Selective Information Dissemination in P2P Networks:
Problems and Solutions:

Manolis Koubarakis

Christos Tryfonopoulos

Stratos ldreos Yannis Drougas

Intelligent Systems Laboratory
Dept. of Electronic and Computer Engineering
Technical University of Crete

GR73100 Chania, Crete, Greece
http://www.intelligence.tuc.gr

ABSTRACT

We study the problem of selective dissemination of informa-
tion in P2P networks. We present our work on data models
and languages for textual information dissemination and dis-
cuss a relevant P2P architecture that motivates our efforts.
We also survey our results on the computational complexity
of three related algorithmic problems (query satisfiability,
entailment and filtering) and present efficient algorithms for
the most crucial of these problems (filtering). Finally, we
discuss the features of P2P-DIET, a super-peer system we
have implemented at the Technical University of Crete, that
realizes our vision and is able to support both ad-hoc query-
ing and selective information dissemination scenarios in a
P2P framework.

1. INTRODUCTION

In peer-to-peer (P2P) systems a very large number of au-
tonomous computing nodes (the peers) pool together their
resources and rely on each other for data and services. P2P
systems are application level virtual or overlay networks that
have emerged as a natural way to share data and resources.
Popular P2P data sharing systems such as Napster, Gnutella,
Freenet, KazaA, Morpheus and others have made this model
of interaction popular.

The main application scenario considered in recent P2P data
sharing systems is that of ad-hoc querying: a user poses a
query (e.g., “I want MP3s with Jennifer Lopez”) and the
system returns a list of pointers to matching files owned by
various peers in the network. Then, the user can go ahead
and download files of interest. The complementary scenario
of selective information dissemination (SDI) or selective in-
formation push [11] has so far been considered by very few
P2P systems [5, 18, 23, 12]. In an SDI scenario, a user posts
a profile or continuous query to the system to receive notifi-
cations whenever certain events of interest take place (e.g.,
when a video-clip of Jennifer Lopez becomes available). SDI
can be as useful as ad-hoc querying in many target appli-
cations of P2P networks ranging from file sharing, to more
advanced applications such as alert systems for digital li-
braries, e-commerce networks etc.

*This work was carried out as part of the DIET project
(IST-1999-10088), within the UIE initiative of the IST Pro-
gramme of the European Commission.

information]
provider(
?

O

notification

information(]
providerQ

W

v

i

% profile;
A%ificationm

notification

Figure 1: A P2P architecture for SDI

At the Intelligent Systems Laboratory of the Technical Uni-
versity of Crete, we have recenlty concentrated on the prob-
lem of SDI in P2P networks. In this paper we survey our
work in this area, summarize our main results and compare
with related research. For more details the interested reader
should consult the papers [17, 20, 18, 19] and technical re-
ports [27, 14].

The rest of the paper is organized as follows. Section 2
presents our favourite P2P network architecture for SDI.
Then Section 3 summarizes our contributions on related
data models, query languages, computational complexity
analysis and efficient filtering algorithms. Section 4 dis-
cusses the system P2P-DIET. Finally, Section 5 presents
our conclusions.

2. AN SDI ARCHITECTURE BASED ON
SUPER-PEERS

We have studied SDI scenarios in the context of the P2P ar-
chitecture of Figure 1 which is based on super-peers. Super-
peer architectures for P2P data sharing networks have re-
cently been analyzed in [30] for the standard ad-hoc query-
ing scenario. The architecture of Figure 1 was originally
proposed in [5] in the context of the distributed event no-
tification system SIENA and later-on adopted by us in [18]
(SIENA uses the term server instead of super-peer but the

idea is exactly the same).

In the architecture of Figure 1 users utilize their clients to
post profiles or notifications (expressed in some appropriate
language to be discussed below) to super-peers. Clients play
a dual role: they can be information producers and infor-
mation consumers at the same time. The P2P network of
super-peers is the “glue” that makes sure that published no-
tifications arrive at interested subscribers. To achieve this,
super-peers forward posted profiles to other super-peers us-
ing an appropriate P2P protocol. In this way, matching of
a profile with a notification can take place at a super-peer
that is as close as possible to the origin of the incoming doc-
ument. Profile forwarding can be done in a sophisticated
way to minimize network traffic e.g., no profiles that are
less general than one that has already been processed are
actually forwarded.

In their capacity as information producers, clients can also
post advertisements that describe in a “concise” way the no-
tifications that will be produced by them. These advertise-
ments can also be forwarded in the P2P network of super-
peers to block the forwarding of irrelevant profiles towards
a source. Advertisement forwarding can also be done in a
sophisticated way using ideas similar to the ones for profile
forwarding [5].

3. SUMMARY OF RESULTS
Our work on P2P networks for SDI has been driven by the
following considerations:

e The next generation of P2P data sharing systems should
be developed in a principled and formal way and clas-
sical results from logic and database theory [1] should
be applied. Most of the current work on P2P systems
has not emphasized such theoretical considerations at
all, as witnessed by the recent survey of [10].

e Performance and scalability must be a primary con-
sideration in the design of any realistic system that
supports SDI with P2P networks.

e Implementations of P2P systems should be based on
modern technologies that would enable rapid applica-
tion development and reuse.

In the rest of this paper we discuss our work up to now and
what we have done to address these considerations.

3.1 Datamodelsand query languages

We have developed the data models WP, AWP and AWPS,
and their corresponding languages for specifying queries and
notifications. WP is based on free text and its query lan-
guage is based on the boolean model with prozimity operators
as known in the Information Retrieval (IR) community [7].
Data model AWP is based on attributes with values of type
text, and its query language is an extension of the query
language of data model WP. Finally, the model AWPS
extends AWP by introducing a “similarity” operator based
on the IR vector space model [29].

The following three queries demonstrate the features of WP,
AWP and AWPS respectively and their use in an SDI ap-
plication for a digital library:

Smith A (peer-to-peer V
(selective <[o,0) dissemination <[g 3] information))

AUTHOR 3 Smith A TITLE 1 (peer-to-peer V
(selective <[o,0) dissemination <o 3] information))

AUTHOR 1 Smith A
ABSTRACT ~g.g “Peer-to-peer architectures have been...”

Our data modelling work complements recent proposals for
querying textual information in SDI systems [5, 4] by using
linguistically motivated concepts such as word and tradi-
tional IR operators (instead of strings and their operators).
Our data models and query languages are more expressive
than the one used in the centralized SDI system SIFT [29]
where documents are free text and queries are conjunctions
of keywords. On the other hand, we have only considered
notifications that have flat structure, thus we cannot support
hierarchical documents as in the XML-based models of [2,
6]. But notice that IR-inspired constructs such as proximity
and similarity cannot be expressed in the query languages of
[2, 6] and are also missing from W3C standard XML query
languages XQuery/XPath. The recent W3C working draft
[21] is expected to pave the way for the introduction of such
features in XQuery/XPath. We expect our work on models
WP, AWP and AWPS to serve as a guide for future work
on these features in the XML framework. The similarity
concept of AWPS has also been used in database systems
with IR influences (e.g., WHIRL [9]) and more recently in
the XML query language ELIXIR [8]. We note that both
WHIRL and ELIXIR target information retrieval and in-
tegration applications, and pay no attention to information
dissemination and the concepts/functionality needed in such
applications.

3.2 Theoretical complexity analysis

In [20, 19] we study the complexity of the following three
algorithmic problems for models WP and AWP. The first
problem is the satisfiability problem: deciding whether a pro-
file can ever be satisfied by an incoming notification. The
second problem is the filtering problem: Given a database
of satisfiable profiles db and a notification n, find all pro-
files ¢ € db that match n. This functionality is very crucial
at each super-peer because we expect deployed information
dissemination systems to handle hundreds of thousands or
millions of profiles. The third problem is the entailment
problem: Deciding whether a profile is more or less “gen-
eral” than another. This functionality is crucial if we want
to minimize profile forwarding as sketched in Section 2.

Our results show that the satisfiability and entailment prob-
lem for arbitrary queries in WP and AWP is NP-complete
and coNP-complete respectively. Luckily, these problems
can be solved in PTIME for queries in appropriately defined
DNF forms. The filtering problem is also solvable in PTIME
in both of the above cases [20].

3.3 Efficient Filtering Algorithms

In [19, 27, 26] we study the problem of filtering for conjunc-
tive queries in AWP and present efficient main-memory pro-
file indexing algorithms. Figures 2 and 3 contrast three of
these algorithms: BF (the obvious brute force algorithm),
SingleWordIndex (which utilizes a 2-level index: an array

2000

BIF —
HashTrie ---x---
1800 | SingleWordindex ------ 4

1600

1400

1200 -

1000

800 -

Filtering Time (msec)

600 I

of e e -

Millions of profiles

Figure 2:
AWP

Filtering time for some algorithms for

350 T T T T T T T T T

300 - 4

200 F / A

Throughput (KB / sec)
X

I I A 1 1 1 1 1
400 600 800 1000 1200 1400 1600 1800 2000
Total Input Size (KB)

BF-1M ——
HashTrie-1M --—+---
SingleWordindex-1M ---+---

BF-2M —<—
HashTrie-2M ---x---
SingleWordindex-2M ---x---

BF-3M —*—
HashTrie-3M --—---
SingleWordindex-3M ------

Figure 3: Throughput for some algorithms for AWP

for the attribute names containing pointers to inverted lists
for the WP expression associated with each attribute) and
HashTrie (which uses a hash table pointing to word tries
that are used for clustering similar profiles). HashTrie is
a variation of the algorithm Tree of [28]. The three algo-
rithms have been tested in a digital library SDI application
using documents downloaded from ResearchInder' and pro-
files consisting of technical terms extracted from the doc-
uments. The graph of Figure 2 gives us the time we need
to discover matching profiles for a single incoming document
while the graph of Figure 3 gives us the throughput achieved
by these algorithms. As we can see, HashTrie gives the best
filtering performance and, for a given database of 3 million
profiles, it can process a stream of around 150 KB of incom-
ing data (around 5 Research Index papers) per second.

4., THE SYSTEM P2P-DIET

In [18] our group has proposed DIAS, a distributed SDI sys-
tem for digital libraries that follows the architecture of Fig-
ure 1 and employs conjunctive queries in AWPS. Work on
DIAS has resulted in the implementation of a larger proto-

"ttp://www.researchindex.org

type system called P2P-DIET that combines ad-hoc query-
ing as found in other super-peer networks [30] and SDI as
proposed in DIAS and discussed above [14].

4.1 Functionality

There are two kinds of nodes in P2P-DIET: super-peer nodes
and client nodes. All super-peers are equal and have the
same responsibilities, thus the super-peer subnetwork is a
pure peer-to-peer network (in terms of graph theory, it can
be an arbitrary undirected graph). Each super-peer serves
a fraction of the clients and keeps indices on the resources
of those clients. A client node can run on the computer of
a user. Resources (e.g., files in a file-sharing application)
will be kept at client nodes, although it is possible in spe-
cial cases to store resources at super-peer nodes (see Section
4.3). Clients are equal to each other only in terms of down-
load. When a client wants to actually download a resource,
it downloads it directly from the resource owner client. A
client node can be connected to the network through a sin-
gle super-peer node, which is the access point of the client.
It is not necessary for a client to be connected to the same
access point continuously i.e., client migration is allowed.
Clients can connect, disconnect or even leave from the sys-
tem silently at any time. To enhance the general form of the
network, we also allow clients to use dynamic IP addresses.

Clients may publish a resource by sending a notification to
their access point. Among other things, a notification con-
tains metadata for the resource expressed as conjunctions
of attribute-value pairs in the model AWPS. In the file-
sharing application which currently runs on top of P2P-
DIET, a resource can be a file of any type, for example,
a music file or a Microsoft Word document.

P2P-DIET supports the typical ad-hoc query scemario of
super-peer networks [30]. A client can send a query to its
access point and the access point will broadcast this query
to all super-peers. In this way, answers will be produced
for all matching network resources. Answers are returned to
the access point of the client originating the query and are
then passed to the client for further processing.

P2P-DIET also supports SDI scenarios. Clients may sub-
scribe to the system with a profile (or long-standing query)
expressing their information needs. Whenever a notification
is generated at any point in the network, P2P-DIET makes
sure that clients with profiles matching this notification are
notified. A high-level view of the P2P-DIET architecture
is shown in Figure 4. The concept of advertisements as ex-
plained in Section 2 has not yet been implemented.

4.2 Routing

We expect the super-peer subnetwork of P2P-DIET to be
more stable than typical pure peer-to-peer networks such as
Gnutella, thus we choose to use routing algorithms appro-
priate for such networks. P2P-DIET implements routing of
ad-hoc queries or profiles and notifications by utilizing min-
imum weight spanning trees for the super-peer subnetwork,
a poset data structure encoding profile entailment as origi-
nally suggested in [5], and very fast profile indexing at each
node using the algorithms of Section 3.3. Preliminary eval-
uation of these techniques by us (and previously by SIENA

P

Super peer network[]

. \ Super peers -[J
Access PointslJ
TCP/IPO
P2P-DIET CPO /

Notification, Stored Notification

Rendezvous

Query, Profile N
Resourcel]
Clientd Request Resource, Send Resourcel] Clientd

Figure 4: P2P-DIET architecture

Client Application Specific Agents O

Application Language [

Application [J

Client Interface O

Layer O

Agent Communication Protocols Extensions [

Agent Communication Protocols 0

XML Parser/Writer/Matcher [

Profile/Resource/Notification Directories [Basic Layer [J

Network topology 0

Fault-tolerance mechanism O

Figure 5: A layered view of P2P-DIET

researchers [5]) show that P2P-DIET is a scalable super-peer
system.

4.3 Stored notifications and rendezvous
Clients may not be online all the time, thus we can not
guarantee that the client will be available at the time that
matching resources are added to the network and relevant
notifications are generated. We cannot ignore such situa-
tions and allow the loss of relevant notifications.

When a client is off-line, notifications matching its profiles
are stored in the stored notifications directory of the access
point of the client. Stored notifications are delivered to the
client the next time that it connects to the network. This
happens even if the client has migrated to a different access
point.

A similar situation is when a client A requests a resource,
but the resource owner client B is not online. In that case,
the client A may request a rendezvous with the resource.
When client B later-on reconnects to the network, its access
point informs it that the resource must be delivered to the
access point of the client A as a rendezvous resource. It
is stored in the rendezvous directory of this super-peer and
the next time that the client A connects to the network,
it receives a rendezvous notification. This takes place even
if client A has migrated to a different access point. Client

A may request the resource directly from its current access
y Yy
point or its previous one in case of migration.

4.4 Supporting network topology changes
Clients may use dynamic IP addresses. We need a way to
identify clients and we cannot use their IP address to do this
because the address of a client may be different each time
it connects to the Internet. Client identification in P2P-
DIET is done using unique keys assigned by the super-peer
that the client connects to for the very first time. When a
new client wants to register to the network, it connects to a
super-peer and this super-peer assigns a unique key to the
client.

Every time a client wants to connect to the network after
registration, it must use its key. The client sends a connect
message along with its key to its access point. The super-
peer then updates the client entry with that key in the client
list. When a user disconnects or equivalently terminates the
client application program, its access point must be aware
of that. The client sends a disconnect message along with
its key to its access point and the super-peer updates the
client entry with that key in the client list.

P2P-DIET supports client migration to different super-peers
without loosing useful information like stored notifications
or resource rendezvous as we explained in Section 4.3. In a

future version of P2P-DIET, where a load balancing mech-
anism will be included, the client migration process might
prove useful for moving clients from overloaded to under-
loaded super-peers.

Another important need in an Internet scale peer-to-peer
network, is the ability to add new super-peers (e.g., be-
cause of an ever increasing number of clients). When a
new super-peer joins the super-peer network, the minimum
weight spanning trees for each node need to be updated.
In addition, the new super-peer needs to be informed about
profiles of neighboring super-peers that have been previously
forwarded.

4.5 Fault-tolerance

Super-peers may fail in any way. For example, a crash on
the system or even running out of resources (overloaded -
cannot handle any more sockets), are two basic reasons for
a super-peer to fail or freeze temporarily. The proper way
to solve that problem, is to make every super-peer check pe-
riodically whether its neighbor super-peers are alive and are
working properly using are-you-alive messages. When a
super-peer realizes that one of its neighbors is not respond-
ing, it broadcasts a build-spanning-tree message and the
network automatically enters a re-organization phase until
all routing paths have been updated.

Clients may face system failures too or may leave from the
network silently. A super-peer periodically checks, if all the
clients that it serves are alive. If a client is not responding
to are-you-alive messages the super-peer will treat the
situation as if the client had sent a disconnect message.

4.6 Implementation

P2P-DIET has been developed as a general query and no-
tification service on top of the mobile agent system DIET
Core presented in [13]. For a general discussion of what
agent systems research has to offer to P2P computing and
vice versa the interested reader is invited to see [15, 22].

A layered view of P2P-DIET is shown in Figure 5. A file-
sharing application has been built on top of P2P-DIET to
demonstrate its features.

5. CONCLUSIONS

We have argued that it is natural and useful to add SDI
functionality to current super-peer P2P systems analyzed
in [30]. We have summarized our work on SDI, and dis-
cussed the details of our prototype system P2P-DIET that
integrates ad-hoc querying and SDI functionality in a single
super-peer P2P system. Currently we are working on imple-
menting the query and SDI functionality of P2P-DIET on
top of a distributed hash table [24] and compare this with
our current implementation.

In collaboration with Peter Triantafillou’s group at the Uni-
versity of Patras we have also recently studied the problem
of load balancing in a hierarchical P2P system as a fair
resource allocation problem [25]. In related work, we cur-
rently study distributed algorithms for load balancing in
task-sharing P2P systems using ideas from physics (diffu-
sion) and nature-inspired computing (ant colonies). These

ideas are very natural if one considers P2P systems to be
complezr adaptive systems [3, 16].

Acknowledgements

We would like to acknowledge the comments of all members
of project DIET on various aspects of our work. Finally, we
would like to thank Evangelos Milios of Dalhousie University
for providing us with the document collection we used for
testing our profile indexing algorithms.

6. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison Wesley, 1995.

[2] M. Altinel and M. Franklin. Efficient filtering of XML
documents for selective dissemination of information.
In Proceedings of the 26th VLDB Conference, 2000.

[3] O. Babaoglu, H. Meling, and A. Montresor. Anthill: A
framework for the development of agent-based
peer-to-peer systems. In Proceedings of IEEE
International Conference on Distributed Computer
Systems, pages 15-22, 2002.

[4] A. Campailla, S. Chaki, E. Clarke, S. Jha, and
H. Veith. Efficent filtering in publish-subscribe
systems using binary decision diagrams. In Proc. of
23rd International Conference on Software
Engineering, Toronto, Ontario, Canada, 2001.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Design and evaluation of a wide-area event
notification service. ACM Transactions on Computer
Systems, 19(3):332-383, August 2001.

[6] C.-Y. Chan, P. Felber, M. Garofalakis, and
R. Rastogi. Efficient Filtering of XML Documents
with XPath Expressions. In Proceedings of the 18th
International Conference on Data Engineering, pages
235-244, February 2002.

[7] C.-C. K. Chang, H. Garcia-Molina, and A. Paepcke.
Predicate Rewriting for Translating Boolean Queries
in a Heterogeneous Information System. ACM
Transactions on Information Systems, 17(1):1-39,
1999.

[8] T. T. Chinenyanga and N. Kushmerick. Expressive
retrieval from XML documents. In Proceedings of
SIGIR’01, September 2001.

[9] W. W. Cohen. WHIRL: A word-based information
representation language. Artificial Intelligence,
118(1-2):163-196, 2000.

[10] N. Daswani, H. Garcia-Molina, and B. Yang. Open
problems in data sharing peer-to-peer systems. In
Proceedings of the 9th International Conference on
Database Theory (ICDT 2003), volume 2572 of
Lecture Notes in Computer Science, pages 1-15.
Springer, January 2003.

[11] M. J. Franklin and S. B. Zdonik. “Data In Your
Face”: Push Technology in Perspective. In Proceedings
ACM SIGMOD International Conference on
Management of Data, pages 516-519, 1998.

[12]

[13]

[15]

[18]

[21]

B. Gedik and L. Liu. PeerCQ: A Decentralized and
Self-Configuring Peer-to-Peer Information Monitoring
System. In Proceedings of the 23rd IEEE International
Conference on Distributed Computer Systems, May
2003.

C. Hoile, F. Wang, E. Bonsma, and P. Marrow. Core
specification and experiments in DIET: a decentralised
ecosystem-inspired mobile agent system. In
Proceedings of the 1st International Joint Conference

on Autonomous Agents € Multiagent Systems
(AAMAS 2002), pages 623630, July 15-19 2002.

S. Idreos and M. Koubarakis. P2P-DIET: A Query
and Notification Service Based on Mobile Agents for
Rapid Implementation of P2P Applications. Technical
report, Intelligent Systems Laboratory, Dept. of
Electronic and Computer Engineering, Technical
University of Crete, 2003.

M. Koubarakis. Multi-agent Systems and Peer-to-Peer
Computing: Methods, Systems and Challenges.
Invited talk at the 7th International Workshop on
Cooperative Information Agents (CIA 2003), Helsinki,
Finland, 27-29 August 2003. Paper available at
http://www.intelligence.tuc.gr/ manolis.

M. Koubarakis. Complex Adaptive Systems Research
for Peer-to-Peer Computing. Manuscript in
Preparation.

M. Koubarakis. Boolean Queries with Proximity
Operators for Information Dissemination. Proceedings
of the Workshop on Foundations of Models and
Languages for Information Integration (FMII-2001),
Viterbo, Italy , 16-18 September, 2001. In LNCS
(forthcoming).

M. Koubarakis, T. Koutris, P. Raftopoulou, and

C. Tryfonopoulos. Information Alert in Distributed
Digital Libraries: The Models, Languages and
Architecture of DIAS. In Proceedings of the 6th
European Conference on Research and Advanced
Technology for Digital Libraries (ECDL 2002), volume
2458 of Lecture Notes in Computer Science, pages
527-542, September 2002.

M. Koubarakis and C. Tryfonopoulos. Peer-to-peer
agent systems for textual information dissemination:
algorithms and complexity, December 2002. In the UK
Workshop on Multiagent Systems (UKMAS-2002),
Liverpool, UK.

M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou,
and T. Koutris. Data models and languages for
agent-based textual information dissemination. In
Proceedings of 6th International Workshop on
Cooperative Information Systems (CIA 2002), volume
2446 of Lecture Notes in Computer Science, pages
179-193, September 2002.

XQuery and XPath Full-Text Use Cases. W3C
Working Draft 14 February 2003. Available at http:
//www.w3.org/TR/xmlquery-full-text-use-cases.

[22]

[23]

[24]

[28]

[29]

[30]

G. Moro and M. Koubarakis, editors. Agents and
Peer-to-Peer Computing (Proceedings of First
International Workshop, AP2PC 2002), volume 2530
of Lecture Notes in Computer Science. Springer, 2003.

P. R. Pietzuch and J. Bacon. Hermes: A Distributed
Event-Based Middleware Architecture. Proceedings of
the International Workshop on Distributed
Event-Based systems (DEBS’02), July 2-3, 2002,
Vienna, Austria.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceedings
of the ACM SIGCOMM 01 Conference, San Diego,
California, August 2001.

P. Triantafillou, C. Xiruhaki, M. Koubarakis, and
N. Ntarmos. Towards high-performance peer-to-peer
content and resource sharing systems. In Proceedings
of the First Biennial Conference on Innovative Data
Systems Research (CIDR 2003), January 2003.

C. Tryfonopoulos, Y. Drougas, and M. Koubarakis.
Efficient and Scalable Selective Information
Dissemination using Data Models Inspired from
Information Retrieval. Manuscript in Preparation.

C. Tryfonopoulos and M. Koubarakis. Agent-based
textual information dissemination: Data models,
query languages, algorithms and computational
complexity. Technical report, Intelligent Systems
Laboratory, Dept. of Electronic and Computer
Engineering, Technical University of Crete, 2002.

T. Yan and H. Garcia-Molina. Index structures for
selective dissemination of information under the
boolean model. ACM Transactions on Database
Systems, 19(2):332-364, 1994.

T. Yan and H. Garcia-Molina. The SIFT information
dissemination system. ACM Transactions on Database
Systems, 24(4):529-565, 1999.

B. Yang and H. Garcia-Molina. Designing a
super-peer network. In Proceedings of the 19th
International Conference on Data Engineering (ICDE
2008), March 5-8 2003.

