
Modeling and Querying Metadata in the
Semantic Sensor Web: the Model stRDF and the

Query Language stSPARQL ?

Manolis Koubarakis and Kostis Kyzirakos

Dept. of Informatics and Telecommunications
National and Kapodistrian University of Athens

Greece
{koubarak,kkyzir}@di.uoa.gr

Abstract. RDF will often be the metadata model of choice in the Se-
mantic Sensor Web. However, RDF can only represent thematic meta-
data and needs to be extended if we want to model spatial and temporal
information. For this purpose, we develop the data model stRDF and
the query language stSPARQL. stRDF is a constraint data model that
extends RDF with the ability to represent spatial and temporal data.
stSPARQL extends SPARQL for querying stRDF data. In our extension
to RDF, we follow the main ideas of constraint databases and represent
spatial and temporal objects as quantifier-free formulas in a first-order
logic of linear constraints. Thus an important contribution of stRDF
is to bring to the RDF world the benefits of constraint databases and
constraint-based reasoning so that spatial and temporal data can be rep-
resented in RDF using constraints.

1 Introduction

Sensors are rapidly becoming ubiquitous and may be found everywhere, ranging
from consumer products to the medical, automotive and industrial markets.
Collections of spatially distributed sensors with communication infrastructure
form sensor networks. Semantically enriched sensor networks should allow the
discovery and analysis of sensor data based on spatial, temporal and thematic
information. In this paper we extend RDF, which will often be the metadata
model of choice in the Semantic Sensor Web, with a uniform way to represent
spatial and temporal characteristics of sensors and sensor networks such as the
spatial location of a sensor, the trajectory of a moving sensor, the coverage of a
sensor network, the valid time of sensor acquisitions etc.

Up to now, little attention has been paid to the problem of extending RDF
to represent spatial and/or temporal information. The most important work
that deal with representing temporal information in RDF is [1]. More recently,
[2,3,4] proposed to represent spatial data in RDF(S) using spatial ontologies
? This work was supported in part by the European Commission project Semsor-

Grid4Env (http://www.semsorgrid4env.eu/)



e.g., ontologies based on the GeoRSS GML specification [5]. [3] also compares
various ways to use SPARQL to query such spatial data, while [4] proposes a
useful extension to SPARQL, called SPARQL-ST, to query data expressed in a
spatial and temporal extension of RDF. The temporal extension of RDF in [4],
uses the model of [1] to represent the valid time of triples.

The work presented in this paper has the same goal with the papers cited
above: to enrich the Semantic Web with spatial and temporal data by extending
RDF and SPARQL. To achieve this we diverge significantly from the papers cited
above and follow the main ideas of spatial and temporal constraint databases
[6,7,8,9]. We represent spatial geometries by semi-linear point sets in the n-
dimensional space Qn i.e., sets that can be defined by quantifier-free formulas in
the first-order logic of linear equations and inequalities over Qn. Semi-linear sets
can capture a great variety of spatial geometries, e.g., points, lines, line segments,
polygons, k-dimensional unions of convex polygons possibly with holes, thus they
give us a lot of expressive power [10]. Similarly, we represent the valid times of
triples using temporal constraints (a very restricted class of linear constraints).

The main contributions of this paper are the following: Following the ap-
proach of Dédale [11] and CSQL [12], we develop a constraint-based extension
of RDF, called stRDF, that can be used to represent thematic and spatial data
that might change over time. The main contribution of stRDF is to bring to the
RDF world the benefits of constraint databases and constraint-based reasoning
so that spatial and temporal data can be represented in RDF using constraints.
In this way, application areas with a rich spatial and temporal component such
as the Semantic Sensor Web [13] and the Geospatial Semantic Web [14] can
be tackled using Semantic Web technologies. The model stRDF and the query
language stSPARQL are currently implemented (by extending the Sesame RDF
store) in the context of the project SemsorGrid4Env where they serve as the
data model and query language for the semantic sensor registry.

We also present an extension of SPARQL, called stSPARQL, to query spa-
tial and temporal data expressed in stRDF, in a declarative way. We introduce
stSPARQL by example and present a detailed semantics using the algebraic ap-
proach pioneered for SPARQL in [15]. Technically, stSPARQL follows closely
the ideas in [12] and to a lesser extent the ideas in [11]; this allows us to have
a useful language for expressing spatial and temporal queries while maintaining
closure (i.e., staying within the realm of semi-linear point sets).

The organization of this paper is the following. In Section 2 we present the
data model stRDF and in Section 3 we present the query language stSPARQL
by means of examples. In Section 4 we give a formal definition of stSPARQL and
define its semantics by following an algebraic approach. Comparison with related
work is presented in Section 5 and in Section 6 we present our conclusions and
discuss future work.



2 Data Model

To develop stRDF, we follow closely the ideas of constraint databases [6,8] and
especially the work on CSQL [12]. First, we define the formulae that we allow as
constraints. Then, we develop stRDF in two steps. The first step is to define the
model sRDF which extends RDF with the ability to represent spatial data. Then,
we extend sRDF to stRDF so that thematic and spatial data with a temporal
dimension can be represented.

2.1 Linear constraints

Constraints will be expressed in the first-order language L = {≤,+}∪Q over the
structure Q = 〈Q,≤, +, (q)q∈Q〉 of the linearly ordered, dense and unbounded set
of the rational numbers, denoted by Q, with rational constants and addition. The
atomic formulae of this language are linear equations and inequalities of the form:∑p

i=1 aixiΘa0, where Θ is a predicate among =, or ≤, the xi’s denote variables
and the ai’s are integer constants. Note that rational constants can always be
avoided in linear equations and inequalities. The multiplication symbol is used
as an abbreviation i.e., aixi stands for xi + · · ·+ xi (ai times).

We now define semi-linear subsets of Qk, where k is a positive integer.

Definition 1. Let S be a subset of Qk. S is called semi-linear if there is a
quantifier-free formula φ(x1, . . . , xk) of L where x1, . . . , xk are variables such
that (a1, . . . , ak) ∈ S iff φ(a1, . . . , ak) is true in the structure Q.

We will use ∅ to denote the empty subset of Qk represented by any incon-
sistent formula of L.

2.2 The sRDF data model

We now define sRDF. As in theoretical treatments of RDF [15], we assume the
existence of pairwise-disjoint countably infinite sets I, B and L that contain IRIs,
blank nodes and literals respectively. In sRDF, we also assume the existence of
an infinite sequence of sets C1, C2, . . . that are pairwise-disjoint with I,B and
L. The elements of each Ck, k = 1, 2, . . . are the quantifier-free formulae of the
first-order language L with k free variables. We denote with C the infinite union
C1 ∪ C2 ∪ · · · .
Definition 2. An sRDF triple is an element of the set (I∪B)×I×(I∪B∪L∪C).
If (s, p, o) is an sRDF triple, s will be called the subject, p the predicate and o
the object of the triple. An sRDF graph is a set of sRDF triples.

In the above definition, the standard RDF notion of a triple is extended, so
that the object of a triple can be a quantifier-free formula with linear constraints.
According to Definition 1 such a quantifier-free formula with k free variables is a
finite representation of a (possibly infinite) semi-linear subset of Qk. Semi-linear
subsets of Qk can capture a great variety of spatial geometries, e.g., points, lines,



line segments, polygons, k-dimensional unions of convex polygons possibly with
holes, thus they give us a lot of expressive power. However, they cannot be used
to represent other geometries that need higher-degree polynomials e.g., circles .

Example 1. The following are sRDF triples :

ex:s1 rdf:type, ex:Sensor .
ex:s1 ex:has_location "x=10 and y=20"^^strdf:SemiLinearPointSet

The above triples define a sensor and its location using a conjunction of linear
constraints. The last triple is not a standard RDF triple since its object is an
element of set C.

In terms of the W3C specification of RDF, sRDF can be realized as an exten-
sion of RDF with a new kind of typed literals: quantifier-free formulae with linear
constraints. The datatype of these literals is e.g., strdf:SemiLinearPointSet
(see Example 1 above) and can be defined using XML Schema. Alternatively,
linear constraints can be expressed in RDF using MathML1 and serialized as
rdf:XMLLiterals as in [16]. [16] specifies a syntax and semantics for incorpo-
rating linear equations in OWL 2. We now move on to define stRDF.

2.3 The stRDF Data Model

We will now extend sRDF with time. Database researchers have differentiated
among user-defined time, valid time and transaction time. RDF (and therefore
sRDF) supports user-defined time since triples are allowed to have as objects
literals of the following XML Schema datatypes: textttxsd:dateTime, xsd:time,
xsd:date, xsd:gYearMonth, xsd: gYear, xsd:gMonthDay, xsd:gDay, xsd:gMonth.

stRDF extends sRDF with the ability to represent the valid time of a triple
(i.e., the time that the triple was valid in reality) using the approach of Gutierrez
et al. [1] where the a fourth component is added to each sRDF triple.

The time structure that we assume in stRDF is the set of rational numbers Q
(i.e., time is assumed to be linear, dense and unbounded). Temporal constraints
are expressed by quantifier-free formulas of the language L defined earlier, but
their syntax is limited to elements of the set C1. Atomic temporal constraints
are formulas of L of the following form: x ∼ c, where x is a variable, c is a
rational number and ∼ is <,≤,≥, >,= or 6=. Temporal constraints are Boolean
combinations of atomic temporal constraints using a single variable.

The following definition extends the concepts of triple and graph of sRDF so
that thematic and spatial data with a temporal dimension can be represented.

Definition 3. An stRDF quad is an sRDF triple (a, b, c) with a fourth com-
ponent τ which is a temporal constraint. For quads, we will use the notation
(a, b, c, τ), where the temporal constraint τ defines the set of time points that the
fact represented by the triple (a, b, c) is valid in the real world. An stRDF graph
is a set of sRDF triples and stRDF quads.
1 http://www.w3.org/Math/, last accessed February 20, 2010.



3 Query Language

We present the syntax of stSPARQL by means of examples involving sensor net-
works. The semantics of the language is presented in Section 4. More examples
of stSPARQL from a GIS perspective are given in [17]. We will consider a dataset
that describe static and moving sensors and use the CSIRO/SSN Ontology [18]
to describe them . The main classes of interest in the SSN ontology is the class
Feature that describes the observed domain, the class Sensor that describes
the sensor, the class SensorGrounding that describes the physical characteris-
tics and the location of the sensor and the class Location that is self explained.
We extend the aforementioned ontology with the properties strdf:hasGeometry
and strdf:hasTrajectory with range strdf:SemiLinearPointSet.

The stRDF description of a static sensor that measures temperature and has
a certain location is the following (ssn is the namespace of the CSIRO/SSN
ontology and ex an example ontology):

ex:sensor1 rdf:type ssn:Sensor .
ex:sensor1 ssn:measures ex:temperature .
ex:temperature ssn:type ssn:PhysicalQuality .
ex:sensor1 ssn:supports ex:grounding1 .
ex:grounding1 rdf:type ssn:SensorGrounding .
ex:grounding1 ssn:hasLocation ex:location1 .
ex:location1 rdf:type ssn:Location .
ex:location1 strdf:hasGeometry

"x=10 and y=10"^^strdf:SemiLinearPointSet .

We choose to use the O&M-OWL ontology [19] to represent sensor observa-
tions. However, since we use stRDF to model space and time, we choose not to
use the classes Time, TimeInterval and TimeInstant that come from OWL-
Time and the classes Geometry and Point that come from GML. So our mod-
eling is similar to the modeling in [19] but instead of relying on OWL-Time and
GML we rely on the stRDF constructs. The stRDF representation of the sensor’s
observations is the following (om is the namespace of the O&M-OWL ontology):

ex:sensor1 rdf:type ex:TemperatureSensor .
ex:TemperatureSensor rdf:subClassOf om:Sensor .
ex:obs1 rdf:type om:Observation .
ex:obs1 om:procedure ex:sensor1 .
ex:obs1 om:observedProperty ex:temperature .
ex:temperature rdf:type om:Property .
ex:obs1 om:observationLocation ex:obslocation1 .
ex:obslocation1 rdf:type om:Location .
ex:obslocation1 strdf:hasGeometry

"x=10 and y=10"^^strdf:SemiLinearPointSet .
ex:obs1 om:result ex:obs1Result .
ex:obs1Result rdf:type om:ResultData .
ex:obs1Result om:uom ex:Celcius .



ex:obs1Result om:value "27"
"(10 <= t <= 11)"^^strdf:SemiLinearPointSet .

Notice the last quad that capture the spatiotemporal information.
Let us now present an example of modeling moving sensors in stRDF. Note

that trajectories of moving sensors are easily represented in stRDF.

ex:sensor2 rdf:type ssn:Sensor .
ex:sensor2 ssn:measures ex:temperature .
ex:sensor2 ssn:supports ex:grounding2 .
ex:grounding2 rdf:type ssn:SensorGrounding .
ex:grounding2 ssn:hasLocation ex:location2 .
ex:location2 rdf:type ssn:Location .
ex:location2 strdf:hasTrajectory

"(x=10t and y=5t and 0<=t<=5) or
(x=10t and y=25 and 5<=t<=10)"^^strdf:SemiLinearPointSet.

Finally, we assume that we have the stRDF descriptions of some rural area where
the sensors are deployed. The stRDF description of such an area called Brovallen
is the following:

ex:area1 rdf:type ex:RuralArea .
ex:area1 ex:hasName "Brovallen" .
ex:area1 strdf:hasGeometry

"(-10x+13y<=-50 and y<=79 and y>=13 and
x<=133) or (y<=13 and x<=133 and
x+2y>=129)"^^strdf:SemiLinearPointSet .

Example 2. Spatial selection. Find the URIs of the static sensors that are inside
the rectangle R(0,0,100,100)?

select ?S
where {?S rdf:type ssn:Sensor . ?G rdf:type ssn:SensorGrounding .

?L rdf:type ssn:Location . ?S ssn:supports ?G .
?G ssn:haslocation ?L . ?L strdf:hasGeometry ?GEO .
filter(?GEO inside "0<=x<=100 and 0<=y<=100")}

Let us now explain the new features of stSPARQL by referring to the above
example. stSPARQL has a new kind of variables called . Spatial variables can
be used in basic graph patterns to refer to spatial literals denoting semi-linear
point sets. They can also be used in spatial filters, a new kind of filter expres-
sions introduced by stSPARQL that is used to compare spatial terms using spa-
tial predicates. Spatial terms include spatial constants (finite representations of
semi-linear sets e.g., "0<=x<=10 and 0<=y<=10"), spatial variables and complex
spatial terms (e.g., ?GEO INTER "x=10 and y=10" which denotes the intersec-
tion of the value of spatial variable ?GEO and the semi-linear set "x=10 and
y=10"). There are several types of spatial predicates such as topological, dis-
tance, directional, etc. that one could introduce in a user-friendly spatial query



language. In the current version of stSPARQL only the topological relations of
[20] can be used as predicates in a spatial filter expression e.g., filter(?GEO1
inside ?GEO2).

Example 3. Temporal selection. Find the values of all observations that were
valid at time 11 and the rural area they refer to.

select ?V ?RA
where {?OBS rdf:type om:Observation . ?LOC rdf:type om:Location .

?R rdf:type om:ResultData . ?RA rdf:type ex:RuralArea .
?OBS om:observationLocation ?LOC . ?OBS om:result ?R .
?R om:value ?V ?T . ?LOC strdf:hasGeometry ?OBSLOC .
?RA strdf:hasGeometry ?RAGEO .
filter(?T contains (t = 11) && ?RAGEO contains ?OBSLOC)}

The above query demonstrates the features of stSPARQL that are used to query
the valid times of triples. stSPARQL offers one more new kind of variables in
addition to spatial ones: temporal variables . Temporal variables can be used as
the last term in a new kind of basic graph pattern called quad pattern to refer to
the valid time of a triple. Temporal variables can also appear in temporal filters,
a new kind of filter that can be used in stSPARQL to constrain the valid time
of triples.

The expressions that make up temporal filters are Boolean combinations of
interval predicates that are used to compare temporal terms. A temporal term
in stRDF is a temporal variable or a temporal constant (i.e., an element of the
set C1 e.g., "(t>=0 and t<=2) or (t>=5 and t<=7)"). We allow any of the
thirteen interval relations identified by Allen in [21] to be used as the interval
predicates e.g, contains in the above example .

Example 4. Intersection of an area with a trajectory. Which areas of Brovallen
were sensed by a moving sensor and when?

select (?TR[1,2] INTER ?GEO) as ?SENSEDAREA ?GEO[3] as ?T1
where {?SN rdf:type ssn:Sensor . ?RA rdf:type ex:RuralArea.

?X rdf:type ssn:SensorGrounding . ?Y rdf:type ssn:Location.
?SN ssn:supports ?X . ?X ssn:hasLocation ?Y.
?Y strdf:hasTrajectory ?TR . ?RA ex:hasName "Brovallen".
?RA strdf:hasGeometry ?GEO . filter(?TR[1,2] overlap ?GEO)}

The above query demonstrates the projection of spatial terms. Projections of
spatial terms (e.g., ?TR[1,2]) denote the projections of the corresponding point
sets on the appropriate dimensions, and are written using the notation Variable
"[" Dimension1 "," ... "," DimensionN "]".

Example 5. Projection and spatial function application. Find the URIs of the
sensors that are north of Brovallen.



select ?SN
where {?SN rdf:type ssn:Sensor . ?X rdf:type ssn:SensorGrounding .

?Y rdf:type ssn:Location . ?RA rdf:type ex:RuralArea .
?RA ex:hasName "Brovallen" . ?RA strdf:hasGeometry ?GEO .
?SN ssn:supports ?X . ?X ssn:hasLocation ?Y .
?Y strdf:hasGeometry ?SN_LOC .
filter(MAX(?GEO[2])<MIN(?SN_LOC[2]))}

The above query demonstrates the projection of spatial terms and the ap-
plication of metric spatial functions to spatial terms. We allow expressions like
MAX(?GEO[2]) that return the maximum value of the unary term ?GEO[2]. The
metric functions allowed in stSPARQL will be defined in detail in Section 4.

4 Formalization and Semantics of stSPARQL

In this section, we give a formal definition of stSPARQL and define its semantics
by following an algebraic approach like the one originally pioneered in [15]. We
only cover the spatial features of stSPARQL in detail and their interactions with
existing SPARQL concepts. The temporal features of stSPARQL (quad patterns
and temporal filters) can be formalized similarly and are omitted.

Let us recall from Section 2.2 the definitions of sets I,B, L, C1, C2, . . . and
C. We define ILC = I ∪ L ∪ C and T = I ∪B ∪ L ∪ C ∪R. We need to include
the set of real numbers R in the set T since as we will see below (Definition 8)
the application of certain metric functions such as AREA etc. can result in real
numbers as answers to stSPARQL queries.

We also assume the existence of the following disjoint sets of variables: (i)
the set of non-spatial variables Vns, (ii) an infinite sequence V 1

s , V 2
s , . . . of sets

of variables that will be used to denote elements of the sets C1, C2, . . . and (iii)
the set of real variables Vr. We use Vs to denote the infinite union V 1

s ∪V 2
s ∪ . . .

and V to denote the union Vns ∪ Vs ∪ Vr. The set V is assumed to be disjoint
from the set T .

Let us now define a concept of mapping appropriate for stSPARQL by mod-
ifying the definition of [15]. A mapping µ from V to T is a partial function
µ : V → T such that µ(x) ∈ I ∪ B ∪ L if x ∈ Vns, µ(x) ∈ Ci if x ∈ V i

s for all
i = 1, 2, . . . and µ(x) ∈ R if x ∈ Vr.

Example 6. The following is a mapping:
{?S → s1, ?O → John, ?GEO → “x ≥ 1 ∧ y ≥ 0 ∧ y ≤ 5”}

The notions of domain and compatibility of mappings is as in [15]. The do-
main of a mapping µ, denoted by dom(µ), is the subset of V where the mapping is
defined. Two mappings µ1 and µ2 are compatible if for all x ∈ dom(µ1)∩dom(µ2)
we have µ1(x) = µ2(x). For two sets of mappings Ω1 and Ω2, the operations of
join, union, difference and left outer-join are also defined exactly as in [15]:

Ω1 1 Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible mappings}
Ω1 ∪Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2}



Ω1 \Ω2 = {µ ∈ Ω1 | for all µ′ ∈ Ω2, µ and µ′ are not compatible}
Ω11Ω2 = (Ω1 1 Ω2) ∪ (Ω1 \Ω2)
Using an algebraic syntax for stSPARQL graph patterns which extends the

one introduced for SPARQL in [15], we now define the result of evaluating a
graph pattern over an stRDF graph.

Definition 4. Let G be an stRDF graph over T , p a triple pattern and P1, P2

graph patterns. Evaluating a graph pattern P over a graph G is denoted by [[P ]]G
and is defined as follows [15]:

1. [[p]]G = {µ | dom(µ) = var(p) and µ(p) ∈ G}, where var(p) is the set of
variables occurring in p.

2. [[(P1 AND P2)]]G = [[P1]]G 1 [[P2]]G
3. [[(P1 OPT P2)]]G = [[P1]]G1[[P2]]G
4. [[(P1 UNION P2)]]G = [[P1]]G ∪ [[P2]]G

The semantics of FILTER expressions in stSPARQL are defined as in [15]
for filters that do not involve spatial predicates. To define the semantics of spatial
filters formally, we first need the following definitions.

Definition 5. A k-ary spatial term is an expression of the following form:

(i) a quantifier-free formula of L from the set Ck (in quotes).
(ii) a spatial variable from the set V k

s .
(iii) t ∩ t′ (intersection), t ∪ t′ (union), t \ t′ (difference), BD(t) (boundary),

MBB(t) (minimum bounding box), BF (t, a) (buffer) where t and t′ are
k-ary spatial terms and a is a rational number.

(iv) the projection t[i1, . . . , ik′ ] of a k-ary spatial term t where i1, . . . , ik′ are
positive integers less than or equal to k.

Example 7. The following are examples of binary spatial terms:
“(x ≥ 1 ∧ x = y) ∨ y = 7”

?GEO ∩ “(x ≥ 1 ∧ x = y) ∨ y = 7”
BD(?GEO ∩ “(x ≥ 1 ∧ x = y) ∨ y = 7”)

“(x ≥ 1 ∧ x ≤ 10 ∧ y ≥ 0 ∧ x = y)”[1, 2] ∩ “(z ≥ 0 ∧ z ≤ 10)”

Definition 6. A metric spatial term is an expression of the form f(t) where f
is one of the metric functions V OL (volume), AREA (area or surface), LEN
(length), MAX (maximal value) or MIN (minimal value) and t is a k-ary
spatial term. In the case of AREA we require k ≥ 2. In the case of LEN , MAX
and MIN , we require k = 1.

Example 8. The following are examples of metric spatial terms:
AREA(“(x ≥ 1 ∧ x ≤ 10 ∧ y ≥ 0 ∧ x = y)”)
MIN(“(x ≥ 1 ∧ x ≤ 10 ∧ y ≥ 0 ∧ x = y)”[1])

Note that Definition 6 is not recursive like Definition 5 i.e., f can only be
applied once to a k-ary spatial term. The result of the application of f is a real
number and the definition of mapping has already catered for this possibility.



Definition 7. A spatial term is a k-ary spatial term or a metric spatial term.

We will be interested in the value of a k-ary spatial term t for a given mapping
µ such that the variables of t are all among the spatial variables of µ. This is
captured by the following definition.

Definition 8. Let t be a spatial term. Let µ be a mapping such that all the
spatial variables of t are elements of dom(µ). The value of t for µ is denoted by
µ(t) and is defined as follows:

(i) If t is an element of Ck then µ(t) = t.
(ii) If t is a spatial variable x then µ(t) = µ(x).
(iii) If t is a projection expression of the form t′[i1, . . . , ik′ ] then µ(t) is a

quantifier-free formula φ of L which is obtained after eliminating from µ(t′)
the variables corresponding to all the other dimensions except i1, . . . , ik′ .

(iv) If t is the intersection t′ ∩ t′′ of two k-ary spatial terms then µ(t) = µ(t′ ∩
t′′) = µ(t′) ∧ µ(t′′) .2

(v) If t is the union t′ ∪ t′′ of two k-ary spatial terms then µ(t) = µ(t′ ∪ t′′) =
µ(t′) ∨ µ(t′′).

(vi) If t is the difference t′\t′′ of two k-ary spatial terms then µ(t) = µ(t′\t′′) =
µ(t′) ∧ ¬µ(t′′).

(vii) If t is MBB(t′) where t′ is a k-ary spatial term, then µ(t) is a quantifier-
free formula of the language L that represents the minimum bounding box
of µ(t′).

(viii) If t is BD(t′) where t′ is a k-ary spatial term, then µ(t) is a quantifier-free
formula of the language L that represents the boundary of µ(t′).

(ix) If t is BF (t′, a) where t′ is a k-ary spatial term and a is a rational number,
then µ(t) is a quantifier-free formula of the language L that represents the
buffer of µ(t′) within distance a. The buffer of t contains t and a zone of
width a around t.

(x) If t is V OL(t′), AREA(t′) or LEN(t′) where t′ is a k-ary spatial term,
then µ(t) is a real number that represents the volume, surface (or area) or
length of µ(t′).

(xi) If t is MIN(t′), MAX(t′) where t′ is a unary spatial term, then µ(t) is a
real number that represents the minimum or the maximum value of µ(t′).

To guarantee closure of stSPARQL, it is important to point out that the value
µ(t) in the above definition is a well-defined formula of L in the cases (i)-(ix) and
a real number in the cases of (x) and (xi). This is easy to see for cases (i)-(vi). For

the case t = MBB(t′), µ(t) is
k∧

i=1

(li ≤ xi∧xi ≤ ui) where li, ui are the minimum

and maximum values of xi for which the formula µ(t′) holds in the structure Q.
For the case t = BD(t′), the formula µ(t) can be constructed by performing
quantifier elimination in the quantified formula defining the boundary given in
2 In this and subsequent definitions, we assume that standardization of variables takes

place before forming the conjunction, disjunction of formulas etc.



Proposition 3.1 of [10]. For the case t = BF (t′, a) and the standard definition
of buffer that uses the Euclidean distance , the formula µ(t) is not general an
element of L (e.g., BF("x=0 and y=0",1) is the unit circle with center (0, 0)).
There are two alternative non-standard definitions of BF that allow us to stay
in the realm of linear constraints. In the first case, BF can be defined using the
Manhattan distance which measures the distance between two points along axes
at right angles. For example, in the case of two dimensions, the formula µ(t)
would now be the formula that remains if we eliminate variables x′, y′ from the
formula:

(φ(x′, y′) ∧ 0 ≤ x− x′ ≤ a ∧ 0 ≤ y − y′ ≤ a)∨
(φ(x′, y′) ∧ 0 ≤ x− x′ ≤ a ∧ 0 ≤ y′ − y ≤ a)∨
(φ(x′, y′) ∧ 0 ≤ x′ − x ≤ a ∧ 0 ≤ y − y′ ≤ a)∨
(φ(x′, y′) ∧ 0 ≤ x′ − x ≤ a ∧ 0 ≤ y′ − y ≤ a)

where φ(x′, y′) is the formula µ(t′). If using Manhattan distance seems like a
crude alternative to the standard definition then more detailed alternatives are
possible. For example, if t defines a polygon then BF (t, a) is a new polygon
that contains t and the zone of width a around the polygon (however, “circular”
curves are approximated by polylines). Note that the same approach is followed
by vector data models e.g. the computational geometry library CGAL 3. The
cases (x) and (xi) are easy to see as well.

Definition 9. An atomic spatial condition is an expression in any of the fol-
lowing forms:

(i) t1 R t2 where t1 and t2 are k-ary spatial terms and R is one of the
topological relationships DISJOINT, TOUCH, EQUALS, INSIDE, COV-
EREDBY, CONTAINS, COVERS, OVERLAPBDDISJOINT (overlap with
disjoint boundaries) or OVERLAPBDINTER (overlap with intersecting
boundaries).

(ii) a linear equation or inequality of L with metric spatial terms in the place
of variables.

Note that the form (ii) does not destroy closure of our language since these
equations/inequalities allows linear equations or inequalities with terms that eval-
uate to real numbers and they will only be checked for satisfaction (see Definition
11), not used as constraints i.e., as elements of sets Ck.

Example 9. The following are atomic spatial selection conditions:
?GEO1 INSIDE “x ≥ 1 ∧ x ≤ 5 ∧ y ≥ 0 ∧ y ≤ 5”

AREA(?GEO1) ≥ 2 ·AREA(?GEO2)

Definition 10. A spatial condition is a Boolean combination of atomic spatial
conditions.

Definition 11. A mapping µ satisfies a spatial condition R (denoted µ |= R) if

3 CGAL, http://www.cgal.org/, last accessed February 20, 2010



1. R is atomic and the spatial condition that results from substituting every
spatial variable x of R with µ(x) holds for semi-linear sets in Qn.

2. R is (¬R1), R1 is a spatial condition, and it is not the case that µ |= R1.
3. R is (R1 ∨R2), R1 and R2 are spatial conditions, and µ |= R1 or µ |= R2.
4. R is (R1 ∧R2), R1 and R2 are spatial conditions, and µ |= R1 and µ |= R2.

The semantics of spatial filters can now be defined as follows.

Definition 12. Given an stRDF graph G over T , a graph pattern P and a
spatial condition R, we have: [[P FILTER R]]G = {µ ∈ [[P ]]G | µ |= R}.

Now we can define the semantics of the SELECT clause of an stSPARQL
expression where variables (spatial or non-spatial) are selected and new spa-
tial terms are computed. To capture the peculiarities of the SELECT clause of
stSPARQL, we first need the following definitions.

Definition 13. Let t be a spatial (resp. metric spatial) term and z a spatial
(resp. real) variable that does not appear in t. Then, t AS z is called an extended
spatial term with target variable z.

Example 10. (BD(?GEO) ∩ “x = 1”) AS ?L is an extended spatial term.

Definition 14. A projection specification is a set consisting of non-spatial vari-
ables, spatial variables and extended spatial terms such that all the target vari-
ables of the extended spatial terms are different from each other and different
from each spatial variable.

Definition 15. Let µ be a mapping and W a projection specification with spatial
and non-spatial variables x1, . . . , xl and extended spatial terms t1 AS z1, . . . ,
tm AS zm. Then, πW (µ) is a new mapping such that

(i) dom(πW (µ)) = {x1, . . . , xl, z1, . . . , zm}.
(ii) πW (µ)(xi) = µ(xi) for 1 ≤ i ≤ l and πW (µ)(zj) = µ(tj) for 1 ≤ j ≤ m.

Example 11. Let µ be the mapping {?S → s1, ?O → John, ?GEO → “x ≥ 1∧
x ≤ 5∧ y ≥ 0∧ y ≤ 5”} and W the projection specification {?O, (BD(?GEO) ∩
“x = 1”) AS ?L} then πW (µ) is the following mapping:

{?O → John, ?L → “x = 1 ∧ y ≥ 0 ∧ y ≤ 5”}.
The next definition gives the semantics of an arbitrary stSPARQL query.

Definition 16. An stSPARQL query is a pair (W,P ) where W is a projection
specification and P is a graph pattern. The answer to an stSPARQL query (W,P )
over a graph G is the set of mappings {πW (µ) | µ ∈ [[P ]]}.
Example 12. Let G be the following stRDF graph:
{(s1, geom, “x ≥ 1 ∧ x ≤ 5 ∧ y ≥ 0 ∧ y ≤ 5”), (s1, owner, John)}
and consider the query with W = {?O, BD(?GEO) ∩ “x = 1” AS ?L} and
P = (?S, owner, ?O) AND (?S, geom, ?GEO). Then, the answer to (W,P ) over
G is the set which consists of the mapping: {?O → John, ?L → “x = 1 ∧ y ≤
5 ∧ y ≥ 0”}



5 Related Work

Let us now compare stRDF and stSPARQL with relevant proposals in the liter-
ature. The closest language to stSPARQL is SPARQL-ST presented in Perry’s
Ph.D. thesis [4]. SPARQL-ST adopts the model of temporal RDF graphs of [1]
to represent the valid time of a triple. Similarly, stSPARQL offers support for
valid time of a triple but uses a temporal constraint language to define a valid
time. As a result, the notion of valid time in stSPARQL is more expressive (thus
it requires a more sophisticated implementation). The spatial part of stSPARQL
and SPARQL-ST are significantly different. SPARQL-ST assumes a particular
upper ontology expressed in RDFS for modeling theme, space and time [4]. The
spatial part of this upper ontology uses the class geo:SpatialRegion and its
subclasses (e.g., geo:Polygon) defined in GeoRSS in order to model spatial ge-
ometries (e.g., polygons). Thematic data (e.g., a city) can then be connected
to their spatial geometry (e.g., a polygon) using the property stt:located at.
Spatial geometries in SPARQL-ST are specified by sets of RDF triples that give
various details of the geometry depending on its type (e.g., for a 2-dimensional
polygonal area, they give the coordinates of its boundary and the relevant coordi-
nate reference system). SPARQL-ST provides a set of built-in spatial conditions
that can be used in SPATIAL FILTER clauses to constrain the geometries that
are returned as answers to queries. Although a semantics for SPARQL-ST is
presented in [4], the treatment of spatial conditions in these semantics is un-
satisfactory in our opinion. The notion of “when a spatial condition evaluates
to true” that is used to give semantics to built-in spatial conditions (page 99
of [4]) is not defined formally but is left to the intuition of the reader. When
this definition is given explicitly, it will have to rely on the different types of
geometries (e.g., geo:Polygon) allowed by the spatial ontology of [4], proper-
ties of these geometries (e.g., geo:lrPosList) and relevant co-ordinate systems
(e.g., geo:CRS NAD83). Currently, these semantics are hardwired in the imple-
mentation of SPARQL-ST presented in [4]. This means that if someone wants
to use a different spatial ontology (e.g., an ontology based on the Open GIS
SQL geometry types), this cannot be done unless the semantics of SPARQL-ST
and its implementation are modified appropriately. Since geometries in stRDF
and stSPARQL are based on the mathematical concept of semi-linear subsets of
Qk, stSPARQL (as opposed to SPARQL-ST) can be given an elegant semantics
based on well-understood mathematical machinery from constraint databases as
we showed in Section 4 of this paper.

In addition, the new literal datatype strdf:SemiLinearPointSet of stRDF
alluded to in Section 2.2 can be used together with spatial ontologies expressed
in RDFS to give the same kind of class-based modeling capabilities offered by
SPARQL-ST. Thus, stRDF and stSPARQL impose very minimal requirements
to Semantic Web developers that want to use our approach: all they have to do
is utilize a new literal datatype such as strdf:SemiLinearPointSet.

Two other papers related to our work on stSPARQL are [2,3] by Kolas and
colleagues. Compared with our work on stRDF and stSPARQL, the system
SPAUK presented in [2] has problems similar to the ones we pointed out for



SPARQL-ST. First, no semantics for query evaluation are given. Secondly, even
if these semantics are given in great detail, they will rely on the spatial ontologies
assumed by SPAUK. Thus, any query processor that implements these seman-
tics will need to be extended if users of the system decide to use different spatial
ontologies (this is said explicitly in [2]).

To summarize, the constraint extension to RDF and SPARQL that we have
advocated in this paper gives us the following benefits. First, our extension is
general and its only primitive (semi-linear point set) does not depend on the ap-
plication at hand. This is in contrast to approaches based on spatial/temporal
ontologies which need to choose an ontology with classes (e.g., Point, Interval,
Polygon etc.) appropriate for the application at hand. This is reminiscent of
spatial DBMSs based on data types (e.g., PostGIS and Oracle) that offer their
own, often incompatible, spatial data type systems. Second, the elaboration of a
query in a constraint-based query language such as stSPARQL does not depend
on the spatial data type (or class) of the objects queried or the results that will
be returned. Thus, the programmer does not need to think about composition
of operators, closure etc. In approaches based on classes or data types, the pro-
grammer needs constantly to be thinking about the classes/data types of the
objects queried (this point has been also made in [3]). Third, our extensions can
be given a natural and intuitive semantics by extending the standard algebraic
semantics of SPARQL [15]. Finally, as we showed in Section 3, our extensions to
RDF and SPARQL can easily be integrated with current work on sensor network
ontologies to realize the vision of the Semantic Sensor Web.

6 Conclusions and Future Work

In this paper we studied the problem of designing a data model and a query
language that can be used in the Semantic Sensor Web for representing and
querying spatial and temporal data. We proposed the data model stRDF and
the query language stSPARQL. We gave a formal definition of stRDF, introduced
stSPARQL by examples and presented a detailed semantics of stSPARQL using
the algebraic approach pioneered for SPARQL in [15]. Finally, we compared
our approach with related work. Our future work concentrates on studying the
complexity of stSPARQL query processing theoretically, and carrying out an
implementation of the language for the cases of 2 and 3 dimensions that are
the most interesting ones in practice. In these cases, we would like to apply the
lessons learned from the implementation of relational constraint databases [11]
and demonstrate that our proposal can be implemented efficiently in comparison
with competitive approaches.

Acknowledgements

We thank Jianwen Su and Gabi Kuper who were always available to answer ques-
tions regarding CSQL. We also thank Peter Revesz for interesting discussions
on constraint databases.



References

1. Gutierrez, C., Hurtado, C., Vaisman, A.: Introducing Time into RDF. IEEE TKDE
(2007)

2. Kolas, D., Self, T.: Spatially Augmented Knowledgebase. In: ISWC/ASWC2007.
(2007)

3. Kolas, D.: Supporting Spatial Semantics with SPARQL. In: Terra Cognita Work-
shop. (2008)

4. Perry, M.: A Framework to Support Spatial, Temporal and Thematic Analytics
over Semantic Web Data. PhD thesis, Wright State University (2008)

5. Singh, R., Turner, A., Maron, M., Doyle, A.: GeoRSS: Geographically Encoded
Objects for RSS Feeds. http://georss.org/gml, last accessed February 20, 2010
(2008)

6. Kanellakis, P., Kuper, G., Revesz, P.: Constraint Query Languages. In: PODS.
(1990)

7. Rigaux, P., Scholl, M., Voisard, A.: Introduction to Spatial Databases: Applications
to GIS. Morgan Kaufmann (2000)

8. Revesz, P.Z.: Introduction to Constraint Databases. Springer (2002)
9. Koubarakis, M.: Database Models for Infinite and Indefinite Temporal Information.

Information Systems 19 (1994) 141–173
10. Vandeurzen, L., Gyssens, M., Gucht, D.V.: On the expressiveness of linear-

constraint query languages for spatial databases. Theoretical Computer Science
(2001)

11. Rigaux, P., Scholl, M., Segoufin, L., Grumbach, S.: Building a constraint-based
spatial database system: model, languages, and implementation. Information Sys-
tems 28(6) (2003) 563–595

12. Kuper, G., Ramaswamy, S., Shim, K., Su, J.: A Constraint-based Spatial Extension
to SQL. In: Proceedings of the 6th International Symposium on Advances in
Geographic Information Systems. (1998)

13. Sheth, A., Henson, C., Sahoo, S.S.: Semantic Sensor Web. Internet Computing,
IEEE 12(4) (2008) 78–83

14. Egenhofer, M.J.: Toward the Semantic Geospatial Web. In: ACM-GIS, New York,
NY, USA (2002)

15. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In:
ISWC. (2006) 30–43

16. Parsia, B., Sattler, U.: OWL 2 Web Ontology Language, Data Range Extension:
Linear Equations. W3C Working Group Note (October 2009) , http://www.w3.
org/TR/2009/NOTE-owl2-dr-linear-20091027/, last accessed February 20, 2010.

17. Kyzirakos, K., Koubarakis, M., Kaoudi, Z.: Data models and languages for reg-
istries in SemsorGrid4Env. Deliverable D3.1, SemSorGrid4Env (2009)

18. Neuhaus, H., Compton, M.: The Semantic Sensor Network Ontology: A Generic
Language to Describe Sensor Assets. In: AGILE 2009 Pre-Conference Workshop
Challenges in Geospatial Data Harmonisation. (2009)

19. Henson, C., Pschorr, J., Sheth, A., Thirunarayan, K.: SemSOS: Semantic Sensor
Observation Service. In: CTS. (2009)

20. Cui, Z., Cohn, A.G., Randell, D.A.: Qualitative and Topological Relationships in
Spatial Databases. In: Advances in Spatial Databases. (1993)

21. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. CACM 26(11)
(1983)


