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Abstract. Advances in remote sensing technologies have allowed us to
send an ever-increasing number of satellites in orbit around Earth. As
a result, satellite image archives have been constantly increasing in size
in the last few years (now reaching petabyte sizes), and have become
a valuable source of information for many science and application do-
mains (environment, oceanography, geology, archaeology, security, etc.).
TELEIOS is a recent European project that addresses the need for scal-
able access to petabytes of Earth Observation data and the discovery of
knowledge that can be used in applications. To achieve this, TELEIOS
builds on scientific databases, linked geospatial data, ontologies and tech-
niques for discovering knowledge from satellite images and auxiliary data
sets. In this paper we outline the vision of TELEIOS (now in its second
year), and give details of its original contributions on knowledge discov-
ery from satellite images and auxiliary datasets, ontologies, and linked
geospatial data.

1 Introduction

Advances in remote sensing technologies have enabled public and commercial
organizations to send an ever-increasing number of satellites in orbit around
Earth. As a result, Earth Observation (EO) data has been constantly increasing
in volume in the last few years, and it is currently reaching petabytes in many
satellite archives. For example, the multi-mission data archive of the TELEIOS
partner German Aerospace Center (DLR) is expected to reach 2 PB next year,
while ESA estimates that it will be archiving 20 PB of data before the year
2020. As the volume of data in satellite archives has been increasing, so have the
scientific and commercial applications of EO data. Nevertheless, it is estimated
that up to 95% of the data present in existing archives has never been accessed,
so the potential for increasing exploitation is very big.

? This work has been funded by the FP7 project TELEIOS (257662).



TELEIOS3 is a recent European project that addresses the need for scalable
access to PBs of Earth Observation data and the effective discovery of knowledge
hidden in them. TELEIOS started on September 2010 and it will last for 3
years. In the first one and a half years of the project, we have made significant
progress in the development of state-of-the-art techniques in Scientific Databases,
Semantic Web and Image Mining and have applied them to the management of
EO data.

The contributions of this paper are the following:

– We outline the vision of TELEIOS and explain in detail why it goes beyond
operational systems currently deployed in various EO data centers. The vi-
sion of TELEIOS is also been presented in [10].

– We discuss the knowledge discovery framework developed in TELEIOS and
give details of its application to radar images captured by TerraSAR-X, one
of the satellites deployed by the TELEIOS partner German Aerospace Data
Center (DLR). TerraSAR-X is a synthetic aperture radar (SAR) satellite
launched on June 2007 in order to supply high quality radar data for the
scientific observation of the Earth.

– We present briefly the data model stRDF and its query language stSPARQL
which are used in TELEIOS for representing knowledge extracted from satel-
lite images and other geospatial data sets and integrating it with other linked
geospatial data sources.

– We show the added value of the TELEIOS Virtual Earth Observatory in
comparison with existing EO portals such as EOWEB-NG and EO data man-
agement systems such as DIMS [28]. The added value comes from extracting
knowledge from the images, encoding this knowledge in stRDF semantic
annotations, and integrating with other relevant data sources available as
linked data. Another interesting application of TELEIOS not discussed in
this paper is the fire monitoring service presented in [14].

The rest of the paper is organized as follows. Section 2 discusses the concepts
on which TELEIOS is based and explains why it improves the state-of-the-art
in information systems for EO data centers. Section 3 discusses the topic of
knowledge discovery from EO images. Section 4 presents the data models stRDF
and stSPARQL. Section 5 presents our vision of a Virtual Earth Observatory that
goes beyond existing EO portals by enabling queries that capture the semantics
of the content of the images. Last, Section 6 discusses related work and Section
7 concludes the paper.

2 Basic Concepts of the TELEIOS Earth Observatory

Satellite missions continuously send to Earth huge amounts of EO data providing
snapshots of the surface of the Earth or its atmosphere. The management of
the so-called payload data is an important activity of the ground segments of

3 http://www.earthobservatory.eu/
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(b) Concept view of the TELEIOS Earth Ob-
servatory

Fig. 1. Pre-TELEIOS EO data centers and the TELEIOS Virtual Earth Observatory

satellite missions. Figure 1(a) gives a high-level view of some of the basic data
processing and user services available at EO data centers today, e.g., at the
German Remote Sensing Data Center (DFD) of TELEIOS partner DLR through
its Data Information and Management System (DIMS) [28].

Raw data, often from multiple satellite missions, is ingested, processed, cat-
aloged and archived. Processing results in the creation of various standard prod-
ucts (Level 1, 2, etc., in EO jargon; raw data is Level 0) together with extensive
metadata describing them. Raw data and derived products are complemented
by auxiliary data, e.g., various kinds of geospatial data such as maps, land use/-
land cover data, etc. Raw data, derived products, metadata and auxiliary data
are stored in various storage systems and are made available using a variety of
policies depending on their volume and expected future use. For example, in
the TerraSAR-X archive managed by DFD, long term archiving is done using a
hierarchy of storage systems (including a robotic tape library) which offers batch
to near-line access, while product metadata are available on-line by utilizing a
relational DBMS and an object-based query language [28].

EO data centers such as DFD also offer a variety of user services. For example,
for scientists that want to utilize EO data in their research, DFD offers the Web
interface EOWEB-NG4 for searching, inspection and ordering of products. Space
agencies such as DLR and NOA might also make various other services available
aimed at specific classes of users. For example, the Center for Satellite Based
Crisis Information (ZKI)5 of DLR provides a 24/7 service for the rapid provision,
processing and analysis of satellite imagery during natural and environmental
disasters, for humanitarian relief activities and civil security issues worldwide.

4 https://centaurus.caf.dlr.de:8443/
5 http://www.zki.dlr.de/
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Similar emergency support services for fire mapping and damage assessment are
offered by NOA through its participation in the GMES SAFER program.

The TELEIOS advancements to today’s state of the art in EO data processing
are shown in yellow boxes in Figure 1(b) and can be summarized as follows:

– Traditional raw data processing is augmented by content extraction methods
that deal with the specificities of satellite images and derive image descriptors
(e.g., texture features, spectral characteristics of the image, etc.). Knowledge
discovery techniques combine image descriptors, image metadata and aux-
iliary data (e.g., GIS data) to determine concepts from a domain ontology
(e.g., forest, lake, fire, port, etc.) that characterize the content of an image
[7].

– Hierarchies of domain concepts are formalized using OWL ontologies and are
used to annotate standard products. Annotations are expressed in RDF and
are made available as linked data [2] so that they can be easily combined
with other publicly available linked data sources (e.g., GeoNames, Linked-
GeoData, DBpedia) to allow for the expression of rich user queries.

– Web interfaces to EO data centers and specialized applications (e.g., rapid
mapping) can now be improved significantly by exploiting the semantically-
enriched standard products and linked data sources made available by
TELEIOS. For example, an advanced EOWEB-NG-like interface to EO data
archives can be developed on top of a system like Strabon6, which is based on
stRDF and stSPARQL, to enable end-users to pose very expressive queries
(an example is given below). Rapid mapping applications can also take ad-
vantage of rich semantic annotations and open linked data to produce useful
maps even in cases where this is difficult with current technology. Open
geospatial data are especially important here. There are cases of rapid map-
ping where emergency response can initially be based on possibly imperfect,
open data (e.g., from OpenStreetMap) until more precise, detailed data be-
comes available7.

In all of the above processing stages, from raw data to application develop-
ment, TELEIOS utilizes scientific database and semantic web technologies as
Figure 1(b) illustrates.

In the rest of this paper we showcase the advances of TELEIOS, presenting
our vision of a Virtual Earth Observatory that goes beyond existing EO portals,
by enabling queries that capture the semantics of the content of the images.
But first, the problem of knowledge discovery from EO images in TELEIOS is
discussed.

3 Knowledge discovery from EO images

In this section we discuss the problem of knowledge discovery from EO images
and related data sets and present the approach we follow in TELEIOS.

6 http://www.strabon.di.uoa.gr/
7 Many related ideas have recently been discussed under the topic of “Open Source

Intelligence”.
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Knowledge Discovery from images (e.g., multimedia, satellite, medical, etc.)
is now a mature subarea of Image Processing and Analysis. In the standard ap-
proach, images are first processed in order to extract visual features (either local
or global) and/or segments that efficiently represent the original image. Semantic
labels are then assigned to the images through classification, clustering or visual
matching. These semantic labels are often represented using appropriate ontolo-
gies and are stored as annotations of the image using Semantic Web technologies
[27]. The problem of selecting the set of appropriate image analysis methods and
the approach to relate the results with high-level concepts is commonly referred
to as “bridging the semantic gap” [25]. The recent paper [26] discusses some
of the state of the art in this area and reaches the optimistic conclusion that
machine understanding for multimedia images is within reach.

The state of the art in machine understanding of satellite images is signifi-
cantly behind similar efforts in multimedia, but some very promising work has
been carried out recently often under the aspects of international space orga-
nizations such as ESA (for example the series of Image Information Mining
Conferene8).

TELEIOS aims to advance the state of the art in knowledge discovery from
satellite images by developing an appropriate knowledge discovery framework
and applying it to synthetic aperture radar images obtained by the satellite
TerraSAR-X of TELEIOS partner DLR.

Satellite images are typically more difficult to handle than multimedia im-
ages, since their size often scales up to a few gigabytes, and there is also a
difficulty in identifying objects and features in them. For example, mining of
EO images based on content analysis is very different from mining images of
faces or animals, because of the different nature of actual features (e.g., eyes,
ears, stripes, or wings) that have known relationships and therefore promote
the differentiation of classes [5]. Moreover, in synthetic aperture radar (SAR)
images that are studied in TELEIOS, additional problems arise from the fact
that these images have different acquisition properties than optical images. Es-
sentially, SAR products may look like optical images but in reality they are
mathematical products that rely on delicate radar measurements.

In [7] we presented a detailed analysis of TerraSAR-X Level 1b products9

and identified the ones that we will use for our knowledge discovery research and
the Virtual Earth Observatory implementation in TELEIOS. Each TerraSAR-X
product comprises a TSX XML file which defines in detail the data types, valid
entries, and allowed attributes of a product, and a TSX image. Additionally,
a preview of the product in GeoTIFF10 format is given as a quick-look image
georeferenced to the WGS84 coordinate reference system, and annotated with
latitude/longitude coordinates. Figure 2 shows an example of a quick-look image

8 http://rssportal.esa.int/tiki-index.php?page=2012_ESA-EUSC
9 Level 1b products are operational products offered by the TerraSAR-X payload

ground segment (PGS) to commercial and scientific customers.
10 GeoTIFF is an extension of the TIFF (Tagged Image File Format) standard which

defines additional tags concerning map projection information.

http://rssportal.esa.int/tiki-index.php?page=2012_ESA-EUSC


Fig. 2. Overlay on Google Earth and location of the Venice site

of Venice projected on Google Earth and its position on the globe. The quick-look
image serves only as a preview of the TSX product and is not to be mistaken with
the actual TSX image that is used for proccessing in the knowledge discovery
framework.

The XML metadata file which is included in the delivered product packages
can have sample sequences like this:

<productInfo>
<missionInfo>

<mission>TSX-1</mission>
...

</missionInfo>
<acquisitionInfo>

...
</acquisitionInfo>
...

</productInfo>
<platform>

<orbit>
...

</orbit>
...

</platform>

We present the main steps of the knowledge discovery methodology that
is currently been implemented in TELEIOS. The details of these steps are as
follows:

1. Tiling the image into patches. In the literature of information extraction
from satellite images, many methods are applied at the pixel level using a
small analysis window. This approach is suitable for low resolution images
but it is not appropriate for high resolution images such as SAR images from
TerraSAR-X that we study in TELEIOS. Pixel-based methods cannot cap-
ture the contextual information available in images (e.g., complex structures
are usually a mixture of different smaller structures) and the global features



Table 1. Feature extraction methods

Feature extraction method No. of features

GAFS - Gabor Filters (2 scales and 2 orientations) 48

GAFS - Gabor Filters (4 scales and 6 orientations) 8

GLCM - Gray Level Co-occurrence Matrix 48

NSFT - Nonlinear Short Time Fourier Transform 6

QMFS - Quadrature Mirror Filters (# of wavelet decom-
positions equal to 1)

8

QMFS - Quadrature Mirror Filters (# of wavelet decom-
positions equal to 2)

14

describing overall properties of images are not accurate enough. Therefore,
in our work, TerraSAR-X images are divided into patches and descriptors
are extracted for each one. The size of the generated patches depends on the
resolution of the image and its pixel spacing. Patches can be of varying size
and they can be overlapping or non-overlapping. The details are discussed
in [7].

2. Patch content analysis. This step takes as input the image patches produced
by the previous step and generates feature vectors for each patch. The feature
extraction methods that have been used are presented in Table 1 together
with the number and kind of features they produce. The details of these
methods are presented in [7].

3. Patch classification and assignment of semantic labels. In this step, a sup-
port vector machine (SVM) classifier is used to classify feature vectors into
semantic classes. It is also possible to utilize relevance feedback from the end
user to reach an improved classification. [7] presents detailed experimental
results that have been obtained by applying our techniques to TerraSAR-X
images to detect the 35 classes presented in Table 2. The semantic class la-
bels are concepts from an RDFS ontology, presented in Section 5, which we
have defined especially for the Virtual Earth Observatory for TerraSAR-X
data.

4 The data model stRDF and the query language
stSPARQL

stRDF is an extension of the W3C standard RDF that allows the representation
of geospatial data that changes over time [12,15]. stRDF is accompanied by
stSPARQL, an extension of the query language SPARQL 1.1 for querying and
updating stRDF data. stRDF and stSPARQL use OGC standards (Well-Known
Text and Geography Markup Language) for the representation of temporal and
geospatial data [15].

In TELEIOS, stRDF is used to represent satellite image metadata (e.g., time
of acquisition, geographical coverage), knowledge extracted from satellite images
(e.g., a certain image comprises semantic annotations) and auxiliary geospatial



Table 2. Semantic classes identified by the techniques developed by DLR

Class No. Semantics Class No. Semantics

1 Bridge (type 1) 19 Forest

2 Harbor 20 Bridge (type 2)

3 River deposits 21 Water + Urban or Vegetation

4 Agriculture 22 Road + Vegetation

5 Distortions 23 Structure roof

6 Mixed Vegetation and Water 24 Train lines (type 2)

7 Vegetation 25 Urban (type 2)

8 Urban + Water 26 Grassland (rectangular shape)

9 Urban (type 1) 27 Grassland with objects

10 Cemetery 28 Building - shape

11 Water + Vegetation 29 Urban (type 3)

12 Water + Ambiguities 30 Building (reflection)

13 Water 31 Vegetation + Urban

14 Water + Boat 32 Road + Building

15 Vegetation + Building 33 Tree + Building

16 Beach area 34 Parking

17 Train line (type 1) 35 Park with street

18 Grassland

data sets encoded as linked data. One can then use stSPARQL to express in a
single query an information request such as the following: “Find images contain-
ing ports near the city of Amsterdam”. Encoding this information request today
in a typical interface to an EO data archive such as EOWEB-NG is impossible,
because information extracted from the content of the products is not included
in the archived metadata, thus they cannot be used as search criteria11. In [3,7]
we have been developing image information mining techniques that allow us to
characterize satellite image regions with concepts from appropriate ontologies
(e.g., landcover ontologies with concepts such as port, water-body, lake, or for-
est, or environmental monitoring ontologies with concepts such as forest fires,
or flood). These concepts are encoded in OWL ontologies and are used to anno-
tate EO products. In this way, we attempt to close the semantic gap that exists
between user requests and searchable, explicitly archived information.

But even if semantic information was included in the archived annotations,
one would need to join it with information obtained from auxiliary data sources
(e.g., maps, wikipedia etc.) to answer the above query. Although such open
sources of data are available to EO data centers, they are not used currently
to support sophisticated ways of end-user querying in Web interfaces such as
EOWEB-NG. In TELEIOS, we assume that auxiliary data sources, especially
geospatial ones, are encoded in RDF and are available as linked data, thus

11 In EOWEB-NG and other similar Web interfaces, search criteria include a hierarchi-
cal organization of available products (e.g., high resolution optical data, Synthetic
Aperture Radar data, their subcategories, etc.) together with a temporal and geo-
graphic selection menu.



stSPARQL can easily be used to express information requests such as the above.
The linked data web is being populated with geospatial data quickly [1], thus we
expect that languages such as stSPARQL (and the related OGC standard query
language GeoSPARQL [18]) will soon be mainstream extensions of SPARQL
that can be used to access such data effectively.

Let us now introduce the basic ideas of stRDF and stSPARQL. The datatypes
strdf:WKT and strdf:GML are introduced for modeling geometric objects that
change over time. The values of these datatypes are typed literals that encode ge-
ometric objects using the OGC standard Well-known Text (WKT) or Geographic
Markup Language (GML) respectively. These literals are called spatial literals.
The datatype strdf:geometry is also introduced to represent the serialization
of a geometry independently of the serialization standard used. The datatype
strdf:geometry is the union of the datatypes strdf:WKT and strdf:GML, and
appropriate relationships hold for their lexical and value spaces.

Like in RDF, stRDF data is represented as triples of URIs, literals, and
blank nodes in the form “subject predicate object”. Additionally, stRDF allows
triples to have a fourth component representing the time the triple is valid in
the domain. Since this capability has not so far been utilized in TELEIOS, we
omit further discussion of this feature in this paper.

The following RDF triples encode information related to a TerraSAR-X im-
age that is identified by the URI dlr:Image_1.tif. Prefix dlr corresponds to
the namespace for the URIs that refer to the DLR applications in TELEIOS,
while xsd and strdf correspond to the XML Schema namespace and the names-
pace for our extension of RDF, respectively.

dlr:Image_1.tif rdf:type dlr:Image .
dlr:Image_1.tif dlr:hasName "IMAGE_HH_SRA_spot_047.tif"^^xsd:string .
dlr:Image_1.tif strdf:hasGeometry

"POLYGON ((12 45, 13 45, 13 46, 12 46, 12 45));
<http://spatialreference.org/ref/epsg/4326/>"^^strdf:WKT .

dlr:Image_1.tif dlr:consistsOf dlr:Patch_1 . dlr:Patch_1 rdf:type dlr:Patch .
dlr:Patch_1 strdf:hasGeometry

"POLYGON ((12 44, 13 44, 13 45, 12 45, 12 44))"^^strdf:WKT .
dlr:Patch_1 dlr:hasLabel dlr:Label_1 . dlr:Label_1 dlr:correspondsTo dlr:Port .

The third triple above shows the use of spatial literals to express the geometry
of the image. This spatial literal specifies a polygon that has exactly one exterior
boundary and no holes. The exterior boundary is serialized as a sequence of
the coordinates of its vertexes. These coordinates are interpreted according to
the WGS84 geodetic coordinate reference system identified by the URI http://
spatialreference.org/ref/epsg/4326/ which can be omitted from the spatial
literal. The rest of the triples are used to annotate image dlr:Image_1.tif with
information mined using the knowledge discovery techniques that DRL develops
in the context of TELEIOS (see Section 3 for more details of these techniques).
In this example, these techniques identified a port in image dlr:Image_1.tif

(last triple above).
stSPARQL is an extension of SPARQL (the W3C standard query language

for RDF data) targeted at querying geospatial information. In stSPARQL vari-
ables may refer to spatial literals (e.g., variable ?HGEO in triple pattern ?H

strdf:hasGeometry ?HGEO). stSPARQL provides functions that can be used

http://spatialreference.org/ref/epsg/4326/
http://spatialreference.org/ref/epsg/4326/


in filter expressions to express qualitative or quantitative spatial relations. For
example the function strdf:contains is used to encode the topological relation
ST Contains of the OGC Simple Feature Access standard12. stSPARQL sup-
ports also update operations (insertion, deletion, and update of stRDF triples)
on stRDF data conforming to the declarative update language for SPARQL,
SPARQL Update 1.1, which is a current proposal of W3C13. Updating stRDF
data is an important requirement in TELEIOS which is utilized during post-
processing of generated products for their improvement in terms of accuracy.

The following query, expressed in stSPARQL, looks for TerraSAR-X images
that contain ports near the city of Amsterdam. This query can be useful for
monitoring coastal zones that contain industrial ports (e.g., Rotterdam, Ham-
burg).

SELECT ?IM ?IMNAME
WHERE { ?PR dlr:hasImage ?IM . ?IM rdf:type dlr:Image .

?IM dlr:hasName ?IMNAME . ?IM dlr:consistsOf ?PA .
?PA rdf:type dlr:Patch . ?PA strdf:hasGeometry ?PAGEO .
?PA dlr:hasLabel ?L . ?L rdf:type dlr:Label .
?L dlr:correspondsTo dlr:Port . ?A rdf:type dbpedia:PopulatedPlace .
?A dbpprop:name "Amsterdam"^^xsd:string . ?A geo:geometry ?AGEO .
FILTER (strdf:distance(?PAGEO,?AGEO) < 2) . }

In the above query, apart from querying information for TerraSAR-X images
like the one we encoded above, linked data from DBpedia14 is also used to
retrieve semantic and geospatial information about Amsterdam. DBpedia is an
RDF dataset consisting of structured information from Wikipedia that allows
one to link other RDF datasets to Wikipedia data. The geometries offered by
DBpedia are points representing latitude, longitude and altitude information in
the WGS84 coordinate reference system.

As we can see with this example, stSPARQL enables us to develop advanced
semantics-based querying of EO data along with open linked data available on
the web. In this way TELEIOS unlocks the full potential of these datasets,
as their correlation with the abundance of data available in the web can offer
significant added value.

The stRDF model and stSPARQL query language have been implemented in
the system Strabon which is freely available as open source software15. Strabon
extends the well-known open source RDF store Sesame 2.6.3 and uses PostGIS
as the backend spatially-enabled DBMS. stSPARQL is essentially a subset of
the recent OGC standard GeoSPARQL since it offers almost exact function-
alities with the core, geometry extension and geometry topology extension of
GeoSPARQL. Strabon supports this subset of GeoSPARQL as well. A detaild
comparison of stSPARQL and GeoSPARQL can be found in [11,13].

Our discussion above covers only the concepts of stRDF and stSPARQL
that are appropriate for understanding this paper; more details can be found
in [12,15]. Let us now describe how stRDF and stSPARQL are deployed in
TELEIOS by presenting their use in developing a Virtual Earth Observatory.

12 http://portal.opengeospatial.org/files/?artifact_id=25354
13 http://www.w3.org/TR/sparql11-update/
14 http://www.dbpedia.org/
15 http://www.strabon.di.uoa.gr/
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5 A Virtual Earth Observatory for TerraSAR-X data

In this section we present our initial efforts for the development of a Virtual
Observatory for TerraSAR-X data and demonstrate its current functionality
through a set of representative stSPARQL queries. We demonstrate that the
Virtual Earth Observatory we are developing will go well beyond the current
EOWEB-NG portal of DLR (which simply offers a hierarchical organization of
EO products together with a temporal and geographic selection menu) to enable
queries that capture the content of satellite images and its semantics. These
queries exploit the full TerraSAR-X product metadata knowledge extracted from
the images using the techniques of Section 3 and other auxiliary data, e.g.,
publicly available geospatial data, relevant GIS data, etc. These queries are of
huge importance for a broad community of users because they can be used to
refer to the nature and properties of the SAR products, a complicated piece of
information which currently remains hidden in the archives of DLR.

We begin by introducing the reader to the ontology that describes the
TerraSAR-X product metadata, the knowledge discovered from the products,
and auxiliary data to be used. Then, we give some examples of stSPARQL
queries that demonstrate the advantages of the Virtual Earth Observatory over
the current EOWEB-NG portal deployed by DLR.

5.1 An Ontology for TerraSAR-X data

We have developed an RDFS ontology16 which captures the contents of the
Virtual Earth Observatory. From this point on, we will refer to this ontology as
the “DLR ontology”.

The DLR ontology comprises the following major parts:

– The part that captures the hierarchical structure of a product and the XML
metadata associated with it. Currently only a small number of metadata
fields (e.g., time and area of acquisition, sensor, imaging mode, incidence
angle) are included. These are the ones most often used by users of the cur-
rent EOWEB portal as well as the ones utilized by our knowledge discovery
techniques.

– The part that defines the RDFS classes and properties that formalize the
outputs of the knowledge discovery step (e.g., patch, feature vector).

– The part that defines the land cover/use classification scheme for annotating
image patches that was constructed while experimenting with the knowledge
discovery framework presented in Section 3. We made the decision not to
employ a “full blown” land cover/use ontology (e.g., Europe’s CORINE17),
because the annotation of image patches currently being carried out uses only
simple labels. The classification scheme therefore provides a basic structure
for annotating patches, a part of which is shown in Figure 3. It is clear

16 http://www.earthobservatory.eu/ontologies/dlrOntology.owl
17 http://harmonisa.uni-klu.ac.at/ontology/corine.owl

http://www.earthobservatory.eu/ontologies/dlrOntology.owl
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Industrial Channel Port Residential 

area 
Bridge Train 

lines 

Sea Forest 

mixed 

Urban built-up Forest Transportation Water 

Fig. 3. Two-level concept taxonomy and example of the multi-semantic annotation of
patches

that the top level has a general meaning (e.g., transportation, water, etc.),
whereas the bottom level is more detailed (e.g., bridge, roads, river, channel,
etc.). We expect that it will be further enriched later in the project when
more TerraSAR-X images would have been processed, and our knowledge
discovery techniques might be able to recognize a greater number of semantic
classes.

A part of the class hierarchy of the DLR ontology is shown in Figure 4. The
data property strdf:hasGeometry is also shown to give the reader an under-
standing of where geospatial information lies. It was noted in the beginning of
Section 3 that a TerraSAR-X image has a spatial extent specified using WGS84
coordinates. We use these coordinates to construct a geometry in polygon format
projected to the WGS84 reference system for the whole image. The geometry is
specified in Well-Known Text (WKT) format using the constructs available in
stSPARQL as explained earlier, in Section 4. We also construct a geometry in
polygon format projected to the WGS84 reference system for each patch of an
image, because it would be infeasible to derive it using a SPARQL query with a
variable binding. The geometry is needed because we would also want to com-
pare patches between different images, which demands taking global position of
the patch into account.

Some stRDF triples that have been produced from an actual product of the
provided dataset are shown below so the reader can appreciate the kinds of data
that are generated as instances of the classes of the ontology:

dlr:Product_1 rdf:type dlr:Product .
dlr:Product_1 dlr:hasImage dlr:Image_1.tif .
dlr:Product_1 dlr:hasName "TSX1_SAR"^^xsd:string .
dlr:Product_1 dlr:hasXMLfilename "TSX1_SAR.xml"^^xsd:string .
dlr:Image_1.tif rdf:type dlr:Image .
dlr:Image_1.tif dlr:hasName "IMAGE_HH_SRA_spot_047.tif"^^xsd:string .
dlr:Image_1.tif dlr:consistsOf dlr:Patch_1.jpg .
dlr:Image_1.tif strdf:hasGeometry "POLYGON ((12 45, 13 45, 13 46, 12 46,
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Fig. 4. A part of the DLR ontology for TerraSAR-X data

12 45))"^^strdf:WKT .
dlr:Patch_1.jpg rdf:type dlr:Patch .
dlr:Patch_1.jpg dlr:hasName "Patch_200_0_0.jpg"^^xsd:string .
dlr:Patch_1.jpg dlr:hasSize "200"^^xsd:int .
dlr:Patch_1.jpg dlr:hasIndexI "0"^^xsd:int .
dlr:Patch_1.jpg dlr:hasIndexJ "0"^^xsd:int .
dlr:Patch_1.jpg strdf:hasGeometry "POLYGON ((12 44, 13 44, 13 45, 12 45,

12 44))"^^strdf:WKT .
dlr:Patch_1.jpg dlr:hasGAFS_vector dlr:GAFS_2_2_1 .
dlr:Patch_1.jpg dlr:hasLabel dlr:Label_1 . dlr:Label_1 rdf:type dlr:Label.
dlr:Label_1 dlr:correspondsTo dlr:Bridge .
dlr:GAFS_2_2_1 rdf:type dlr:GAFS_Vector .
dlr:GAFS_2_2_1 dlr:hasFeatureVectorValues dlr:GAFS_2_2_1_values .

5.2 Queries in the Virtual Earth Observatory

The purpose of this section is to show that with the work carried out in TELEIOS
we significantly improve the state-of-art in EO portals such as EOWEB-NG that
are aimed at end-user querying, but also data management systems available in
EO data centers today, such as DIMS [28]. We first present a categorization of
queries that are possible in the Virtual Earth Observatory. Then, we show how
some of these queries can be expressed using the query language stSPARQL. In
the Virtual Earth Observatory prototype that is currently under development
in TELEIOS, the system Strabon is used for the storage of stRDF data while a
visual query builder, presented in [16], is used to allow end-users to pose queries
easily.

The following are some classes of queries that can be expressed by users of
the Virtual Earth Observatory. The categorization presented is not exhaustive,
but serves to illustrate the expressive power of our annotation schemes and the
query language stSPARQL.



1. Query for a product and its metadata. This type of query is based on the
metadata extracted from the XML file of the TerraSAR-X products (e.g.,
time and area of acquisition, sensor, imaging mode, incidence angle).

2. Query for an image and its metadata. This type of query is based on the
image and its attached metadata (e.g., geographic latitude/longitude).

3. Query for images of products that contain patches that have certain proper-
ties. Queries of this type can be further categorized as follows:

(a) Query by the land cover/use class of a certain patch. This type of query is
based on the annotations of the patches, according to the land cover/use
classification scheme presented in [6].

(b) Query by the land cover/use class of a patch and the qualitative or quan-
titative spatial properties of a patch. This type of query allows us to
query for patches with some land cover/use class that are spatially re-
lated to other patches or to a user defined area. Here one can use various
qualitative or quantitative spatial relations (e.g., topological, cardinal
directions, orientation, distance) [21,23] .

(c) Query by correlating the land cover/use class of more than one patch that
have various qualitative or quantitative spatial relations between them.
This type of query extends the previous query by allowing the correlation
based on land cover/use class of multiple patches with various spatial
relations between them.

(d) Query that involves features of a patch but also other properties like the
land cover/use class and spatial relations. This type of query is based
on the parameters of the feature extraction algorithms discussed in Sec-
tion 3. Using feature values in queries is very useful when we want to
distinguish patches of the same semantic class that differ on specific
properties.

By examining the above types of queries, we see that existing EO portals
such as EOWEB-NG and DIMS offer partial or full support for asking queries
of type 1 and 2, but cannot be used to answer any of the queries of type 3 and
its subcategories. These are queries that can only be asked and answered if the
knowledge discovery techniques of Section 3 are applied to TerraSAR-X images
and relevant knowledge is extracted and captured by semantic annotations ex-
pressed in stRDF. In other words these queries are made possible for users due
to the advances of TELEIOS technologies.

We procceed with examples of queries from the above classes:

– Class 3(c). Find all patches containing water limited on the north by a port,
at a distance of no more than 200 meters.

SELECT ?PA ?PGEO1
WHERE { ?IM dlr:consistsOf ?PA1 . ?PA1 rdf:type dlr:Patch .

?IM dlr:consistsOf ?PA2 . ?PA2 rdf:type dlr:Patch .
?PA1 strdf:hasGeometry ?PGEO1 . ?PA1 dlr:hasLabel ?LA1 .
?LA1 rdf:type dlr:Label . ?LA1 dlr:correspondsTo dlr:Water .
?PA2 strdf:hasGeometry ?PGEO2 . ?PA2 dlr:hasLabel ?LA2 .
?LA2 rdf:type dlr:Label . ?LA2 dlr:correspondsTo dlr:Port .
FILTER (strdf:above(?PGEO1,?PGEO2) &&

strdf:contains(strdf:buffer(?PGEO2,0.005),?PGEO1)) . }



Fig. 5. Query results projected on Google Maps

The results of this type of query are presented in Figure 5. Such a result can
be useful for a port authority in order to monitor the port area. For other
sites, this query can be extended in order to improve navigational safety in
coastal regions near ports and other marine terminals that experience heavy
traffic by large crude-oil carriers, towed barges, and other vessels of deep
draught or restricted manoeuvrability.

– Class 3(d). Find all patches that correspond to a bridge, according to the
1st feature value of the Gabor algorithm with 4 scales and 6 orientations.

SELECT ?PA ?PGEO
WHERE { ?PA rdf:type dlr:Patch .

?PA dlr:hasLabel ?L . ?PA dlr:hasGeometry ?PGEO .
?L rdf:type dlr:Label . ?L dlr:correspondsTo dlr:Bridge .
?PA dlr:hasGAFSvector ?V . ?V rdf:type dlr:GAFS_Vector .
?V dlr:hasScales 4 . ?V dlr:hasOrientations 6 .
?V dlr:hasFeatureVectorValues ?FV . ?FV rdf:_1 ?FV1 .
FILTER (5.0 < ?FV1 && ?FV1 < 35.0) . }

This type of query can be extended from only one feature value to the full
dimension of the feature vector (e.g., for all 48 feature values of the Gabor
algorithm with 4 scales and 6 orientations) and it can be used to distinguish
objects of the same semantic class that differ on specific values. This query
can be useful for EO scientists in order to extract new knowledge from feature
vector values. For example, one can use such a query to identify certain
values that form a property for the object in question (e.g., orientation). We
expect the final version of our Virtual Earth Observatory to allow only users
belonging to a particular role (e.g., scientists inside DLR) to execute such
queries but we have not so far implemented this functionality.

– Class 3. Find all patches containing seagrass detritus and algae on shores
that are identified as recreational beaches.
The results of this type of query can be useful for coastal management to
seek to retain seagrass meadows and also to ensure that seagrass detritus



stays on the beach and in the water. In Europe the desire for a clean beach
has been taken to the point of daily raking and removal of algae for amenity
reasons; some fashionable beaches in France are even perfumed. However,
such sanitisation has its costs, reporting a local loss of seabirds following the
commencement of raking [8].

6 Related Work

TELEIOS is a multidisciplinary research effort bringing together contributions
from database management, semantic web, remote sensing and knowledge dis-
covery from satellite images. We now review some of the most relevant research
efforts in these areas, and compare them with the work carried out in TELEIOS
which has been presented in this paper.

In the context of the Semantic Web, the development of geospatial extensions
to SPARQL has received some attention recently which resulted in the creation
of a forthcoming OGC standard for querying geospatial data encoded in RDF,
called GeoSPARQL [18]. GeoSPARQL draws on the concepts developed in ear-
lier languages such as SPARQL-ST [19], SPAUK [9] and the original version of
stSPARQL [12].

There have been some works in the past where ontologies have been applied
to the modeling of EO data [20,4] or in a similar virtual observatory context
[22,17]. TELEIOS has benefited from the modeling concepts developed in these
efforts and has tried to reuse parts of these public ontologies whenever possible.

Finally, the vision of having knowledge discovery and data mining from satel-
lite images as a fundamental capability of information systems for today’s EO
data centers has been stressed in earlier project KEO/KIM18 funded by the
European Space Agency, and the US project GeoIRIS [24]. Compared to these
projects, TELEIOS has a much stronger technical foundation because it builds
on state of the art database and semantic web technologies, as well as more
advanced knowledge discovery and data mining techniques.

7 Conclusions

In this paper we report on a Virtual Earth Observatory that we are currently
building in the context of the European project TELEIOS. Given the rapidly
growing EO data archives, TELEIOS addresses the need for scalable access to
petabytes of EO data and the discovery of knowledge that can be used in applica-
tions. The main focus is on knowledge discovery from EO images and geospatial
Semantic Web technologies (stRDF and stSPARQL). We discuss in detail how
the developed technologies can be deployed to improve the state-of-art in EO
portals by enabling queries that capture the semantics of the content of the im-
ages. The work presented reflects what we have achieved in the first one and a
half years of the project. Future work includes enrichment of the DLR ontology
and integration of a visual query builder, presented in [16].

18 http://earth.esa.int/rtd/Projects/KEO/index.html

http://earth.esa.int/rtd/Projects/KEO/index.html
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