
Publish/Subscribe with RDF Data over Large
Structured Overlay Networks�

Erietta Liarou, Stratos Idreos, and Manolis Koubarakis

Department of Electronic and Computer Engineering
Technical University of Crete, GR73100 Chania, Greece

{erietta, sidraios, manolis}@intelligence.tuc.gr

Abstract. We study the problem of evaluating RDF queries over struc-
tured overlay networks. We consider the publish/subscribe scenario where
nodes subscribe with long-standing queries and receive notifications when-
ever triples matching their queries are inserted in the network. In this
paper we focus on conjunctive multi-predicate queries. We demonstrate
that these queries are useful in various modern applications e.g., dis-
tributed digital libraries or Grid resource discovery. Conjunctive multi-
predicate queries are hard to answer since multiple triples are necessary
for their evaluation, and these triples will usually be inserted in the
network asynchronously. We present and evaluate query processing algo-
rithms that are scalable and distribute the query processing load evenly.

1 Introduction

Evaluating RDF queries in distributed environments is an open research prob-
lem. Semantic Web research can gain a lot from recent developments in the area
of peer-to-peer (P2P) systems, and especially from results in the area of struc-
tured overlay networks. We discuss RDF query processing over a popular kind of
such networks, called distributed hash tables (DHTs) [1]. DHT protocols allow
nodes holding data items to self-organize and offer data lookup functionality in
a provably efficient, scalable, fault-tolerant and adaptive way.

The problem of designing distributed algorithms to evaluate RDF queries
over structured overlay networks has been considered by many papers so far e.g.,
[2–7]. We can distinguish two scenarios for query processing in these papers. In
the one-time query case [5, 2, 3], a user poses a query like “give me all songs by
Leonard Cohen” and the system replies with a set of answers/pointers to nodes
that hold related resources. In the publish/subscribe scenario [4, 2, 8], a user
subscribes with a continuous query like “notify me when a new song of Leonard
Cohen becomes available” and receives notifications when matching resources
become available.

We consider RDF queries in the style of RDQL [9] using triples as the atomic
construct. Our long term research goal is to create a set of algorithms for the pub-
lich/subscribe scenario that will support all useful query types in languages such
� This work was supported in part by the European Commission project Ontogrid

(http://www.ontogrid.net/)

as RDQL and RQL. In this paper we make a first step towards this direction by
providing a set of algorithms that support the class of conjunctive multi-predicate
queries and demonstrate that queries of this class are useful in applications. Con-
junctive multi-predicate queries over a distributed DHT environment were first
considered in [2] where algorithms for one-time query processing scenarios are
proposed. Here we consider the publish/subscribe scenario for such queries over
DHTs.

The contributions of this paper are the following. We propose two distributed
algorithms for evaluating continuous conjunctive multi-predicate queries on top
of DHTs. In our experiments we use Chord [10] as the underlying DHT due to
its relative simplicity and widespread popularity. However, the implementation
of our ideas which is underway, is DHT-agnostic: it will work with any DHT ex-
tended with the APIs we define. The case of conjunctive multi-predicate queries
is an interesting one since more than one triples may be needed to answer a
query. Since typically triples do not arrive in the network at the same time, the
network should “remember” the queries that have been partially satisfied and
create notifications only when all subqueries of a given query are satisfied. We
introduce the notion of query chains to handle this problem. We argue that our
algorithms are appropriate for large networks since their main emphasis is to dis-
tribute the query processing load to as many nodes as possible, while at the same
time keeping the network cost in terms of overlay hops low. We experimentally
evaluate and compare our algorithms in a simulated environment.

The organization of the paper is as follows. Section 2 describes Chord and our
assumptions regarding the system and data model. Sections 3, 4 and 5 describe
the two query processing algorithms. In Section 6 we experimentally evaluate
the performance of our algorithms. Finally, Section 7 concludes the paper.

2 System model and data model

We assume an overlay network where all nodes are equal, as they run the same
software and have the same rights and responsibilities. Each node n has a unique
key (e.g., its public key), denoted by key(n). Nodes are organized according to
the Chord protocol and are assumed to have synchronized clocks. This property
is necessary for the time semantics we describe later on in this section. In prac-
tice, nodes will run a protocol such as NTP [11] and achieve accuracies within few
milliseconds. Each data item i has a unique key, denoted by key(i). Chord uses
consistent hashing to map keys to identifiers. Each node and item is assigned an
m-bit identifier, that should be large enough to avoid collisions. A cryptographic
hash function, such as SHA-1 or MD5 is used: function Hash(k) returns the
m-bit identifier of key k. The identifier of a node n is denoted as id(n) and is
computed as follows: id(n) = Hash(key(n)). Similarly the identifier of an item i
is denoted as id(i) and is computed as follows: id(i) = Hash(key(i)). Identifiers
are ordered in an identifier circle (ring) modulo 2m i.e., from 0 to 2m −1. Key k
is assigned to the first node which is equal or follows Hash(k) clockwise in the
identifier space. This node is called the successor node of identifier Hash(k) and

is denoted by Successor(Hash(k)). We will often say that this node is responsi-
ble for key k. A query for locating the node responsible for a key k can be done
in O(log N) steps with high probability [10], where N is the number of nodes in
the network. Chord is described in more detail in [10].

We use the API defined in [12, 13] for implementing pub/sub functionality
on top of Chord. [12] deals with languages from Information Retrieval while
[13] with two-way equi-join queries and there is no overlap of [12, 13] with
the algorithms of this paper. Let us now shortly describe this API. Function
send(msg, id), where msg is a message and id is an identifier, delivers msg from
any node to node Successor(id) in O(logN) hops. Moreover, function multi-
Send(msg, I), where I is a set of d > 1 identifiers I1, ..., Id delivers msg to nodes
n1, n2, ..., nd such that nj = Successor(Ij), where 1 < j ≤ d. This happens in
d ∗ O(logN) hops. Function multiSend() can also be used as, multiSend(M, I),
where M is a set of d messages and I is a set of d identifiers. For each Ij , message
Mj is delivered to Successor(Ij) in d∗O(logN) hops. A detailed description and
evaluation of this API can be found in [12].

In the application scenarios we target, each network node is able to describe
in RDF the resources that it wants to make available to the rest of the network,
by creating and inserting metadata in the form of triples. In addition, each
node can subscribe with a continuous query that describes information that this
node wants to receive notifications for. We use a very simple concept of schema
equivalent to the notion of a namespace. Thus, we do not deal with RDFS and
the associated simple reasoning about classes and instances. Different schemas
can co-exist but we do not support schema mappings. Each node uses some of
the available schemas for its descriptions and queries.

Each triple t has a time parameter called published time, denoted by pubT (t),
that represents the time that the triple is inserted into the network. Each query
q has a unique key, denoted as key(q), that is created by concatenating an
increasing number to the key of the node that posed q. Each query q has a time
parameter, called subscription time, denoted by subscrT (q) that represents its
creation time. Each subquery qi of a query q is also assigned a subscription time
subscrT (qi) = subscrT (q). A triple t can satisfy qi iff subscrT (qi) ≤ pubT (t),
i.e., only triples that are inserted after a continuous query was subscribed can
satisfy it. We will not have a complicated formal definition of notification as it
might be appropriate for some applications.

We concentrate on the class of conjunctive multi-predicate queries. A con-
junctive multi-predicate query q is a formula in the following form:

?x1, . . . , ?xn : (?s, p1, o1) ∧ (?s, p2, o2) ∧ · · · ∧ (?s, pn, on)

where ?s is a variable, p1, . . . , pn are URIs and o1, . . . , on are variables, URIs or
literals. ?x1, . . . , ?xn are variables and {x1, . . . , xn} ⊆ {s, o1, . . . , om}. Variables
will always start with the ’?’ character as in [2]. The formulas (?s, p1, o1),...,(?s, pn, on)
will be called subqueries of q. A query will be called atomic if it consists of a
single conjunct.

A substitution θ is a finite set of the form {?v1/c1, . . . , ?vn/cn} where each
?vi is a distinct variable and each ci is a URI or literal. Each constant ci is

cpu

memory

Gbyte

disk

brand

MHz

bit

rpm

OS

software
citedBy

hasCitation
topic

author title confernce

year

buffer

Distributed CiteSeer scenario Network monitoring scenario

typeclass

range of property

property

Legend :

Fig. 1. Possible schemas for example applications

called a binding for ?vi. Note that we deal only with ground substitutions. Let
q be a query and θ a variable substitution. Then qθ will denote the result of
substituting each variable of q with its binding in θ.

A set of triples T = {t1, . . . , tn} satisfies a query q = q1 ∧ . . . ∧ qk with
variable substitution θ, if for each i = 1, . . . , k there exists j, 1 ≤ j ≤ n such
that triple tj satisfies qi with θ (i.e., qiθ = tj) and subscrT (qi) ≤ pubT (tj). A
triple t satisfies an atomic query q with variable substitution σ, if qσ = t and
subscrT (q) ≤ pubT (t).

Let T be an RDF database and q be a query in the above form. A substitu-
tion θ in variables ?x1, ..., ?xn is an answer to q if T satisfies q. A notification
corresponding to a query q of the above form is just a substitution θ which is an
answer to q.

Conjunctive multi-predicate queries over a distributed DHT environment
were first considered in [2] for one-time query processing scenarios. Note that this
class of queries allows join only on s (i.e., s is a subject common to all triples).
Such queries can be used to express many interesting queries for P2P applica-
tions using RDF. For example, assume a distributed digital library that provides
functionalities like those of CiteSeer. Library nodes could publish descriptions
of academic literature in electronic format. The schema of the left graph of Fig-
ure 1 can be part of the schema used in such an application. Nodes can also
subscribe with queries looking for publications with specific characteristics. A
possible query could be: “Notify me when a paper by Smith is published that is
related to P2P networks. List all citations in this paper”. This is a conjunctive
multi-predicate query that can possibly be expressed as follows:

?x, ?y : (?x, author, “Smith”) ∧ (?x, topic, “P2P”) ∧ (?x, citation, ?y)

It is well-known from systems such as EDUTELLA [5] that RDF is nicely
suited for capturing digital library resource metadata. The fact that resource
metadata may enter the network asychronously makes continuous query evalu-
ation an incremental long-running activity (see Sections 3, 4 and 5). In reality,
there will be applications where the metadata about a specific resource are all
inserted in the network at the same time and applications where metadata are
inserted in steps. For example, a digital library such as the ACM Digital Library
might be expected to publish all metadata of a specific document (e.g., author,
title, etc.) simultaneously. On the contrary, in the CiteSeer scenario, the system
continuously crawls the web and collects information on Computer Science pub-
lications. In this case, as more details about a specific publication are created,
previous CiteSeer entries will be updated.

Another example application where the class of queries studied is useful is
Grid resource monitoring. In this application where computational resources
(e.g., mainframes, personal computers, mobile devices, etc.) are connected in an
overlay network. Users of this network would like to use cpu, memory, disk and
other resources available in the overlay to carry out various computation- and
data-intensive tasks. Part of the schema used in such a scenario could be the right
graph of Figure 1. A continuous conjunctive multi-predicate query according
to this schema might be “Notify me whenever a PC running Linux with the
BLAST bioinformatics package installed, becomes available”. This query can be
expressed as follows:

?x : (?x, type, PC) ∧ (?x,OS,Linux) ∧ (?x, software,BLAST)

Similarly with CiteSeer, evaluating continuous queries for resource discovery in
Grid environments needs data that might not be inserted in the system at the
same time. Thus, algorithms have to “remember” previously inserted triples that
partially satisfy a query. As new triples arrive, this memorized information is
used to determine what queries have been fully satisfied. In general, applications
where metadata is incrementally refined and updated seem to be prevalent in
the Semantic Web and the Semantic Grid and can be nicely served by semi-
structured data models like RDF and dynamic P2P networks.

3 A high-level view of our algorithms

In our algorithms, when a continuous query is submitted, it is indexed somewhere
in the network and waits for triples to satisfy it. Each time a new triple is
inserted, the network nodes cooperate to determine what queries are satisfied
and create notifications. The case of conjunctive multi-predicate queries is an
interesting one, since a single triple may satisfy a query q only partially by
satisfying a subquery of q. In other words, more than one triples may be needed to
answer a query. Moreover, since the appropriate triples do not necessarily arrive
in the network at the same time, the network should “remember” the queries that
have been partially satisfied in the past (e.g., by keeping intermediate results)
and create notifications only when all subqueries of a given query are satisfied.

We could index queries to a globally known node or set of nodes, but this
would eventually overload these nodes. In a P2P environment we want as many
nodes as possible to contribute some of their resources (storage, cpu, bandwidth,
etc.) for achieving the overall network functionality. The resource contribution of
each node will obviously depend on its capabilities, its gains from participating
in the network, etc. In this paper we make the simplifying assumption that all
nodes are altruistic, with equivalent capabilities, and, thus, can contribute to
query evaluation in identical ways.

Let us first consider an atomic query q = (?s1, p1, ?o1). We can simply assign
q to the successor node x of Hash(p1) by using the constant part p1 of the query.
Triples that have predicate value equal to p1 will be indexed to x too, where they

will meet q. Assume now the atomic query q′ = (?s2, p2, o2). We can index q′ ei-
ther to node x1 = Successor(Hash(p2)) or to node x2 = Successor(Hash(o2)).
We prefer the second option since intuitively there will be more object values
than predicate values in an instance of a given schema, which will allow us to
distribute queries to a greater number of nodes. Another solution is to index q′

to the node x3 = Successor(Hash(p2 + o2)). We use the operator + to denote
the concatenation of string values. This is the best option because the possible
combinations of predicate and object values will be greater than the number of
object values alone, so this will lead to an even better distribution of queries.

The difficulty with arbitrary conjunctive multi-predicate queries is that they
demand more than one conditions to be satisfied before the whole query can
be satisfied. As an example, consider the query q = q1 ∧ q2 ∧ q3. Our approach
is to split the query to the subqueries that it consists of, and to index each
subquery separately. Then, three usually different nodes will be responsible for
query processing regarding q. Each one will be responsible for a single subquery of
q, e.g., nodes r1, r2 and r3 will be responsible for q1, q2 and q3 respectively. These
nodes will form the query chain of q, denoted by chain(q). Each one of these
nodes will monitor the satisfaction of only the subquery that it is responsible for.
To determine the satisfaction of q, we have to allow some kind of communication
between these three nodes. In this way, as triples arrive and satisfy a subquery
e.g., in node r1, r1 will forward partial results of q to r2. Node r2 will forward
partial results that also satisfy the second subquery to r3 and r3 will realize that
the whole query is satisfied and create a notification.

The first algorithm that we present creates a single query chain for each
conjunctive multi-predicate query while the second one creates multiple query
chains for a single query to achieve a better query processing load distribution.
The presented algorithms are useful for the evaluation of conjunctive multi-
predicate queries. However, the general idea of these algorithms is the base of
our research towards the creation of distributed algorithms that will also support
more general query types, e.g., arbitrary queries. In the following sections we
describe our algorithms in detail.

4 The single query chain algorithm

In this section we introduce the single query chain algorithm (SQC). The main
characteristic of this algorithm is that for each query, it creates a single query
chain. Let us assume a node n that wants to subscribe with the query q =
q1 ∧ q2 ∧ ...∧ qk where each subquery qj is of the form (?x, pj , ?oj) or (?x, pj , oj).
We will use functions subj(qj), pred(qj) and obj(qj) to denote the string value
of the subject, the predicate and the object of subquery qj respectively.

Indexing a query. Node n will index q by creating a query chain and
assigning responsibility for q to the nodes in the chain as follows. For each
subquery qj , n creates a message index-query(qj , key(q), key(n)) and computes
an identifier Ij using the elements of qj that are constant. If qj is of the form
(?x, pj , ?oj), then Ij = Hash(pred(qj)), while if it is of the form (?x, pj , oj),

r1

r2

r3

{?s/s1,?o/o1} is sent
to r2

Step 1

t1=(s1,p1,o1)

successor(Hash(p1)), stores q1

successor(Hash(o2)),stores q2

successor(Hash(p3)),stores q3

r1

r2
Create and deliver notification
{?s/s1,?o/o1},{?s/s1},{?s/s1,?o/o1}

t2=(s1,p3,o1) t3=(s1,p2,o2)

{?s/s1} and {?s/s1,?o/o1} are
forwarded to r3r3

r2

r3

q =(?s,p1,?o),(?s,p2,o2),(?s,p3,?o)

Query q is inserted and a query chain for q is
created by nodes r1, r2 and r3.

Step 2

Triple t1 arrives at r1 and
satisfies q1.

Step 3

Triple t2 arrives at
r3 and satisfies q3.

t2 is stored
in TT

Step 4

Triple t3 arrives at r2 and satisfies q2.

t1 is stored in TT

{?s/s1,?o/o1} is
stored in IRT

t3 is stored in TT

Fig. 2. The algorithm SQC in operation

then Ij = Hash(obj(qj)). The identifier Ij will lead to the node that will be
responsible for subquery qj . In this way, a set M of k messages is created and a
set I of k identifiers. The successors of those identifiers are called the responsible
nodes for each subquery of q and form the query chain of q. Node n calls the
function multiSend(M, I) to index the query with complexity k∗O(logN) overlay
hops. The multiSend() function sorts I in the clockwise direction starting from
id(n) so the query chain that will be created will require the minimum overlay
hops when forwarding intermediate results [12].

Each node r that receives an index-query(qj , key(q), key(n)) message stores
qj in its local query table (QT) along with key(q), key(n), and two other para-
meters: next(qj) and position(q). Parameter next(qj) will be used by r to reach
the next node in the chain when needed, i.e., next(qj) is the identifier of the
next node. Parameter position(q) is used to show the position of r in chain(q).
position takes the value first or last if r is first or last in chain(q) respectively.
Otherwise, position takes the value middle. The construction of query chains in
SQC is shown graphically in Figure 2 through an example.

Indexing a new triple. A new triple has to meet all relevant queries.
Since subqueries are indexed either according to their predicate or their ob-
ject value, a new triple t = (s, p, o) has to reach both Successor(Hash(p)) and
Successor(Hash(o)) for SQC to be complete. Thus, a node that inserts a new
triple t will use function multiSend(msg, F), with msg =index-triple(t, key(n))
and F = {Hash(p),Hash(o)}, to index t in 2 ∗ O(logN) hops.

Forwarding intermediate results when new triples arrive. Let us now
discuss how a node reacts upon receiving a new triple t. The node stores t in its
local triple table (TT) and searches its QT for matching subqueries. We will first
discuss what happens if this node is first in the query chain of a query q. For sim-
plicity we assume that the nodes of the query chain are ordered as r1, . . . , rk and
are responsible for subqueries q1, . . . , qk respectively. If t satisfies q1 with sub-
stitution θ then a message msg=extend-matching ({q1}, θ, key(q)) is created
and forwarded to the next node in chain(q) with function send(msg, next(qj)).
Otherwise, triple t is ignored and there is nothing to be done.

If a message extend-matching ({q1, . . . , qj−1}, θ, key(q)) arrives at a node
rj in the middle of a query chain for some query q, then rj tries to find out if the
message can be forwarded further in the query chain. This can happen only if rj

is storing triples that satisfy the subquery qj of q that rj is responsible for. Thus,
rj searches its local TT for such triples. If there is a triple t′ and variable substi-
tution σ such that qjθσ = t′, then the list of satisfied subqueries {q1, . . . , qj−1}
can be extended with qj and the next node in the chain should be notified with
a message extend-matching ({q1, . . . , qj}, θσ, key(q)). Furthermore, rj stores
{qjθσ} locally in its intermediate results table (IRT) which is necessary when
triples arrive directly to rj (see below).

Let us now discuss what happens when a node rj+1 in the middle of the
query chain of a query q, receives a new triple t′′. t′′ will be stored in the local
TT and rj+1 will search locally for satisfied subqueries. Assume that t′′ satisfies
a subquery qj+1 of query q with variable substitution λ, so that qj+1λ = t′′.
The difference with the case of being first in chain(q) is that rj+1 will not
forward t′′ to the next node unless the previous node in chain(q) has already
sent appropriate intermediate results. Thus, rj+1 will search its IRT for partially
satisfied subqueries of q. If {q1, . . . , qj} such subqueries exist, a message extend-
matching ({q1, . . . , qj , qj+1}, θσλ, key(q)) will be created and forwarded to the
next node in chain(q) as in the previous paragraph.

When a node that is at the end of a query chain receives a message extend-
matching ({q1, . . . , qj , qj+1}, θσλ, key(q)), it will search its IRT for partially
satisfied subqueries as in the previous paragraph, but then instead of forwarding
intermediate results (there are no more nodes in the chain), it will use the key
of the node that posed the query to deliver any notifications.

An example with SQC in operation is shown in Figure 2. Events take place
from left to right, i.e., initially query q is indexed and then triples arrive. For
readability reasons, only the steps that affect query q are shown.

Grouping queries. Since a large number of subqueries are expected to be
similar, i.e., some of their components are identical, they are grouped together
at each node. For example, all subqueries that have been indexed to a node r
using predicate p will be satisfied when a triple with predicate p arrives (since
the subject and object are variables), so r can locally store these subqueries
as a group, and check their satisfaction in one step when such a triple arrives.
In addition, when nodes send messages extend-matching (), subqueries with
the same parameter next are grouped so that these results are delivered with a
single message to reduce network traffic.

Links. Each node in a chain will contact more than once its next node, so
nodes can maintain pointers (the IP addresses) to their next nodes for efficiency.
This happens with a hash table based local data structure, called query chain
routing table (QCRT). Thus, intermediate results are forwarded in a single hop.

5 The multiple query chains algorithm

In this section we present the multiple query chains algorithm (MQC). With
this algorithm we extend the ideas of SQC to achieve a better distribution of the
query processing load. MQC exploits the values of incoming triples to distribute
the responsibility of evaluating a query to more nodes than SQC. More precisely,

successor(Hash(s1+p2+o2))

r3 successor(Hash(s1+p3))

r1

Step 1
t1=(s1,p1,o1)

successor(Hash(p1))

r1

r2

Create and deliver
notification

t2=(s1,p3,o3) t3=(s1,p2,o2)

t3 and t1 are
forwarded to r3r3

r2

r3

q =(?s,p1,?o),(?s,p2,o2),(?s,p3,?o')

A node inserts query q.
A rewriter node r1 is assigned q1.

Step 2

Triple t1 arrives at r1 and satisfies q1. q is
rewritten to q' and a query chain is created

for q' by r1, r2 and r3.

Step 3

Triple t2 arrives at
r3 and satisfies q'3.

t2 is stored
in r3

Step 4

Triple t3 arrives at r2
and satisfies q'2.

q' =(s1,p1,o1),(s1,p2,o2),(s1,p3,?o')

Fig. 3. The algorithm MQC in operation

instead of creating a single query chain for a query q at the time that q is inserted,
MQC indexes q to a single node r according to one of q’s subqueries. Then, when
a triple satisfying this subquery arrives at r, the value of its subject is used to
rewrite q. For each different rewritten query derived from q, a different query
chain is created. Thus, in SQC each subquery of a query q is assigned to a
single node, while in MQC rewritten instances of each subquery are assigned to
multiple nodes, namely to as many nodes as the distinct subject values in the
arriving triples. In addition, MQC combines the known parts of a subquery to
index it in order to achieve better distribution as discussed in Section 3.

Indexing a query. Assume a node n that wants to subscribe with the query
q = q1 ∧ q2 ∧ ... ∧ qk that consists of k subqueries of the form (?x, pj , ?oj) or
(?x, pj , oj). First, a subquery qj of q is selected and q is indexed to a node
corresponding to qj . This node is r = Successor(Hash(pred(qj) + obj(qj))) if
both pred(qj) and obj(qj) are constant, or r = Successor(Hash(pred(qj))) if
only pred(qj) is constant. We call node r the rewriter of q. This terminology
comes from [13]. Later on, we will discuss good ways to choose a rewriter but at
the moment we can assume that this is a random choice. The rewriter stores q
in its local QT and waits for triples that satisfy qj . Since the query is indexed
to a single node, the cost is O(logN) overlay hops. Each query has one rewriter,
while all queries with the same indexed part have the same rewriter.

Indexing a triple. Since a query might be indexed using a combination
of the constant parts of a subquery, we need a new tuple t = (s, p, o) to reach
the successor nodes of identifiers I1 = Hash(p) and I2 = Hash(p + o). In
addition, since queries are rewritten according to their subject values (as we will
see below) we also need new triples to reach the successor nodes of the identifiers
I3 = Hash(s + p) and I4 = Hash(s + p + o). Thus, a node n1 that inserts a
new triple t will use function multiSend(msg, I) to index t to these 4 nodes in
4∗O(logN) hops, where msg =index-triple(t, key(n1)) and I = {I1, I2, I3, I4}.

Receiving a new triple. Let us now discuss what happens when a new
triple t arrives at a rewriter node r. r checks if its QT contains any query q with
a subquery qj satisfied by t. For each such query q and subquery qj , r does the
following. It rewrites the formula q1 ∧ . . . ∧ qj−1 ∧ qj+1 ∧ . . . ∧ qk by replacing
the subject variable in each subquery with subj(t) to arrive at a new query
q′. Then, r uses subj(t) to determine the nodes that participate in the query

C6

C1 C7

C2 C3

p18

C4 C5

p17p1p2
p3

p4

p5

p6

p9

p11

p12

p19
p20

p21

p22p23

p14 p15 p16

p8

p24

p13p10

p7

class

subclass

range of property

property

Legend :

Fig. 4. The schema used in our experiments

chain for q′. If this is the first time that q has been satisfied in r by a triple
with subj(t), then there is no chain yet for q and this subject value. Multiple
chains are created for q and different subject values, as triples arrive. In order to
create a query chain for a rewritten query, a rewriter node r performs a similar
procedure with the one that a query node performs upon indexing a query in
SQC only that this time the first node of the chain is already known, namely it is
node r. In addition, instead of calculating the index identifier of each subquery
according to predicate or object, the index identifier is calculated according to
the concatenated string of subj(t) with the predicate or the predicate/object
combination of each subquery. As in SQC, the object option is preferred if the
object is a constant. Also, index identifiers are sorted according to their distance
from the identifier of r to minimize network traffic. From there on, query chains
work exactly as in SQC. Each node is responsible for one of the subqueries
in the rewritten query. Intermediate results flow in the chain as in SQC while
notifications are created by the last node in the chain.

An example with MQC in operation is shown in Figure 3. Notice that a query
chain is created in step 2 after the query is rewritten due to a new triple.

6 Experiments

In this section we experimentally evaluate our algorithms. We implemented a
simulator of Chord in Java, on top of which we developed our algorithms. We
synthetically create RDF triples and queries assuming the RDFS schema of
Figure 4. Since our algorithms do not do RDFS reasoning, subclass links in
Figure 4 are used to propagate instantiation links and make all class information
explicit. We assume a set of 1000 subject values and randomly assign each subject
to a class. We also assume a set of 1000 object values and randomly assign each
one to the range of a property. To create an RDF triple t, we first randomly
choose a class C. Then we randomly choose an instance of C to be subj(t), a
property p of C or of the superclasses of C to be pred(t) and a value from the
range of p to be obj(t). We use conjunctive multi-predicate queries with three
subqueries. To create a query of this type, we first randomly choose a class that
the query will refer to. Then, we randomly choose three distinct properties of
this class to be the predicates of the three subqueries. All subqueries have the
same subject variable while the object parameter of each subquery can be a
constant value or a variable. When an object is constant, we randomly choose a
value that belongs to the specific property chosen for this subquery.

0

200

400

600

800

1000

1 2 4 8
Inserted triples (x1000)

O
ve

rl
a

y
h

o
p

s
(x

 1
0

0
0

) SQC

MQC

(a) Overlay hops

0

50

100

150

200

250

1 2 4 8
Inserted triples (x1000)

T
o

ta
l l

o
a

d
 (

x
1

0
0

0
) SQC

MQC

(b) Total load

0

50

100

150

200

250

1 161 321 481 641 801 961
Ranked nodes

C
o

m
u

la
tiv

e
 lo

a
d

 (
x1

0
0

0
)

SQC

MQC

(c) Cumulative load (T=8K)

Fig. 5. Evaluating continuous conjunctive multi-predicate queries

We present what happens while increasing the total number of triples in the
network. Our metrics are (a) the number of overlay hops needed to insert a
number of triples, create and deliver notifications for all matching queries, (b)
the total query processing load generated in the network and (c) the distribution
of this load. The query processing load that a node incurs is defined as the sum
of the number of triples that this node receives so as to check if locally stored
queries are satisfied plus the number of subqueries that have to be compared
against the triples locally stored in this node.

We design our experiment as follows. We create a network of 103 nodes and
install 104 queries. Then, we insert T = 1K triples and we evaluate the metrics
described above. The last step is repeated three more times; each time we double
T to reach 8K triples.

In Figure 5(a) we show the number of hops needed to insert a number of
triples and evaluate all indexed queries. SQC outperforms MQC approximately
by a factor of three. This is due to the fact that MQC creates more than one query
chains for each query, which means that when nodes in SQC can use QCRTs,
nodes in MQC have to create new chains and forward partial results using the
Chord infrastructure or in other words in SQC nodes can train their QCRTs more
quickly (there are less possible values). For both algorithms network traffic is
linearly increased with the number of incoming triples. In addition, experiments
where QCRTs are not used showed that MQC has similar performance with
SQC (higher by a factor of 4 of the SQC performance with QCRT).

In Figure 5(b) we show the total load created by a number of incoming triples.
We observe that the load increases linearly with the number of incoming triples.
MQC creates a slightly higher load because more nodes have to be contacted
and process messages. In Figure 5(c) we present the cumulative query processing
load after 8K triples have been inserted. On the x-axis, nodes are ranked starting
from the node with the highest query processing load. The y-axis represents
the cumulative load, i.e, each point (a, b) in the graph represents the sum of
load b for the a most loaded nodes. We observe that although MQC reaches a
slightly higher total load, it achieves to distribute this load to a significantly

higher portion of network nodes, i.e., in MQC there are 850 nodes (out of 1000)
participating in query processing, while in SQC there are only 250 nodes.

MQC manages to fulfill our goals for a better load distribution which comes
with a higher cost in total network traffic, as it is shown in Figure 5(a). How-
ever, this extra network traffic is suffered by more nodes (that have to create
and forward the extra messages) in MQC. In a longer version of this paper, var-
ious experiments are underway that explore how other parameters (i.e., larger
network sizes, increasing numbers of indexed queries, skewed distributions etc.)
affect the performance of the algorithms.

7 Conclusions

We deal with the problem of evaluating RDF queries over DHTs. We proposed
novel algorithms for resolving continuous conjunctive multi-predicate queries
with emphasis on distributing load and keeping network traffic low.

References

[1] Balakrishnan, H., Kaashoek, M.F., Karger, D.R., Morris, R., Stoica, I.: Looking
up data in P2P systems. CACM 46 (2003) 43–48

[2] Cai, M., Frank, M., Pan, B., MacGregor, R.: A Subscribable Peer-to-Peer RDF
Repository for Distributed Metadata Management. J. Web Sem. 2 (2004)

[3] Aberer, K., Cudré-Mauroux, P., Hauswirth, M., Pelt, T.V.: GridVine: Building
Internet-Scale Semantic Overlay Networks. (In: ISWC ’04)

[4] Chirita, P.A., Idreos, S., Koubarakis, M., Nejdl, W.: Publish/Subscribe for RDF-
based P2P Networks. (In: ESWC ’04)

[5] Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmer,
M., Risch, T.: EDUTELLA: A P2P Networking Infrastructure Based on RDF.
(In: WWW ’02)

[6] Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M.T., Brunkhorst,
I., Löser, A.: Super-peer-based routing strategies for RDF-based peer-to-peer
networks. J. Web Sem. 1 (2004) 177–186

[7] Kokkinidis, G., Christophides, V.: Semantic query routing and processing in P2P
database systems: The ICS-FORTH SQPeer middleware. (In: P2P&DB ’04)

[8] Chirita, P.A., Idreos, S., Koubarakis, M., Nejdl, W.: Designing Semantic Pub-
lish/Subscribe Networks using Super-Peers. In: Semantic Web and Peer-to-Peer.
Springer Verlag (Forthcoming)

[9] Miller, L., Seaborne, A., Reggiori, A.: Three implementations of SquishQL, a
simple RDF query language. (In: ISWC ’02)

[10] Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A
Scalable P2P Lookup Service for Internet Applications. (In: SIGCOMM ’01)

[11] Bawa, M., Gionis, A., Garcia-Molina, H., Motwani, R.: The Price of Validity in
Dynamic Networks. (In: SIGMOD ’04)

[12] Tryfonopoulos, C., Idreos, S., Koubarakis, M.: LibraRing: An Architecture for
Distributed Digital Libraries Based on DHTs. (In: ECDL ’05)

[13] Idreos, S., Tryfonopoulos, C., Koubarakis, M.: Distributed Evaluation of Con-
tinuous Equi-join Queries over Large Structured Overlay Networks. (In: ICDE
’06)

