number of
messages by performing a bulk indexing operation for each chunk instead of several
separate operations.

In Figure 9(b) we examine how the number of predicates per query affects network
traffic during indexing query sets with 1, 2, and 3 predicates, respectively. We present
two cases when 5 ∗ 105 and 106 queries are indexed in FoXtrot. While network traffic
increases linearly with the query depth, the total number of predicates included in
each query does not significantly affect the number of indexing messages sent in all
cases. We observe a decrease of network traffic as the number of predicates per query
is increased. However, this is actually caused by the method we use for synthetically
generating our queries. As we increase the number of predicates allowed per query,
the query generator creates a set where queries share more structural similarities. In
other words, the distributed NFA that is constructed is smaller and, as a result, fewer
messages travel through the network during indexing. This is depicted more clearly
in the case of 106 queries, where we observe a 30% decrease on network traffic as we
increase the predicates to 3 per query (average query depth in this case is 6).

Indexing Throughput. Next, we study the throughput of FoXtrot during query in-
dexing measured as the number of queries indexed in a given amount of time. We
report measurements for both the PlanetLab network and the cluster, since indexing
throughput differs considerably in the two environments. The main reason is that net-
work delays in a setting like PlanetLab, where peers are geographically dispersed, are
significantly higher compared to the ones observed in the cluster.

Before proceeding with the results, we describe briefly a cache mechanism we used
for decreasing latency. Since we repeatedly visit the same states of the distributed
NFA by contacting the relevant peers, we cache useful routing information at each
peer. Consider a peer p that is responsible for a state st. Each time another peer p′
wants to forward an indexing message to p as responsible for state st, the message will

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

FoXtrot: Distributed Structural and Value XML Filtering 12:23

5 10
0

200

400

600

800

1000

1200

Query depth

In
de

xi
ng

 th
ro

ug
hp

ut
 (

qu
er

ie
s

pe
r

se
c)

Cluster
Planetlab

(a) Indexing throughput

200000 400000 600000 800000 1000000
0

0.5

1

1.5

2

2.5
x 10

5

Queries

N
F

A
 s

iz
e

in
 s

ta
te

s

NITF

Mixed

(b) NFA size

Fig. 10. Indexing operation (II).

travel O(log n) hops to reach its destination.1 We can avoid this by having p′ keep the
IP address of p as the peer responsible for state st. So if p′ wants to contact the peer
responsible for state st again, it will first check its local cache and then the message
will be delivered in a single hop. Such a caching technique is standard in these settings
[Tryfonopoulos et al. 2005; Liarou et al. 2006] and helps reduce latency, since messages
reach their destinations faster.

In Figure 10(a), we demonstrate the throughput achieved by FoXtrot in queries per
second. In both cases, we create networks of 100 peers. In the case of PlanetLab, when
query depth is 5, only 150 queries are indexed per second, while throughput drops
to less than 70 queries per second when query depth is increased to 10 steps. This
is due to the fact that as query depth increases, so does the indexing time, since the
number of messages that are sent through the network are increased. FoXtrot exhibits
a significantly better performance on the cluster, reaching a throughput of 969 queries
per second when queries contain 5 steps.

We also report that in the case of PlanetLab, our measurements suffered from an
increased variation. This was due to the existence of a few arbitrarily slow nodes. This
problem has been studied in the context of a public DHT service, called OpenDHT, which
was deployed on PlanetLab by Rhea et al. [2005]. The authors focused on the problem
of slow nodes and demonstrated ways to overcome their effect on the performance of the
system. We expect that we can further increase indexing throughput by performing a
bulk indexing operation for each chunk of queries. This would benefit an environment
like PlanetLab, where network latencies are large. Because of the strong dependence of
indexing latency on the number of predicates per query, we do not include the results;
the interested reader can refer to our recent study [Miliaraki and Koubarakis 2010].

NFA Size. We conclude our evaluation of query indexing with measurements for
the NFA size shown in Figure 10(b) for both the mixed and the NITF datasets. We
observe that the NFA size grows up to 2.5 ∗ 105 states when indexing 106 queries
from the NITF dataset, while in the case of the mixed dataset, the same number of
queries is indexed in a much smaller NFA. In general, the number of the NFA states
depends on the properties of the relative DTD and the characteristics of the query
set. A larger number of elements allowed in a DTD results in a broader NFA (greater
branching factor for each state), while a larger recursion level increases the depth of the

1Pastry routes messages to the peer whose identifier is numerically closest to the given key by using prefix
routing. Each such request can be done in O(log n) steps, where n is the number of nodes in the network.

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

12:24 I. Miliaraki and M. Koubarakis

250000 500000 750000 1000000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Queries

N
et

w
or

k
tr

af
fic

 (
in

 m
es

sa
ge

s)

(a) Increasing indexed queries

1 2 3
0

1000

2000

3000

4000

5000

6000

7000

predicates per query

N
et

w
or

k
tr

af
fic

 (
in

 m
es

sa
ge

s)

500000 queries
1000000 queries

(b) Increasing predicates

1 2 3 4
220

240

260

280

300

320

340

360

380

400

l parameter

N
et

w
or

k
tr

af
fic

 (
in

 m
es

sa
ge

s)

document depth = 5
document depth = 10

(c) Increasing parameter l

Fig. 11. Filtering operation (I).

NFA. Note that the size of the distributed NFA differs from the size of the equivalent
centralized NFA, since in FoXtrot we introduce redundancy by allowing peers to share
and keep overlapping fragments of the NFA.

6.3. Filtering Documents

We continue our evaluation by studying the performance of FoXtrot during XML
filtering. We are mainly interested in the number of messages that travel through
the network and the time spent when filtering a set of XML documents.

Network Traffic. For the purposes of the experiments, we create a network of 112
peers and incrementally index 106 path queries. After each indexing iteration, we
publish, the whole document set consisting of 100 XML documents and measure the
network traffic generated during the filtering of these documents. We repeat these
steps for various cases. We do not consider the notification messages to be part of
the network traffic.

First, we study how network traffic is affected as we increase the number of in-
dexed queries and as a result we execute a larger NFA. The results are shown in
Figure 11(a). We can see that network traffic scales linearly with the number of queries.
As we index more queries in FoXtrot, the part of the distributed NFA that we traverse
during filtering is larger, and as a result more messages travel through the network.
We also examine how the number of predicates per query affects network traffic during
filtering. In this case, we increase the number of predicates included in each query.

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

FoXtrot: Distributed Structural and Value XML Filtering 12:25

250000 500000 750000 1000000
0

5

10

15

20

25

30

Queries

F
ilt

er
in

g
la

te
nc

y
(in

 s
ec

s)

(a) Increasing indexed queries

250000 500000 750000 1000000
0

1

2

3

4

x 10
4

Queries

T
ot

al
 n

ot
ifi

ca
tio

ns

(b) Notifications

Fig. 12. Filtering operation (II).

Figure 11(b) shows the total amount of network traffic generated during filtering
against the corresponding sets of queries with 1, 2, and 3 predicates. We present two
cases when 5 ∗ 105 and 106 queries are indexed, respectively. In both cases, the query
set that contains more predicates is more selective, and this results in traversing a
smaller part of the NFA during filtering. So network traffic is significantly decreased
as the number of predicates per query increases, as we can see in Figure 11(b).

We continue by demonstrating how parameter l affects the number of messages
that are generated during filtering. The results are shown in Figure 11(c), where we
measure network traffic as we increase l. We repeat our experiment for the cases where
the average document depth is 5 and 10, respectively. We observe that increasing the
value of parameter l results in decreasing the generated amount of network traffic.
This is because increasing l enables each peer to perform execution on a larger path
of the distributed NFA. However, we can see that as l is increased, the corresponding
decrease in the generated traffic is smaller.

Filtering Latency and Throughput. Apart from network traffic, we are also concerned
with the filtering latency of the XML documents that arrive in FoXtrot. Recall that for a
set of XML documents D, we measure filtering latency as the amount of time spent until
all notifications are disseminated to the interested subscribers for the queries satisfied
by the documents of D. As a result, filtering latency strongly depends on the number
of notifications that are generated during filtering. We begin by studying how filtering
latency is affected as we increase the total number of indexed queries (the results are
shown in Figure 12(a)). As the graph shows, the time spent in filtering and delivering
the notifications is proportional to the number of the queries matched in terms of
the generated notifications. The number of these matches in each case is depicted in
Figure 12(b). For example, 4 ∗ 104 notifications are generated when matching against
106 queries (selectivity of 4%). In terms of throughput, when 106 queries are indexed
in FoXtrot, after publishing 100 XML documents, FoXtrot generates and disseminates
about 1600 notifications per second.

We continue by demonstrating the scalability of FoXtrot during filtering as we in-
crease the size of the network. We repeat our experiment for networks consisting of
30, 60, 90, and 120 peers accordingly. The results are shown in Figure 13(a) where two
cases are depicted, when 2.5 ∗ 105 and 5 ∗ 105 queries are indexed, respectively, in the
system. As the results clearly indicate when the size of the network increases, the time
for filtering is significantly decreased. For example, when network size is increased

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

12:26 I. Miliaraki and M. Koubarakis

30 60 90 120
1000

2000

3000

4000

5000

6000

7000

Network size

F
ilt

er
in

g
la

te
nc

y
in

 m
se

cs

500000 queries
250000 queries

(a) Increasing network size

1 2 3 4
500

600

700

800

900

1000

1100

1200

1300

1400

1500

l parameter

F
ilt

er
in

g
la

te
nc

y
(in

 m
se

cs
)

document depth = 5
document depth = 10

(b) Increasing parameter l

Fig. 13. Filtering operation (III).

from 30 peers to 120 peers and 5 ∗ 105 queries are indexed in the system, filtering
latency is decreased from 6 to less than 4 seconds.

We also study how we can improve filtering performance by increasing the value of
parameter l. As shown in Figure 13(a), filtering latency is significantly decreased as
we increase l, and this is mainly due to the smaller amount of network traffic that
is generated (studied earlier and depicted in Figure 11(c)). We also observe that the
margin for improvement is larger when the document set being filtered includes XML
documents of a greater depth.

6.4. Discussion

Let us now summarize the results from our experimental evaluation. First, with respect
to query indexing, FoXtrot is highly efficient, reaching a throughput of almost 1000
queries per second for a network of 112 peers deployed using the cluster machines.
Even though we cannot directly compare FoXtrot to other systems evaluated under
different conditions, we report on the performance of XNet [Chand and Felber 2008],
which is a closely related system for distributed XML filtering. XNet is evaluated using
an overlay consisting of 22 peers from the PlanetLab network. A total of 105 queries are
indexed in XNet, which exhibits an indexing throughput of almost 19 single-element
(i.e., query depth is 1) queries per second for each peer.

We also studied the performance of FoXtrot during filtering by publishing a burst
of 100 XML documents. FoXtrot exhibited a high filtering throughput, generating and
delivering about 1500 notifications per second. Moreover, we demonstrated how scal-
able FoXtrot, since increasing its network size improved performance and decreased
latencies. For load-balancing, we employed two simple yet effective replication meth-
ods for distributing the load among the FoXtrot peers. We demonstrated that using our
dynamic replication method we can evenly distribute the filtering load while incurring
a small storage overhead for the peers. We also illustrated how parameter l affects the
performance of FoXtrot and showed experimentally that increasing l can help us de-
crease network traffic and improve filtering latency, especially for the case of deep XML
documents. In general, depending on the specific properties of the distributed NFA and
the size of the network, tuning parameter l can lead to an improved performance.

The majority of these experiments were conducted in two different environments,
namely the PlanetLab network and a shared cluster. PlanetLab represents the real-
world conditions of the Internet, and for this reason we deployed FoXtrot on 396 nodes.
The latency observed in PlanetLab, either during indexing or filtering, was always one

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

FoXtrot: Distributed Structural and Value XML Filtering 12:27

order of magnitude higher than the one observed in the cluster. We also experienced
an increased variation in the measurements of Planetlab among our different runs.

7. RELATED WORK

In this section we survey related work. We begin our discussion with centralized XML
filtering systems and continue with distributed ones. We give an extensive survey of
distributed approaches, discuss their main properties, and refer to whether they deal
with load-balancing in their settings. Finally, as FoXtrot is built on top of a DHT, we
also survey related peer-to-peer systems.

7.1. Centralized XML Filtering

Many approaches have been proposed in the past for XML filtering in a centralized
setting. One of the earlier ones was YFilter [Diao et al. 2003] and its predecessor XFilter
[Altinel and Franklin 2000]. In the YFilter engine, an NFA is constructed from a set of
XPath queries and is used as a matching engine that scans incoming XML documents
and discovers matching queries. Other systems that also employ tree-based structures
for XML filtering include XTrie [Chan et al. 2002], XPush [Gupta and Suciu 2003], and
Index-Filter [Bruno et al. 2003]. A different approach is described by Tian et al. [2004]
where they design and implement an XML publish/subscribe system using a relational
database. As centralized solutions typically suffer from well-known disadvantages,
including lack of scalability, creation of bottlenecks, and the existence of a single point
of failure, it is more suitable to design a distributed system for offering XML filtering
functionality on an Internet-scale. Thus we now survey such distributed approaches.

7.2. Distributed XML Filtering

The majority of distributed approaches [Snoeren et al. 2001; Chand and Felber 2003;
Felber et al. 2003; Diao et al. 2004; Gong et al. 2005; Uchiyama et al. 2005; Chan and Ni
2007] assume an overlay network with content-based routers responsible for forward-
ing XML data towards interested subscribers. Content-based routers, also called bro-
kers, route XML data based on their content, and are organized in mesh or tree-based
configurations. We describe in detail the work that we consider most representative,
emphasizing the network setting, the methods employed by the network brokers, and
whether any load-balancing method is used for distributing the total load among the
network brokers.

In the work of Felber et al. [2003], the authors first propose two simple strategies for
parallelizing the filtering task, which is performed using the XTrie algorithm [Chan
et al. 2002]. In the first strategy, called data-sharing, each router keeps the whole set of
queries and a load balancer dispatches each XML document that arrives to one of the
routers. In the second strategy, called query-sharing, routers share the queries equally
and incoming XML documents are filtered by all the routers. Intuitively, the time for
indexing queries in the former strategy is proportional to the number of routers in the
network, while filtering time decreases as more routers become available. Likewise,
filtering in the query-sharing strategy requires a broadcast operation to all routers.
Apart from these strategies, the authors also propose to organize the XML routers in to
a hierarchical structure and deal with the challenge of partitioning queries among the
network brokers using the XTrie structure. In this approach, the authors acknowledge
that certain routers may suffer heavy access load, but do not offer solutions to this
problem.

In a more recent work by Chand and Felber [2008], the authors describe another
XML content-based network called XNet. In XNet, filtering is also performed using the
XTrie algorithm [Chan et al. 2002], and a global spanning tree is used to implement
a broadcast layer for publishers to communicate with all the XML routers forming

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

12:28 I. Miliaraki and M. Koubarakis

the inner network. Chand and Felber [2008] focus on aggregation techniques for min-
imizing the size of the routing tables kept by the routers and employ fault-tolerance
methods to recover from router failures. XNet is evaluated using an overlay consisting
of 22 nodes from the PlanetLab network where 105 queries are indexed. They report
on an indexing throughput of almost 19 single-element queries per second for each
consumer node. With respect to load-balancing, the authors deal with the distribution
of the routing load measured as the size of the routing tables.

Diao et al. [2004] present ONYX, assuming a similar topology to XNet, where each
broker uses a broadcast tree for reaching all other brokers in the network. A centralized
component, called the registration service, is used to assign a priori XML data sources
and queries to brokers using criteria like topological distances between the source
and broker, available bandwidth, query content, and the location of the subscriber.
As a result, the registration service can suffer a lot of load. However, the authors
do not address this issue or deal explicitly with the distribution of load among the
network routers. In ONYX, the brokers’ routing tables are instances of the YFilter
engine [Diao et al. 2003] to enable forwarding messages only to those brokers that
are interested in them. The authors also deal with message transformation, aiming to
decrease incrementally the size of the XML messages that travel through the network.

SONNET [Zhou et al. 2007], is closely related to our work because it uses a DHT to
build an XML dissemination system. In contrast to ONYX and XNet that forward XML
data using queries as entries in the brokers’ routing tables, Zhou et al. [2007] construct
a summary of the queries using path digests. As a result, filtering is approximate and
false positives are introduced. The authors use load-shedding techniques to balance
the number of packets forwarded by each peer. However, they do not consider the size
of each packet or the processing load suffered by each peer receiving a packet, and they
evaluate their system through a simulated peer-to-peer network.

The XTreeNet system [Fenner et al. 2005] combines the publish/subscribe and the
query/response models within a network of XML routers that connects XML data
producers and consumers. The authors introduce the concept of content descriptors
and create a different distribution tree for each of these descriptors. As a result, XML
data are not matched repeatedly at internal brokers but travel through the different
distribution trees. Content descriptors can be elements of an ontological topic hierarchy
or XML data paths, and are considered high-level descriptions for both subscription
and publication information.

A work that deals explicitly with load-balancing issues is described by Uchiyama
et al. [2005], where the authors assume that they have available a number of servers
that share XPath queries. Filtering is performed using a lazily constructed DFA similar
to the work of Gupta and Suciu [2003]. The authors employ a load-shedding technique
for transferring XPath queries from overloaded to under-loaded servers using a cen-
tralized component called the XPE control server.

Papaemmanouil and Cetintemel [2005] describe another relevant system, called
SemCast, for distributed content-based routing. SemCast works with either relational
or XML data, and in the case of XML, queries are expressed using the XPath language.
In contrast to ONYX and other systems that require content-based filtering performed
at all brokers, SemCast splits incoming data streams a priori, and sends them across
multiple channels implemented as independent dissemination trees. The process of
deciding which and how many channels are created is called channelization, and is
performed in a centralized manner. This process can be revised periodically, and is
based on criteria like network statistics, stream statistics, and profile characteristics.
Similarly to XTreeNet [Fenner et al. 2005], the authors consider, as a key advantage
for SemCast, that content-based filtering takes place only at the source and destination
brokers, and do not focus on which filtering engine is used for this purpose.

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

FoXtrot: Distributed Structural and Value XML Filtering 12:29

Other work in the literature [Moro et al. 2007; Chan and Ni 2007; Gong et al.
2005] focus on optimizing the functionality of each single XML broker, and can be
considered complementary to most of former work. For example, Gong et al. [2005]
describe techniques that use Bloom filters for summarizing the queries in the routing
tables.

7.3. Tree-Like Structures on Top of DHTs

We now describe approaches that distribute tree-like structures on top of DHTs and
other publish/subscribe systems built using peer-to-peer networks. This work does
not necessarily consider the XML data model; but since in FoXtrot we distribute an
automaton on top of a DHT, we consider this work as closely related, and we discuss it
in detail.

We begin with psiX [Rao and Moon 2009], a hierarchical distributed index for locating
XML data in a DHT network. Each XML document and query is mapped into an alge-
braic signature, and indexes, called H-indexes, are built for the document signatures.
To answer a query, first the root node of each H-index is discovered using the query
elements. This is considered a special node, and its id is computed based on the relevant
XML element name. XML data location continues with each peer following pointers to
the other nodes that keep index entries. Note that apart from locating the root node,
where a DHT lookup operation is used, a peer continues traversing an H-index by
following a set of extra pointers kept locally. Apart from disk usage, the authors do
not study how load is distributed as a result of their design, and depend solely on the
underlying overlay offered by Chord for providing load-balancing of key-value pairs.

A similar approach to psiX was recently proposed by Abiteboul et al. [2008] with the
system KadoP, which supports XPath query processing on top a DHT. Their indexing
scheme is a combination of an inverted index on XML tags and a set of hierarchical
indexes for storing the positional representation of tag name instances. Each peer
keeps a list of indexes using B+-trees for XML tag elements. The authors acknowledge
that distribution of element tags can be very skewed, and peers migrate their data in
the case of popular terms.

Prior to the above work that refers to the XML data model, Aekaterinidis and
Triantafillou [2006] designed PastryStrings, where DHT peers also keep additional
pointers for traversing a forest of trees representing a set of queries. PastryStrings
supports queries expressed using an attribute-value data model which handles a rich
set of operators for both numerical and string attributes. Actually, they consider an
alphabet β, and for each character of β, a tree structure is created (called a string tree)
with words mapped to its tree nodes. Additional routing tables are kept by peers for
enabling prefix-based routing. The authors are concerned with load-balancing since,
as expected, a fraction of nodes—the tree nodes close to the root of each tree—may
become bottlenecks. For this reason, they use common strategies, including replication
of the trees, partitioning of the storage load for popular values, and also apply domain
relocation techniques. The latter technique is based on the fact that each attribute is
expected to have values from a very small part of its domain.

Zhang et al. [2005] propose a distributed tree scheme called Brushwood, designed
on top of the Skip Graph DHT [Aspnes and Shah 2003], where peers are assigned a
tree partition using a linearization of the tree. The authors target locality-sensitive
applications like distributed file services. This work is concerned with load balancing
and uses load shedding methods to achieve this. In particular, peer-wise gossiping is
used to aggregate load information inside the distributed tree and then trigger load
adjustment operations.

One of the earlier approaches that uses a trie structure for organizing data in a
peer-to-peer system is the P-Grid system proposed by Aberer et al. [2003]. P-Grid uses

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

12:30 I. Miliaraki and M. Koubarakis

a virtual distributed search tree, structured similarly to DHTs for supporting both
prefix and range queries. Queries are resolved using prefix matching, while the actual
network topology has no hierarchy and each peer keeps a part of the overall trie. For
reasons including fault-tolerance and load-balancing, multiple peers are responsible
for each leaf node of the P-Grid trie.

A different approach is proposed by Jagadish et al. [2005], where the authors describe
BATON (BAlanced Tree Overlay Network) for organizing peers in a distributed binary
tree structure and supporting both exact match and range queries. In BATON, each
peer stores tree nodes keeping links to its parent, children, adjacent nodes, and also
some selected neighbors of the same level. For load-balancing, again a load-shedding
technique is used where overloaded nodes share or migrate their data. However such
a technique is not sufficient when global imbalances occur. BATON* [Jagadish et al.
2006] improves on BATON by supporting multiattribute queries using a multiway tree
structure. This improved design allows achieving better load-balancing by increasing
the fanout of the tree, leading to more leaf nodes. Also in this case, load-balancing
occurs dynamically having peers partitioning or migrating their load when necessary.
Other approaches include Prefix Hash Tree [Ramabhadran et al. 2004] that uses the
lookup interface of a DHT to construct a trie-based structure for efficiently answering
range queries.

7.4. Other Related Pub/Sub Systems

In the literature, there are many publish/subscribe systems that are based on data mod-
els and query languages different than ours. Such systems include SmartSeer [Kannan
et al. 2006], Corona [Ramasubramanian et al. 2006], and the work of Tryfonopoulos
et al. [2005]. Ramasubramanian et al. [2006] describe Corona, a publish/subscribe
system built on top of a DHT. In Corona, each information source is assigned to
a random peer which monitors the source and disseminates updates to interested
clients who have subscribed to the specific source. The authors use an optimization
method to decide which peers should monitor each channel using periodic polling
aiming to optimize bandwidth utilization. In SmartSeer, the authors use a keyword-
indexing method for allowing users to subscribe with queries containing conjunctions
or disjunctions of terms over the CiteSeer database. Tryfonopoulos et al. [2005] de-
sign an information-filtering system supporting an attribute-value model in a DHT
environment.

Apart from the many works that design publish/subscribe systems on top of struc-
tured overlays, other work like the system Sub-2-Sub proposed by Voulgaris et al.
[2006] relies on gossip-based protocols and consider looser unstructured settings. The
authors aim to support more complex subscription models, including interval-based
subscriptions.

Finally, we point out that there are various interesting papers on storing XML doc-
uments in peer-to-peer networks and executing XPath queries [Bonifati et al. 2004;
Galanis et al. 2003; Koloniari and Pitoura 2004; Skobeltsyn et al. 2005]. For exam-
ple, Koloniari and Pitoura [2004] study content-based routing for XPath queries in
a peer-to-peer network storing XML documents. Peers are connected using an un-
structured peer-to-peer network and clustered based on their content. We do not
present an in-depth discussion of these papers, since their emphasis is not on filtering
algorithms.

8. CONCLUSIONS AND FUTURE WORK

We described FoXtrot, a fully distributed XML filtering system built on top of DHTs.
FoXtrot combines the strength of an NFA for efficiently matching XPath queries and
distributed hash tables for building a fully-distributed scalable system. We focus on

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

FoXtrot: Distributed Structural and Value XML Filtering 12:31

designing a load-balanced approach, avoiding bottlenecks that can deteriorate perfor-
mance. Apart from structural matching performed using automata, we also discuss
different methods for evaluating value-based predicates. We perform an extensive
experimental evaluation of our system, FoXtrot, and demonstrate that it can index
millions of user queries, achieving a high indexing and filtering throughput. At the
same time, FoXtrot exhibits very good load-balancing properties, and is also scalable
with respect to network size, since it improves its performance as we add more peers
to the network. Our evaluation was done in a controlled environment of a local cluster
and on the worldwide testbed provided by the PlanetLab network.

As subject of future work, we would like to consider extensions of the query language
supported in this article, so that we reach full XPath. The first interesting extension
that comes to mind is to consider branching paths. Such an extension would require
a number of optimizations to ensure efficiency. For example, a query containing more
than one linear path could be indexed using only its most selective path and the
other paths would be checked only when a match is found. We also plan to study
how our methods can be applied to richer data models, including the RDF data model
[Manola and Miller 2004]. Since any path query can be transformed into a regular
expression, and consequently there exists an NFA for representing this query, our
techniques described using XML and XPath can be used for other data models and
query languages (e.g., RDF path queries [Pérez et al. 2010]). Zhou and Wu [2010] also
propose a different approach, decomposing RDF graphs to XML trees, and demonstrate
improved query processing performance compared to existing RDF techniques. Such
an approach can also be studied in the context of FoXtrot. With respect to our load-
balancing methods, we should also consider the case where the frequencies of visiting
the NFA states are not dependent on the depth of the states, but follow a different
distribution. Estimating these frequencies and designing such a load-balancing method
is an interesting problem, which we leave for future work.

ACKNOWLEDGMENTS

We would like to thank Mema Roussopoulos for useful comments and discussions. We also thank Mihalis
Nicolaou for implementing the initial algorithms for structural matching [Miliaraki et al. 2008].

REFERENCES

ABERER, K., CUDR E-MAUROUX, P., DATTA, A., DESPOTOVIC, Z., HAUSWIRTH, M., PUNCEVA, M., AND SCHMIDT, R. 2003.
P-Grid: A self-organizing structured P2P system. SIGMOD Record 32, 3, 29–33.

ABITEBOUL, S., MANOLESCU, I., POLYZOTIS, N., PREDA, N., AND SUN, C. 2008. XML processing in DHT networks.
In Proceedings of the 24th IEEE International Conference on Data Engineering (ICDE’08). IEEE, Los
Alamitos, CA, 606–615.

AEKATERINIDIS, I. AND TRIANTAFILLOU, P. 2006. PastryStrings: A comprehensive content-based publish/subscribe
DHT network. In Proceedings of the 26th IEEE International Conference on Distributed Computing
Systems (ICDCS’06). IEEE, Los Alamitos, CA, 23–.

ALTINEL, M. AND FRANKLIN, M. J. 2000. Efficient filtering of XML documents for selective dissemination of
information. In Proceedings of the 26th International Conference on Very Large Data Bases (VLDB’00).
Morgan Kaufmann, San Francisco, CA, 53–64.

ASPNES, J. AND SHAH, G. 2003. Skip graphs. In Proceedings of the14th Annual ACM-SIAM Symposium on
Discrete algorithms (SODA’03). SIAM, Philadelphia, PA, 384–393.

BALAKRISHNAN, H., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND STOICA, I. 2003. Looking up data in p2p
systems. Comm. ACM 46, 43–48.

BARBOSA, D., MIGNET, L., AND VELTRI, P. 2006. Studying the XML Web: Gathering statistics from an XML
sample. World Wide Web 9, 2, 187–212.

BONIFATI, A., MATRANGOLO, U., CUZZOCREA, A., AND JAIN, M. 2004. XPath lookup queries in P2P networks. In
Proceedings of the 6th Annual ACM International Workshop on Web Information and Data Management
(WIDM’04). ACM, New York, 48–55.

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

12:32 I. Miliaraki and M. Koubarakis

BRUNO, N., GRAVANO, L., KOUDAS, N., AND SRIVASTAVA, D. 2003. Navigation- vs. index-based XML multiquery
processing. In Proceedings of the 19th International Conference on Data Engineering (ICDE’03). IEEE,
Los Alamitos, CA, 139–150.

CHAN, C. Y., FELBER, P., GAROFALAKIS, M. N., AND RASTOGI, R. 2002. Efficient Filtering of XML documents with
XPath expressions. In Proceedings of the 18th International Conference on Data Engineering (ICDE’02).
IEEE, Los Alamitos, CA, 235.

CHAN, C. Y. AND NI, Y. 2007. Efficient XML Data dissemination with piggybacking. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD’07). ACM, New York, 737–748.

CHAND, R. AND FELBER, P. 2008. Scalable distribution of XML content with XNet. IEEE Trans. Parallel Distrib.
Syst. 19, 4, 447–461.

CHAND, R. AND FELBER, P. A. 2003. A scalable protocol for content-based routing in overlay networks.
In Proceedings of the 2nd IEEE International Symposium on Network Computing and Applications
(NCA’03). IEEE, Los Alamitos, CA, 123–.

CLARK, J. AND DEROSE, S. J. 1999. XML path language (XPath). Version 1.0. World Wide Web Consortium,
Recommendation. http://www.w3.org/TR/xpath.

CONSENS, M. P. AND MILO, T. 1994. Optimizing queries on files. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD’94). ACM, New York, 301–312.

DIAO, Y., ALTINEL, M., FRANKLIN, M. J., ZHANG, H., AND FISCHER, P. 2003. Path sharing and predicate evaluation
for high-performance XML ffltering. ACM Trans. Datab. Syst. 28, 4, 467–516.

DIAO, Y., RIZVI, S., AND FRANKLIN, M. J. 2004. Towards an internet-scale XML dissemination service. In
Proceedings of the 20th International Conference on Very Large Data Bases (VLDB’04). VLDB
Endowment, 612–623.

FELBER, P., CHAN, C., GAROFALAKIS, M., AND RASTOGI, R. 2003. Scalable filtering of XML data for Web services.
IEEE Internet Comput 7, 1, 49–57.

FENNER, W., RABINOVICH, M., RAMAKRISHNAN, K. K., SRIVASTAVA, D., AND ZHANG, Y. 2005. XTreeNet: Scalable
overlay networks for XML content dissemination and querying (synopsis). In Proceedings of the 10th
International Workshop on Web Content Caching and Distribution (WCW’05). IEEE, Los Alamitos, CA,
41–46.

FREEPASTRY RELEASE 2009. FreePastry 2.1 release. http://www.freepastry.org/FreePastry/.
GALANIS, L., WANG, Y., JEFFERY, S., AND DEWITT, D. J. 2003. Locating data sources in large distributed

systems. In Proceedings of the 29th International Conference on Very Large Data Bases (VLDB’03).
VLDB Endowment,874–885.

GONG, X., QIAN, W., YAN, Y., AND ZHOU, A. 2005. Bloom filter-based XML packets filtering for millions of path
queries. In Proceedings of the 21st International Conference on Data Engineering (ICDE’05). IEEE, Los
Alamitos, CA, 890–901.

GUPTA, A. K. AND SUCIU, D. 2003. Stream processing of XPath queries with predicates. In Proceedings of
the ACM SIGMOD International Conference on Management of Data (SIGMOD’03). ACM, New York,
419–430.

HOPCROFT, J. E., MOTWANI, R., ROTWANI, AND ULLMAN, J. D. 2000. Introduction to Automata Theory, Languages
and Computability. Addison-Wesley, Boston, MA.

HOU, S. AND JACOBSEN, H. A. 2006. Predicate-based filtering of XPath expressions. In Proceedings of the 22nd
International Conference on Data Engineering (ICDE’06). IEEE, Los Alamitos, CA, 53–.

IBM XML.1999. Generator 1999. IBM XML Generator. http://www.alphaworks.ibm.com/xmlgenerator.
JAGADISH, H. V., OOI, B. C., TAN, K., AND VU, Q. H. 2005. BATON:A balanced tree structure for peer-to-peer

networks. In Proceedings of the 31st International Conference on Very Large Data Bases (VLDB’05).
VLDB Endowment, 661–672.

JAGADISH, H. V., OOI, B. C., TAN, K., VU, Q. H., AND ZHANG, R. 2006. Speeding up search in peer-to-peer
networks with a multi-way tree structure. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD’06). ACM, New York, 1–12.

KANNAN, J., YANG, B., SHENKER, S., SHARMA, P., BANERJEE, S., BASU, S., AND JU LEE, S. 2006. Smartseer:
Using a dht to process continuous queries over peer-to-peer networks. In Proceedings of the IEEE
INFOCOM.

KOLONIARI, G. AND PITOURA, E. 2004. Content-based routing of path queries in peer-to-peer systems. In
Proceedings of the Advances in Database Technology (EDBT’04). Springer, 29–47.

LIAROU, E., IDREOS, S., AND KOUBARAKIS, M. 2006. Evaluating conjunctive triple pattern queries over large
structured overlay networks. In Proceedings of the International Semantic Web Conference. 399–413.

LUA, E. K., CROWCROFT, J., PIAS, M., SHARMA, R., AND LIM, S. 2005. A survey and comparison of peer-to-peer
overlay network schemes. IEEE Comm. Surv. Tutorials, 7, 2, 72–93.

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

FoXtrot: Distributed Structural and Value XML Filtering 12:33

MANOLA, F. AND MILLER, E. 2004. RDF primer: W3c recommendation. Decision Support Systems.
MILIARAKI, I. 2011. Distributed filtering and dissemination of XML data in peer-to-peer systems. Ph.D. dis-

sertations, Department of Informatics and Telecommunications, National and Kapodistrian, University
of Athens.

MILIARAKI, I., KAOUDI, Z., AND KOUBARAKIS, M. 2008. XML data dissemination using automata on top of
structured overlay networks. In Proceedings of the 17th International World Wide Web Conference
(WWW’08). ACM, New York, 865–874.

MILIARAKI, I. AND KOUBARAKIS, M. 2010. Distributed structural and value XML filtering. In Proceedings of the
4th ACM International Conference on Distributed Event-Based Systems (DEBS’10). ACM, New York,
2–13.

MORO, M. M., BAKALOV, P., AND TSOTRAS, V. J. 2007. Early profile pruning on XML-aware publish/subscribe
systems. In Proceedings of the 33rd International Conference on Very large Data Bases (VLDB’07). VLDB
Endowment, 866–877.

PAPAEMMANOUIL, O. AND CETINTEMEL, U. 2005. SemCast: Semantic multicast for content-based data dissemi-
nation. In Proceedings of the 21st International Conference on Data Engineering (ICDE’05). IEEE, Los
Alamitos, CA, 242–253.

PEREZ, J., ARENAS, M., AND GUTIERREZ, C. 2010. nSPARQL: A navigational language for RDF. Web Semant. 8,
255–270.

RAMABHADRAN, S., RATNASAMY, S., HELLERSTEIN, J. M., AND SHENKER, S. 2004. Brief announcement: Prefix
hash tree. In Proceedings of the 23rd Annual ACM Symposium on Principles of Distributed Computing
(PODC’04). ACM, New York, 368–368.

RAMASUBRAMANIAN, V., PETERSON, R., AND SIRER, E. G. 2006. Corona: A high performance publish/subscribe
system for the World Wide Web. In Proceedings of the 3rd Conference on Networked Systems Design &
Implementation (NSDI’06). Vol. 3. USENIX Association, Berkeley, CA, 2–2.

RAO, P. R. AND MOON, B. 2009. Locating XML documents in a peer-to-peer network using distributed hash
tables. IEEE Trans. Knowl. Data Eng. 21, 12, 1737–1752.

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SHENKER, S. 2001. A scalable content addressable
network. SIGCOMM Comput. Commun. Rev. 31, 161–172.

RHEA, S., CHUN, B.-G., KUBIATOWICZ, J., AND SHENKER, S. 2005. Fixing the embarrassing slowness of OpenDHT
on PlanetLab. In Proceedings of the 2nd Conference on Real, Large Distributed Systems (WORLDS’05).
Vol. 2, USENIX Association, Berkeley, CA, 25–30.

ROWSTRON, A. AND DRUSCHEL, P. 2001. Pastry: Scalable, decentralized object location, and routing for large-
scale peer-to-peer systems. In Proceedings of the IFIP/ACM International Conference on Distributed
System Platforms (Middleware ’01). Springer, Berlin, 329–350.

SKOBELTSYN, G., HAUSWIRTH, M., AND ABERER, K. 2005. Efficient processing of XPath queries with structured
overlay networks. In Proceedings of the OTM Conferences. 1243–1260.

SNOEREN, A. C., CONLEY, K., AND GIFFORD, D. K. 2001. Mesh-based content routing using XML. In Proceedings
of the 18th ACM Symposium on Operating Systems Principles (SOSP’01). ACM, New York, 160–173.

STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN, H. 2001. Chord: A scalable peer-to-
peer lookup service for internet applications. In Proceedings of the Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications (SIGCOMM’01). ACM, New York,
149–160.

TIAN, F., REINWALD, B., PIRAHESH, H., MAYR, T., AND MYLLYMAKI, J. 2004. Implementing a scalable XML pub-
lish/subscribe system using relational database systems. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD’04). ACM, New York, 479–490.

TRYFONOPOULOS, C., IDREOS, S., AND KOUBARAKIS, M. 2005. Publish/subscribe functionality in IR environments
using structured overlay networks. In Proceedings of the SIGIR. 322–329.

UCHIYAMA, H., ONIZUKA, M., AND HONISHI, T. 2005. Distributed XML stream filtering system with high scal-
ability. In Proceedings of the 21st International Conference on Data Engineering (ICDE’05). IEEE, Los
Alamitos, CA, 968–977.

VOULGARIS, S., RIVIERE, E., KERMARREC, A.-M., AND VAN STEEN, M. 2006. Sub-2-sub: Self-organizing content-
based publish/subscribe for dynamic large scale collaborative networks. In Proceedings of the IPTPS.

XMARK 2001. XMark: An XML benchmark project. http://www.xml-benchmark.org/.
YFILTER RELEASE. 2004. YFilter 1.0 release. http://yfilter.cs.umass.edu/code release.htm.
ZHANG, C., KRISHNAMURTHY, A., AND WANG, R. Y. 2005. Brushwood: Distributed trees in peer-to-peer systems.

In Peer-to-Peer Systems IV, 4th International Workshop (IPTPS’05). Lecture Notes in Computer Science,
Vol. 3640, Springer, Berlin, 47–57.

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

12:34 I. Miliaraki and M. Koubarakis

ZHOU, A., QIAN, W., GONG, X., AND ZHOU, M. 2007. Sonnet: An efficient distributed content-based dissemination
broker (poster paper). In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD’07). ACM, New York, 1094–1096.

ZHOU, M. AND WU, Y. 2010. XML-based RDF data management for efficient query processing. In Proceedings
of the 13th International Workshop on the Web and Databases (WebDB’10). ACM, New York, 3:1–3:6.

Received May 2011; revised March 2012; accepted May 2012

ACM Transactions on the Web, Vol. 6, No. 3, Article 12, Publication date: September 2012.

