
Flexible Use of Cloud Resources through
Profit Maximization and Price Discrimination

Konstantinos Tsakalozos #1, Herald Kllapi #2, Eva Sitaridi ∗3,
Mema Roussopoulos #4, Dimitris Paparas ∗5 and Alex Delis #6

#University of Athens, GR15748, Athens, Greece
{k.tsakalozos1, herald2, mema4, ad6}@di.uoa.gr

∗Columbia University, New York, NY 10027
{eva3, paparas5}@cs.columbia.edu

Abstract—Modern frameworks, such as Hadoop, combined
with abundance of computing resources from the cloud, offer
a significant opportunity to address long standing challenges
in distributed processing. Infrastructure-as-a-Service clouds re-
duce the investment cost of renting a large data center while
distributed processing frameworks are capable of efficiently
harvesting the rented physical resources. Yet, the performance
users get out of these resources varies greatly because the
cloud hardware is shared by all users. The value for money
cloud consumers achieve renders resource sharing policies a
key player in both cloud performance and user satisfaction. In
this paper, we employ microeconomics to direct the allotment
of cloud resources for consumption in highly scalable master-
worker virtual infrastructures. Our approach is developed on
two premises: the cloud-consumer always has a budget and cloud
physical resources are limited. Using our approach, the cloud
administration is able to maximize per-user financial profit. We
show that there is an equilibrium point at which our method
achieves resource sharing proportional to each user’s budget.
Ultimately, this approach allows us to answer the question of how
many resources a consumer should request from the seemingly
endless pool provided by the cloud.

I. INTRODUCTION

Cloud computing introduces a number of challenges re-

garding both performance and financial issues. On the one

hand, consumers of cloud services try to minimize the execu-

tion time of their submitted tasks without exceeding a given

budget and on the other, cloud providers are keen on maximiz-

ing their financial gain while keeping their customers satisfied.

With this work we focus on virtual infrastructures following

the master-worker paradigm hosted in a cloud. In this type

of infrastructure, there is a master node that dispatches jobs

to worker nodes and increasing performance is a matter of

adding extra worker nodes. This ease of expansion has been

put into use by a number of programming frameworks, such

as MapReduce[1], [2], and resource allocation management

tools, including Condor[3] and TORQUE[4].

Much of the previous work on master-worker architectures

targets scalability bottlenecks. Such bottlenecks may develop

This work has been partially supported by the D4Science I & II FP7-projects
funded by the European Commission.

due to two factors: first, each infrastructure has its own hard-

ware limitations. Second, the data processing algorithms im-

plemented by the jobs cannot always be efficiently parallelized

and therefore are not suited for this type of distributed environ-

ment. Research on the aforementioned bottleneck factors has

resulted in solutions that can efficiently harvest the hardware

resources of infrastructures of any size. Experience in Grids

has shown that the combination of a resource allocation tool

with a programming library for distributed programming (e.g.,

MPI) can fully utilize small to medium computer clusters [3],

[4]. For larger computing infrastructures, frameworks such as

MapReduce are shown to display outstanding scalability[1].

Yet, purchasing and maintaining such large physical infras-

tructures involves a high investment risk. Infrastructure as a

Service (IaaS) clouds have greatly reduced the investment risk

of owning an infrastructure, but introduce a new performance

scaling factor: the user’s financial capacity to rent virtual

resources. This additional factor complicates the deployment

and management of cloud architectures.

The value for money spent in a multi-tenant, elastic cloud

renders resource sharing policies a key player in both cloud

performance and user satisfaction. These policies must take

into account the fact that cloud providers need strategies to

evaluate and reduce possible financial risks while maximiz-

ing their profit. In addition, resource sharing policies must

take into consideration the user’s budget. Such policies often

employ either auctioning [5], [6] or attempt to estimate user

demand for resources [7]. In this way, the consumer needs are

quantified based on their willingness to pay for the resources

available. Microeconomic-based resource sharing policies thus

allow for the distributed computing infrastructure to reach an

equilibrium where the quality of service provided reflects the

money spent.

In this paper, we propose a virtual-machine provision

policy based on marginal cost and revenue functions. Each

cloud customer announces her budget as a function of the

execution time of the tasks she submits. Knowledge of this

function, combined with the machine-hour cost, allows for

educated decisions regarding the amount of virtual resources

allocated per customer in the context of an IaaS-Cloud. The

main contribution of our approach is that we provide an answer

to the question of exactly how many virtual machines (VMs) a

consumer should request from a cloud within a budget. In light

of scalable, master-worker-based, virtual infrastructures and

the seemingly endless resources of a physical cloud, specifying

the exact amount of resources needed must be based on

a) the consumer’s budget and b) the performance bottlenecks

which are known only at runtime. We propose a mechanism

that continuously monitors user application performance and

either “removes” or “adds” VMs in response to the observed

performance fluctuations serving the needs of autonomic sys-

tems [8]. Our approach automatically adjusts to the ever-

changing equilibrium point caused by dynamic workloads and

thus ensures that resources are shared proportionally to money

spent by the users. In addition, our approach is applicable to

a wide range of computational environments since it does not

enforce the use of a specific job submission tool. We allow

each user to select any virtual infrastructure equipped with the

tools of her preference.

The rest of this paper is organized as follows: Section II

describes the problem our system targets. Section III gives

an overview of the related work. In Section IV we describe

the main aspects of our system in a single user environment.

In Section V we present how our approach performs when

multiple users coexist in a dynamic environment with ever-

changing conditions. Section VI outlines both simulation and

prototype experimental results while concluding remarks are

found in Section VII.

II. PROBLEM STATEMENT

The master-workers paradigm is used by numerous pro-

gramming frameworks and resource management tools to im-

plement a number of parallel algorithms [9]. The master node

acts as the coordinator assigning jobs to the workers. Since

workers reside on different machines, they can process data

simultaneously and collectively produce the output results.

A user can effectively increase application performance by

adding more worker nodes.

This paradigm is constrained by the physical resources

available as well as the application-specific requirements.

Satisfying the needs of such applications routinely involves

setting and maintaining high-end, large data centers. The

latter either exceed the financial capabilities of the interested

parties or constitute a risky investment. IaaS-clouds, with

their on-demand elasticity, are able to reduce such financial

risks; they provide a seemingly-endless pool of computational

resources needed to exploit the scalability of master-worker

frameworks such as Map-Reduce [1]. Users contacting an

Iaas-cloud request a number of virtual machines (VMs) to

host the software framework of their preference. These VMs

make up the elastic virtual infrastructure that will expand on-

demand with the addition of extra worker nodes.

The decision on the exact number of worker-node VMs to

be requested from an IaaS-Cloud is not a trivial one. IaaS-

Clouds offer VMs at a specific monetary cost. Overconsump-

tion of virtual resources must be avoided since underutilized

worker-nodes reduce the value-for-money the cloud client

achieves. Similarly, a conservative policy that underestimates

the need for worker nodes may result in long processing times

thus hampering user satisfaction.

When deciding on the number of worker VMs, one must

consider both:

1) The level of user satisfaction: User satisfaction can

be quantified through a budget function. However, low

budget does not necessarily indicate that the user is

satisfied with fewer VMs, rather a low budget may be

the result of limited financial means on the user’s part.

In a multi-user environment, administrators may need

to consider establishing a social scheduling policy that

would prevent “poor” users from being entirely deprived

of virtual resources. The risk here is that one may

manipulate such policies and reduce the cloud’s financial

gain.

2) The overall performance of the virtual infrastruc-

ture: The number of worker VMs must never exceed the

threshold over which extra workers become an overhead.

As more nodes are added to the virtual infrastructure,

the performance penalty incurred by the communication

between the workers and the master node increases.

The scalability displayed by the virtual infrastructure is

often subject to this communication cost. In turn, this

communication cost is subject to the algorithms used,

the amount of data processed and the characteristics

of the virtual and physical nodes [10], [11]. Moreover,

neither the user nor the cloud administration are able to

estimate the infrastructure’s performance by themselves.

The software stack installed and the data sets processed

are known only to the user, whereas the exact physical

node characteristics are known only to the cloud admin-

istration and are typically never revealed to the user.

Ideally, one could use an analytical model to predict the

optimal number of worker VMs. Such a model would take into

account a) the performance limitations set by the hardware,

b) the interactions among all user applications simultaneously

served by the cloud, c) the input data used by the applications

in execution, and d) the performance constraints set by the

software stack on both the physical and virtual infrastructure.

Unfortunately, implementing this model is impractical if not

infeasible especially considering the fact that several properties

are known only at runtime. Our approach requires from each

user to specify only her budget as a function of the total execu-

tion time of her workload. Assuming that such workloads are

recurring, we employ an autonomic system that continuously

monitors the infrastructure’s performance and adjusts to any

changing conditions. We handle the infrastructure as a black

box –with the number of VMs as input and the total execution

time as output–, thus our approach can be used in any master-

workers “elastic” architecture [2], [3].

III. RELATED WORK

The idea of using economics in resource sharing policies

is an old one. Two types of market-oriented resource sharing

policies have been examined in terms of market stability and

resource efficiency [12] . The two types are: a) markets where

resources are shared through auctions and b) markets where

resources are treated as interchangeable commodities1. In the

latter market type, resources are given a fixed price determined

according to their supply and demand [7]. Markets where

resources are treated as commodities are applicable whenever

the group of interested users does not allow the creation of

an auction. Most often in commodity selling markets, user

demand reduces as resource price increases. This kind of user

behavior is assumed to study the conditions that maximize the

resource provider’s profit [15]. Markets with more than one

type of commodity (such as CPU, network, storage) are well-

suited for use in multi-user computing clusters. Here, policies

set the price of all sold resources considering their correlations

[7]. Policies that take into account only high-level performance

metrics, such as the application response time [16], seem more

appealing to the end users since less intervention is required

on their part.

Resource allocation based on auctioning [5], [6], [17] is

easy-to-implement and well-justified. Users quantify their need

for resources through bids while at the same time resource

providers offer their “products” for a price. In Mirage [18], a

sensor network with limited resources, bids involving virtual

currency in a closed loop market are used to express the user

need for resources and prioritize requests. Similarly, in [17],

auctioning is employed to provide access to low level resources

such as CPU and RAM. Here resources are limited and users

use proxies to bid for combinations of resources in periodic

auctions.

Often, both consumers and producers are able to game

auctions in their favor. In many cases, market gaming is an

unwanted implication. An approach in tackling this implication

is presented in [19]. Here, the agent matching the bids with

the resource offers is allowed to reduce the resource supply

thus protecting the producers from teaming consumers.

Due to its publicly available resources and the large user

base, the Grid is used by many researchers as a testbed

for various resource sharing policies [6], [12], [15], [16],

[20], [21]. However, the nature of the Grid –publicly-funded

and freely available– does not allow such resource allocation

methodologies to be widely acceptable. Systems such as

Tycoon [22] and Libra [23] are built on lower-level resource

scheduling and allocation tools –as the resource manager of

Torque system [4]– to bypass the complexity of Grids. In [21],

1In Amazon Elastic Computing Cloud [13] we find both market types:
users are allowed to buy resources at a fixed price or bid for them at a lower
price [14]

resources of different grid sites are shared through a bidding

process.

The management of IaaS-Clouds must tackle both techni-

cal and theoretical issues to achieve profit maximization for the

cloud providers and satisfaction of QoS expectations set by the

customers. Such infrastructures offer elastic services in a way

that they can be measured, thus allowing for a billing policy to

be enforced. In this way, clouds inherently provide ground for

applying various economic models [24]. Service consumers

almost always have some form of a utility function that corre-

sponds to their budget while providers try to maximize their

financial gain. For instance, in [25], a budget-based financial

model is used to manage an adaptive cloud environment. Yet,

unlike our approach, their model is not adaptive in terms of

the number of cloud virtual machines deployed. Instead, their

approach responds to user QoS requirements by building new

data structures and/or choosing the most appropriate query

execution plan.

By combining clouds with high resource availability [13]

and a massively scalable programming framework [1], a user

can process large amounts of data. Dynamic Hadoop [2] and

Condor [3] integrate with “elastic” infrastructures to acquire

resources upon demand. These frameworks add a software

layer that efficiently manages administrative concerns of scal-

ing virtual infrastructures. We build on the success of such

highly scalable frameworks and infrastructures and enhance

them with the application of microeconomic models for profit

maximization. Contrary to much prior work [6], [12], [15],

[16], [20], [21], our approach targets IaaS-Clouds and not the

Grid. Our system acts as a gateway to the cloud for the users,

taking into consideration high-level user requirements (i.e.

application response time) and finally, designates a suitable

number of virtual machines. To do so, we employ microeco-

nomics to converge to a proportional sharing equilibrium [26].

At this convergence point, resources are allocated proportion-

ally to the amount of money each user spends. Contrary to

traditional auctioning-based systems [5], [6], [18], [17] our

approach does not require users to bid. Rather, it takes as input

a user budget function that portrays the money she is willing

to pay for certain response time guarantees. The periodic

auctions of [17] allow for resource sharing adjustments, but

the resource mapping produced is not optimal, instead, in our

case we achieve proportional share (fairness). The user budget

functions we employ resemble the decaying value function of

the execution tasks described in [21]. However, unlike our

work, [21] proposes heuristics to balance the risks and gains

involved. In addition, in our approach all tasks (corresponding

to users) are served simultaneously, thus there is no need

for any task scheduling (queueing and prioritize). This also

comes in contrast to Mirage [18] where the goal is to prioritize

requests according to their importance.

In a multi-user virtualized environment, as the one we

find in the cloud, quality of service and efficient resource

management are often contradicting high level goals. In [27],

the impact of resource overbooking in quality of service is

examined. Autonomic systems [28], [29] are also shown to

be able of efficiently managing resources under time-varying

requests and multi-tier environments.

Our approach in resource provisioning resembles that of

a monopoly where the cloud provider is able to enforce price

discrimination [30]. In such a market the monopolist charges

different prices to different consumers. We also employ an

autonomic mechanism that monitors the user’s applications

and continuously adjusts the number of VMs to be used. This

mechanism is required since the user application response

time may change over time in ways we cannot predict. This

approach allows us to treat the cloud as a black box providing

us with resources. Unlike [2], [23], [31], we do not enforce

the use of a specific job-submission tool. Instead, we let cloud

consumers use the job management system of their preference

and we ensure that the instantiated VMs register with it.

IV. ADAPTIVE CLOUD MANAGEMENT

In this section, we present a microeconomic model we

use to designate a suitable amount of resources for the cloud

consumers. Resources are dynamically requested on-the-fly

from an IaaS-cloud in the form of Virtual Machines (VMs).

A. Overview of Our Approach

The main operational aspects of our approach are depicted

in Figure 1. The resource-sharing layer implements the mi-

croeconomic model we propose. In the figure, we show two

users who contact two separate virtual infrastructures, namely

Hadoop and Condor. The interaction among the users, our

framework, and the cloud involves three phases: first, each user

sets a budget function. Second, jobs are submitted and their

response time is monitored or announced to our framework.

Third, worker VMs are added to or removed from the virtual

infrastructures. The user has no involvement during the last

phase. Also, note that the second and third step have to be

repeated more than once to find the optimal number of VMs.

Therefore, the workloads served by our resource sharing layer

have to be recurring [9].

Two key factors in our approach are the cloud revenue (R)

and the cloud cost (C). The cloud revenue is estimated using

the user budget function and the monitored response times.

The cloud cost is the cost of owning the cloud resources. In the

case of a single user, our approach maximizes the difference

between the revenue and the cost. In the case of multiple users,

our approach allocates resources fairly; i.e., proportionally to

the money each user is willing to pay.

B. Single User Adaption via Profit Maximization

When the user contacts our framework, she announces a

budget that will accompany all her job submission requests.

This budget B(t) is a function of the amount of money per

hour she can afford relative to her average job response time.

3: Add/remove
workers 3: Add/remove

workers

Hadoop

Master

Node

Worker

Node

Worker

Node

Hadoop

Virtual

Infrastracture

...

Condor

Master

Node

Worker

Node

Worker

Node

Virtual

Infrastracture

Condor

...

$

t
Budget

$

t
Budget

1:Set budget1:Set budget

Physical Infrastructure

2:Monitor

time
Response

Resource Sharing Layer

Fig. 1. Operational overview of our approach

As we will discuss later, a budget function would better be

monotonically decreasing2, i.e: B(t1) ≤ B(t2), ∀ t1 > t2.

This means that users are not going to pay less if results are

to arrive sooner. For each job submission, we keep track of

the response time. By applying the average response time to

the user’s budget function we determine the amount of money

available for buying virtual resources. This amount becomes

the revenue the cloud will get per hour.

We expect the master-worker architecture present in the

virtual infrastructure to decrease the application’s response

time when we deploy additional VMs. In turn, when we reduce

the response time, the cloud’s revenue (R) normally increases,

since the user is expected to pay more. This is the reason why

we suggest that budget functions be decreasing.

In practice, physical resources of clouds are limited and a

performance bottleneck will eventually develop. Therefore, re-

gardless the nature of this bottleneck (network communication

and/or computation), the response time reaches a minimum

for a specific number of VMs. This in turn means that there

is an upper bound on the revenue. In Figure 2, we show a

hypothetical revenue function. Note that the number of VMs

offering a lower bound on the response time and an upper

bound on the revenue may not be the most profitable in terms

of value for money the user achieves.

A major factor influencing profit is the cost (C) of provid-

ing a VM. From the cloud’s perspective, this cost includes

server hardware and software, IT staff training and salary,

power consumption and cooling costs, insurance, and down-

time penalties. Although the virtual machine cost function is,

2Monotonically decreasing budget functions combined with a fixed price
per VM ensures that our approach will not get trapped at a local minimum

undoubtedly, complex, we assume it is well-studied and known

to the cloud financial administration. From the user’s point of

view, each VM usually has a fixed price. This price is the VM

cost for the users. In any case, this cost per VM is known

to our approach. Figure 2 depicts –apart from the revenue–

the cost involved in purchasing VMs. We choose to display

a cost function that grows linearly with the number of VMs.

This fixed price per VM policy is common among IaaS-cloud

providers [13]. When combining this VM billing policy with a

monotonically decreasing user budget function, we get a single

point where the profit R-C is maximized.

Figure 2 also presents the Marginal Revenue (MR) and the

Marginal Cost (MC) that an additional unit of product (in our

case, a VM) will bring:

MR = dR/dVM, MC = dC/dVM

The profit is maximized when MC=MR at point A. Here,

we should provide B VMs. Beyond B, each VM costs more

than the revenue offered (MC>MR). Until we reach B VMs,

the cost for each unit of product (VM) is less than the revenue

we get from it (MC<MR). For B VMs, the total cost and

revenue are E and D respectively; so the maximum profit P
is: P = D − E.

Price/hour

A

B

P

D

MR

MC

VMs

Cost (C)

Revenue (R)

E

Fig. 2. Maximize profit using Marginal Revenue and Cost

As discussed in Section II, identifying the equilibrium

point of maximum profit must be done through an iterative

process during the consumer’s interaction with the cloud. The

reason for this is that response times, and thus the total and

marginal revenue, are known only at runtime.

Algorithm 1 computes the number of VMs to be used

in the virtual infrastructure by finding the equilibrium point

where MC=MR. This algorithm takes as input the marginal

cost (MC) and estimates at runtime the marginal revenue (MR).

We choose to have MC as an input parameter as we expect

either the cloud administration or the IaaS consumer to set the

cost function. MR estimation is done through the user’s budget

function and the average response time T , both of which are

provided as input. The final input, step, is the initial number

of VMs to be used to bootstrap the algorithm. In lines 10–12,

we compute the Marginal Revenue. In doing so, we use the

average response time and the designated VM count of the

last two runs. We keep this information in the static variables

of the algorithm (lines 1–5). Note that for the first two runs

we do not have enough data to compute MR. Therefore, for

these runs, we simply increase the number of VMs by step.

Depending on the difference between MR and MC, we

either increase or decrease the number of VMs we need active.

The exact number of VMs to be added or removed plays a

significant role in the number of iterations our approach needs

to converge to the MC = MR equilibrium. In Algorithm 2,

we show how we decide on the number of VMs. The input

of this algorithm is a variable named direction, indicating

whether MC is greater than MR (or not) and the number of

VMs which are currently active. There are two policies in

changing the VM number: a) exponentially and b) linearly.

Our approach is inspired by the congestion avoidance and

control [32] employed by various TCP implementations.

The idea behind the exponential and linear

increase/decrease is the same as with the slow start and

congestion avoidance modes we find for the TCP congestion

window. We start with the exponential VM-increase mode

until we pass the maximum profit point. As soon as we

are past the MC = MR, we start decreasing VMs linearly.

In case we have start exp move after steps of the same

“direction”, that is we have start exp move after successive

decreases or start exp move after successive VM additions,

we move again to the exponential mode. In this way, if the

equilibrium point changes, we readjust quickly using the

exponential change mode. Nevertheless if the equilibrium

point stays the same, we perform a slight pivot around

it using the linear mode. Lines 6 to 11 of Algorithm 2

count the successive iterations of the same “direction”.

Using this count, we determine which mode to follow (if
clause of line 12). In line 18, we employ a sanity check

that prevents us from suggesting too many VMs. We check

this number of VMs against a threshold (VM threshold)

and if this threshold is exceeded, we change our increase

mode to linear. VMs threshold and start exp move after

constants are set to be 50 VMs and 5 iterations respectively.

However, these values are bound to change according to

the specific characteristics of the cloud infrastructure. Large

infrastructures are able to sustain a higher number of VMs

thus, the VMs threshold should be set accordingly. Similarly,

for infrastructures where VM instantiation is costly, higher

values of start exp move after may be appropriate.

C. Cloud versus User Profit

Our approach can be used either as a module “inside”

the cloud or as a user-gateway to the cloud’s resource pro-

visioning mechanism. The difference between these two uses

is essentially what the cost and revenue functions represent:

when our approach is implemented as a cloud component, the

revenue function is the amount of money the user pays while

the resource cost is the internal operational cost of the cloud.

In this case, the profit is the cloud’s financial gain. When

consumers employ our approach as a gateway to the cloud

resource provisioning mechanism, the cost is the resource

Algorithm 1 Compute Number of VMs

Input: B(): User budget function

MC(): Marginal cost function

step: Step in changing the VM count

T : Average response time

Output: Number of VMs to provide

1: static last resp time = 0
2: static second to last resp time = 0
3: static last VM count = 0
4: static second to last VM count = 0
5: static run = 1;
6: cur VM count = 0;
7: if (run == 1) OR (run == 2) then

8: cur VM count = last VM count + step
9: else

10: dVM = second to last VM count - last VM count
11: dR = B(second to last resp time) - B(last resp time)
12: MR = dR / dVM
13: if MR ≥ MC(last VM count) then

14: cur VM count = VMs Deviation(“Up”, last VM count)
15: else

16: cur VM count = VMs Deviation(“Down”, last VM count)
17: end if

18: end if

19: second to last resp time = last resp time
20: second to last VM count = last VM count
21: last VM count = cur VM count
22: last resp time = T

23: run++

24: return cur VM count

purchase price and the revenue is the money users are willing

to pay. However, in this setting, the revenue is not paid to

the cloud; instead, it is used as a measure of user satisfaction.

Maximizing profit results in an optimum degree of satisfaction

(revenue) per virtual machine. In brief, consumers maximize

the value-for-money ratio.

V. MULTIUSER DYNAMIC ENVIRONMENTS

Our approach thus far assumes a single user environment,

an assumption that is not true when it comes to IaaS-clouds.

Clouds are multi-tenant environments where users do not

directly interact with each other, yet, the performance they get

out of the infrastructure is greatly influenced by other users.

In this section, we show how our model functions in such

dynamic environments to reach equilibrium (MC=MR).

A. Multiple Users

Adding more IaaS-cloud consumers results in increased

demand for cloud resources. The VMs of different users will

compete over physical resources increasing the virtual infras-

tructure’s average response time. In turn, increased response

times decrease revenue. Figure 3 shows how the maximum

profit equilibrium, point A, is shifted to the left as revenue and

marginal revenue decrease. The shift from A to A′ suggests

that fewer VMs (B′ instead of B) should be deployed to

maximize the profit from a specific user. The interpretation

of this per-user optimal VM provision point (B′) depends on

Algorithm 2 VMs Deviation

Input: direction: “Up” or “Down” if MR ≥ MC or MR < MC

last_VM_count Current number of VMs

Output: Number of VMs to provide

1: constant VMs threshold = 50
2: constant start exp move after = 5
3: static last direction = “Unknown”
4: static same direction = 0
5: static VMs increase = 1;
6: if direction != last direction then

7: same direction = 0
8: else

9: same direction++
10: end if

11: last direction = direction
12: if same direction > start exp move after then

13: VMs increase = 2 * VMs increase;
14: else
15: VMs increase = 1;
16: end if

17: if direction == “Up” then

18: if last VM count + VMs increase > VMs threshold then
19: VMs count = last VM count + 1
20: same direction = 0
21: else
22: VMs count = last VM count + VMs increase
23: end if

24: else

25: VMs count = last VM count - VMs increase
26: end if

27: return VMs count

Price/hour

A

B

MR

MC

VMsB’

A’

D

D’

Revenue (R)

Fig. 3. Equilibrium shift in light of revenue reduction

the entity (consumer or cloud administration) that employs our

approach:

• Cloud: When the cloud administration employs our ap-

proach it achieves maximum profit per user. We ex-

pect lower-level mechanisms, such as CPU scheduling

and network bandwidth quota, to favor well-paying cus-

tomers.

• Users: In case MC=MR is reached for each user sep-

arately, cloud’s physical resources are assigned in such

a way that any deviation from that would result in

placing at least one of the consumers at a disadvantage

(Pareto optimality). If we were to provide more physical

resources at the same cost –without changing the con-

sumers VM number– to a specific consumer we would be

decreasing her jobs’ response times. However, the rest of

the consumers would be deprived of some portion of their

resources due to the cloud’s resource sharing policies.

These consumers will be at a disadvantage as their value-

for-money ratio would deteriorate.

B. Proportional Share – Price Discrimination

The equilibrium point our approach reaches displays a

number of properties examined both in the context of eco-

nomics and resource sharing. With our approach the cloud

“sells” resources at a different price to each user. This type

of market resembles a variation of the monopoly where the

monopolist enforces price discrimination among buyers [30].

Selling at different prices allows for maximizing profit per

consumer. In this case, the total financial gain is greater than

the financial gain the provider would have with a single

price for all consumers. The main difference between our

approach and monopolistic markets with price discrimination

is that in our approach, we do not exert control over the

resource/product supply, the amount of resources is fixed and

we only need to distribute them among users/consumers. In

contrast, the monopolist in markets with price discrimination is

able to produce more products to satisfy the demand up to the

point where profit is maximized for each customer separately.

We now show how our approach manages to share re-

sources proportionally to the funds each consumer is willing

to pay. This resource sharing policy property indicates that

our approach treats users in a fair way. To show that our

approach performs this type of fair resource sharing, we

have to make certain assumptions. The overall goal of these

assumptions is to model the user behavior and the cloud’s

runtime performance. These assumptions are:

Assumption 1: Each VM has a fixed cost K .

Assumption 2: The response time a single user would get out

of the cloud if she were using v VMs is:

T (v) =
M

ln(v) + 1
, (1)

where M corresponds to the time it would take the application

to complete with only one VM. With this function we model

the fact that response time will reach a saturation point and

will improve only marginally after reaching a certain number

of VMs [10].

Assumption 3: Each user i has a budget of the form

Bi(t) =
λi

t
(2)

where λi is a per user-constant and t is the response time.

From assumption 1, we have that the cost is fixed per VM

therefore:

MC = K (3)

From equations 2 and 1, we can compute the revenue for

user i given that she uses v VMs:

Bi(t) = Bi(T (v)) = Bi(
M

ln(v) + 1
) =

λi

M
∗ (ln(v) + 1) (4)

Starting from the maximum profit point and using equa-

tions 3 and 4:

MC(v) = MR(v) ⇒

dC(v)

dv
=

dR(v)

dv
⇒(3)

K =
dR

dv
⇒(4)

K =
d(λi

M
∗ (ln(v) + 1))

dv
⇒

K =
λi

M
∗

1

v
⇒

v =
λi

M
∗

1

K
(5)

In case we have n users each one with her own budget

function (Bi(t) = λi

t
) the ratio of the VMs allotted to user k

is:

vk∑n

i=1 vi

=
λk/(M ∗ K)

∑n

i=1 λi/(M ∗ K)
=

λk∑n

i=1 λi

(6)

Equation 6 shows that this VM allotment is proportional

to the maximum amount of money each user is willing to

pay. We acknowledge that the above modeling is inaccurate.

Nevertheless, the modeling and its assumptions are used only

for the needs of demonstrating the resource sharing properties.

In practice, our approach makes no such assumptions as it con-

stantly monitors the cloud’s performance through the response

times of the applications. The proportional share properties are

also verified through our experimentation portion of which we

discuss in Section VI.

C. Rapidly Changing Conditions

As is the case with any autonomic system [8], the period

length chosen to monitor the response time plays a key role. In

light of rapidly changing average response times, our method

might not converge to the point of maximum profit. As a

remedy, we could consider increasing the monitoring period

length. Factors influencing the response time include:

• Variations in the workloads/jobs submitted to the virtual

infrastructure. These variations include not only different

execution tasks but also changing input parameters.

• Abrupt fluctuations in the amount of concurrent IaaS

cloud consumers.

Our approach adapts to mild changes in the response time

since Algorithm 1 computes MR at runtime. The period length

between two successive suggestions must be such that the

average response time indicates changes in workloads and

resource availability.

VI. EVALUATION

We have implemented our framework as a Java library

so that it can be embedded in either consumer or cloud

resource management systems. Our evaluation is two-fold.

First, we simulate a number of different cloud infrastructures

serving multiple users. Second, we use our framework to assist

resource management in a real cloud infrastructure setup in

our lab. With the simulation we examine the behavior of our

framework when used in large data centers while in the real

cloud we show how our approach enables users to submit

jobs to an “elastic” Hadoop infrastructure capable of growing

or shrinking on demand.

A. Simulated Cloud Environment

We have simulated the behavior of a typical cloud middle-

ware that serves user requests for VMs. The cloud middleware

assigns the requested VMs evenly to physical machines using a

load balancing algorithm. We assume that all users arrive at the

same time and they submit the same workload continuously

for a pre-defined number of periods. During the first period

all users are assigned the same number of VMs. This may

change according to the suggestions our approach provides.

Of key importance to our simulation is the model used to

estimate the workload execution time based on the resources

provided by the cloud. The turnaround time of a job execution

is given by the following formula:

Runtime(u) =
1

∑N

i=0
VMs(u,i)

TotalVMs(i)

+ Gauss(µ, σ)

With N being the number of VMs user u owns, VMs(u, i)

returns the portion of the VMs deployed on the physical node

i. TotalVMs(i) is the total number of VMs deployed on node i.
We also apply a Gaussian noise. The optimal amount of VMs

per user is calculated at the end of every period and is used

in the upcoming execution.

Table I shows all parameters of our simulation. We have

three types of users, Richies, Bobs and Scrooges. Richies pay

more than Bobs, and Bobs pay more than Scrooges. Users 1,

4, 7, 10 are Richies, users 2, 5, 8 are Bobs and Users 3, 6, 9

are Scrooges.

TABLE I
SIMULATION PARAMETER SETTINGS

Parameter Value

Number of physical nodes 100
Number of users 10
Initial number of VMs per user 3
Maximum number of VMs per user 100
VM cost 0.15 $
Gauss µ = 0,

σ = 0.001
Richie budget function B(t) = 5√

t

Bob budget function B(t) = 3√
t

Scrooge budget function B(t) = 1√
t

Figure 4 shows 10 plots, each one corresponding to a

different user. The figure shows the percentage of time the user

has at her discretion a specific number of VMs. For example,

Ritchie User 10 spends 25% of her time using on average 50

VMs. When the system reaches the equilibrium point, we see

that the number of VMs assigned to each user is proportional

to the amount of money she is willing to pay. Thus, more VMs

are assigned to Richies and fewer to Scrooges. The deviation

from the equilibrium point increases as more VMs are used in

our virtual infrastructure. This behavior is expected since in

large virtual infrastructures the addition or removal of a single

VM has minor impact on the overall performance.

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Number of VMs

Richie, User 1

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Bob, User 2

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Scrooge, User 3

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Richie, User 4

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Bob, User 5

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Scrooge, User 6

0

25

50

10 20 30 40 50 60 70 80 90
T

im
e

 p

e
rc

e
n

ta
g

e

Richie, User 7

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Bob, User 8

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Scrooge, User 9

0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Richie, User 10
0

25

50

10 20 30 40 50 60 70 80 90

T
im

e

 p
e

rc
e

n
ta

g
e

Richie, User 10

Fig. 4. Percentage of time spent with each number of VMs

In any proportional sharing policy the following formula

holds for every user i.

Yi
∑U

u=1 Yu

−
Ri

∑U

u=1 Ru

= 0 ,

where U is the number of users, Yi is the amount of resources

provided to user i and Ri is the revenue we get from her.

Figure 5 shows that metric for every user during the simulation

period after the equilibrium point is reached. In this way, we

establish that indeed our approach converges to a proportional

share state. The computed proportional share metric is almost

0 for all users with slightly negative values for the Riches.

The reason for this is that Riches deviate more than the rest

of the users from their equilibrium point thus they are charged

slightly more.

-0.1

0

0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

c
e

Iterations

Richie, User 1

-0.1

0

0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

c
e

Bob, User 2

-0.1

0

0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

c
e

Scrooge, User 3

-0.1

0

0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

c
e

Richie, User 4

-0.1

0

0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

c
e

Bob, User 5

-0.1

0

0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

c
e

Scrooge, User 6

-0.1

0

0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

c
e

Richie, User 7

-0.1

0

0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

c
e

Bob, User 8

-0.1

0

0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

c
e

Scrooge, User 9

-0.1

0

0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

c
e

Richie, User 10
-0.1

0

0.1

500 1000 1500 2000 2500 3000 3500 4000

P
ro

p
 S

h
a

ri
n

g

 D
is

ta
n

c
e

Richie, User 10

Fig. 5. User VMs proportional sharing

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200

P
ro

fi
t
(i
n
 $

)

Time periods

Fig. 6. Total Profit

Figure 6 illustrates the total profit of the system, when the

latter reaches its equilibrium point. For nearly 70 time periods

the cloud’s profit increases. From that point on, our framework

gradually reduces the deviation from the MC=MR equilibrium

point.

Using the simulated environment we were able to test how

long it takes our approach to reach a steady state with respect

to the number of users simultaneously entering the cloud.

Figure 7 shows the number of time periods our approach

takes to reach a steady state as we increase the number of

users contacting our simulated cloud. The estimation of the

steady state is based on when the profit stops increasing. For

each iteration, we compute the profit in our infrastructure from

all workers. By applying linear regression on the latest five

profit measurements we construct a straight line indicating

the evolution of the profit in the recent past. When the slope

of this line is below 0.2 for three consecutive iterations, we

assume the system has reached a steady state. Figure 7 shows

that the system becomes more stable when more users use

it. The reason for this is that the impact of a single user’s

VM decisions on the rest of the cloud’s users is greater

when fewer users are present. In addition, a large number of

users correspond to more VM adjustment operations per time

period, and thus the steady state point is reached within fewer

iterations.

 0

 50

 100

 150

 200

 250

 4 6 8 10 12 14 16 18 20

T
im

e
 p

e
ri
o
d
s

Users

Fig. 7. Convergence to Proportional Sharing

B. A Private Cloud

To evaluate our approach in a real environment, we tested

it in a private cloud setup in our lab. We have setup two types

of “elastic” virtual infrastructures one using Condor [3] and

a second with Hadoop [33]. In both infrastructure types there

is a master node acting as a gateway. Through this gateway

the user is able to submit jobs to be executed on the worker

nodes.

Worker nodes register with the master node as soon as

they become online. Both Condor and Hadoop feature a

mechanism to remove unreachable nodes from their worker

pools. Therefore, removing a worker involves shutting down

the VM hosting the respective worker services and perhaps

running additional shutdown scripts to ensure a graceful depart

of the worker from the “elastic” infrastructure.

Each user has at her disposal her own private “elastic”

infrastructure. When she contacts our cloud –apart from her

budget– she specifies the type of virtual infrastructure she is

going to use. Our cloud instantiates a gateway featuring a

public IP and informs the user about it. Each user is aware

only of her own gateway. Users do not interact with each other,

they are entirely isolated within their set of virtual machines.

During operation, worker nodes register only with the gateway

of the user that triggered their instantiation; there are no

workers shared among users. With this setup, the resources

shared are only those of the physical nodes.

In our lab, the cloud’s hardware is setup on a rack where

six dedicated nodes serve VM instantiation requests. All phys-

ical systems are connected through a 1 GBps Ethernet switch.

Each such node is equipped with 8 GB of RAM. Two nodes

are each equipped with an Intel(R) Core(TM)2 CPU 6600 at

2.40GHz while the other four have an Intel(R) Xeon(R) CPU

X3220 at 2.40GHz. Live migration is not available and VM

disk images are fetched on-demand from a file server when

they are to be deployed.

The VM hypervisor we use is Xen 3.2-1 [34]. In order to

treat all hardware nodes as a cloud we have setup the Open-
Nebula v.1.2.0 [35] middleware. With OpenNebula we are able

to automate the instantiation, migration and shutdown of VMs.

These operations include the transparent copy or removal of

disk images to/from the proper physical hosting nodes and

the issue of respective Xen commands. To harvest physical

resources in the best possible way, virtual worker nodes should

be evenly distributed among physical VM hosting nodes. To

this end, we do not rely on the default VM scheduling and

placement policy of OpenNebula; instead we use Nefeli [36].

Nefeli allows us to set VM deployment hints and constraints

when entire virtual infrastructures are to be instantiated. All

instantiated VMs use 512 MB of RAM and a single CPU

core. To achieve this, we make use of the Xen VCPU-option

to restrict the utilization of CPU cores.

In the experiments presented here, we focus on the Hadoop

infrastructure. As with the simulated workloads, user interac-

tion with the cloud consists of fixed time periods during which

a job is submitted. The response time of each submission is

tracked so as to set the exact number of the deployed VMs.

At the beginning of each period, we request the addition or

removal of VMs. As soon as a new node comes on-line it

automatically registers with the Hadoop JobTracker running

on the user’s gateway using a predefined IP address.

A real job submission on a real cloud:

With this first use case of our approach we show: a) how a

long lasting job can be split into several smaller ones to decide

the optimal number of VMs to use, and b) how our approach

functions in a real cloud environment.

The jobs submitted to our framework perform data pro-

cessing on portions of Wikipedia. First, we make sure that

data are properly stored on Hadoop’s file-system (HDFS) so

that subsequent data processing operations will not fail. The

CPU intensive part of the job a executes the grep program

on a 500 MB Wikipedia corpus file. Grep is shipped as

part of the Hadoop example programs. Here, two map/reduce

operations are executed in sequence. The first operation counts

the occurrences of the query regular expression and the

second operation sorts the matching strings according to their

frequency. The submitted job proceeds with the distributed

creation of a full text Lucene [37] index using Katta [38].

This operation functions on a different segment of Wikipedia,

a 100 MB file, although it could use the results of the first

grep operation.

Repeated job submissions of the aforementioned formation

are used to index parts of Wikipedia while at the same time

use our approach to efficiently use cloud resources.

During our experimentation, the budget function we

choose to quantify the user need for performance is set to

B(t) = 1000 ∗ 1/t, where t is the response time. The cost per

VM is set to $0.085, the amount Amazon EC2 [13] charges

for a small VM instance.

Figure 8(a) shows the number of VMs our approach

designates to the user’s job. Starting from 3 VMs our algorithm

quickly converges to an average of around 7 VMs, with a

maximum of 9 and a minimum of 4 VMs. In Figure 8(b) we

present the response times the user gets from the cloud. Rapid

deviations in response time such as the ones measured during

periods 34 and 45 are the product of other users consuming

cloud’s resources.

Figure 8(c) shows the internal operation of Algorithm 1.

Using the user’s budget function and the response times we

present in Figure 8(b) we are able to compute the marginal

revenue. Figure 8(c) shows how MR pivots around MC in an

attempt to maximize profit.

Impact of interaction among users:

With this second experiment we show what is the reaction of

our approach to shortage of resources caused by the sharing of

the clouds hardware. In order to have a clear view of the shared

resource we have used a CPU intensive job. This job estimates

the value of π by executing a MapReduce program on our

“elastic” Hadoop infrastructure. The MapReduce program

used is shipped as part of Hadoop examples and employs a

quasi-Monte Carlo method to distribute computation. Random

points are placed within a unit square. Comparing the amount

of points inside the inscribed circle to those outside gives us

an estimate of π.

We start with a cloud where the only tenant is the user

submitting the above job. Eventually the maximum profit equi-

librium point is reached and the number of VMs designated

pivots around it. Then we initiate a CPU intensive operation

consuming a considerable amount of the cloud’s resources.

This second job causes the equilibrium point of the first job

to change and we monitor how our approach adjusts to this

change.

In this experiment the cost per VM is also set to $0.085.

We use a step budget function presented in Figure 9. Note that

with this function the user states that she is not willing to pay

extra for any time improvements in the range of 0 to 200 secs.

As a consequence our approach does not fully utilize all cloud

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45

N
u
m

e
r

o
f
V

M
s

Periods

(a) VMs allocated per period

 300

 310

 320

 330

 340

 350

 360

 370

 380

 0 5 10 15 20 25 30 35 40 45

R
e
s
p
o
n
s
e
 t
im

e
 (

in
 s

e
c
)

Periods

(b) Response time per period

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25 30 35 40 45

Periods

 MR
 MC

(c) Marginal Revenue & Cost

Fig. 8. Evaluation in a real private cloud infrastructure.

resources.

 0

 2

 4

 6

 8

 10

 12

50 150 250 350 450

M
o
n
e
y
 a

fo
rd

e
d
 (

in
 $

)

Response time (in secs)

Fig. 9. Step budget function

In Figure 10 we show the VMs assigned to the user in each

execution period. There are 3 phases: From period 1 to 18 our

approach converges to the first equilibrium point. There is an

exponential increase in the VM count until period 6. Then a

linear decrease (periods 7 to 12) and then again an exponential

decrease. From period 19 to 34 our approach suggests the

use of 9 VMs on average, this is the first equilibrium point.

On period 34 we start the background process. That process

uses more than half of the the cloud’s CPU resources. This

causes the consumption not only of the idle CPU cycles but

also part of the resources our job requires. Therefore, a new

equilibrium point develops around the 5 VMs margin. Since

the second maximum profit point is close to the first one our

approach does not enter the exponential decrease mode, rather

it decreases the number of VMs linearly. From period 38 to

56 our approach has reached the second equilibrium point.

C. Discussion on “Tiny” Clouds

Although the experiments shown here reached a stable

state around the equilibrium point, our prior experience with

a private cloud comprising of fewer physical nodes shows that

such a point is not easily found. Often, in clouds with limited

resources, the equilibrium point either exceeds the cloud’s

capacity or suggests that the users should not use the cloud

at all since their profits are maximized for less than 1 VM.

Moreover, in small cloud infrastructures, deploying VMs un-

evenly on physical systems results in seemingly unreasonable

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60

N
u
m

b
e
r

o
f
V

M
s

Time periods

Fig. 10. Our approach following changes in the equilibrium point

performance penalties. For example, three VMs co-deployed

on the same physical node will perform worse than two VMs

running on different hosting machines. Similar abnormalities

emerge in the case of VM failures. Due to job re-submissions,

a failing VM would stall the overall execution. However, in

large infrastructures both uneven VM deployment and node

failure have a reduced impact. Large numbers of VMs tend

to be evenly distributed even under random-based scheduling

policies. Also, VM failures can be effectively handled by the

simultaneous submission of the same job to multiple workers.

VII. CONCLUSIONS - FUTURE WORK

Combining resources from IaaS-Clouds with modern dis-

tributed computing frameworks allows for the effective han-

dling of massively parallel problems. However, this combi-

nation introduces new challenges regarding both efficient use

of cloud resources as well as user satisfaction. In this paper,

we provide an answer to the key question of how many

virtual machines (VMs) a user should request from an IaaS-

Cloud given that users have a limited budget and that there

are speed-up barriers set by the available physical resources.

We follow a microeconomic-inspired approach to determine

the number of VMs alloted to each user according to her

financial capacity. Since the underlying physical resources are

shared among all cloud tenants, the performance the users get

out of the cloud may significantly vary over time. Therefore,

our approach continuously monitors the response time of user

applications and adjusts the amount of resources accordingly.

At its equilibrium point, the suggested approach maximizes

profit. From the provider’s point of view this profit corresponds

to financial benefit whereas from the consumer’s point of view,

the same profit corresponds to quality of service received. Our

experimental evaluation with both a detailed prototype and a

simulator demonstrates that our proposed method converges

to a fair resource sharing equilibrium point. At that point, the

number of VMs provided to each user is proportional to the

amount of money the same user is willing to pay.

In the future, we plan to investigate methods that reduce

the time required to reach the maximum profit point and

enrich pertinent approaches from the fields of both autonomic

systems and economics. We also plan to examine the effects

of open- and closed-loop markets on our approach. Finally,

we wish to apply the same ideas on other resource sharing

frameworks that do not rely on clouds to accommodate user

needs.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” in OSDI’04: Sixth Symposium on Operating System

Design and Implementation, San Francisco, CA, Dec. 2004.

[2] HP Labs, “Dynamic Hadoop Clusters,” http://wiki.smartfrog.org/
/wiki/display/sf/Dynamic+Hadoop+Clusters, Feb. 2010.

[3] http://www.cs.wisc.edu/condor/, “The Condor Project,” 2010.

[4] http://www.clusterresources.com/pages/products/torque-resource
manager.php, “TORQUE Resource Manager,” 2010.

[5] D. Grosu and A. Das, “Auctioning resources in Grids: model and
protocols: Research Articles,” Concurrent Computation : Practice and

Experience, vol. 18, no. 15, pp. 1909–1927, 2006.

[6] C. Chen, M. Maheswaran, and M. Toulouse, “Supporting Co-allocation
in an Auctioning-based Resource Allocator for Grid Systems,” in Proc.

of the International Parallel and Distributed Processing Symposium, Fort
Lauderdale, Florida, USA, Apr. 2002, pp. 89–96.

[7] K. Subramoniam, M. Maheswaran, and M. Toulouse, “Towards a Micro-
Economic Model for Resource Allocation,” in In IEEE Canadian

Conference on Electrical and Computer Engineering. IEEE Press,
2002, pp. 782–785.

[8] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,”
IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[9] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and
K. Vahi, “Characterization of Scientific Workflows,” in 3rd Workshop

on Workflows in Support of Large-Scale Science, Austin, TX, November
2008, pp. 1–10.

[10] D. L. Eager, J. Zahorjan, and E. D. Lozowska, “Speedup Versus
Efficiency in Parallel Systems,” IEEE Transactions Computers, vol. 38,
no. 3, pp. 408–423, 1989.

[11] D. J. DeWitt and J. Gray, “Parallel Database Systems: The Future of
High Performance Database Systems,” Commun. ACM, vol. 35, no. 6,
pp. 85–98, 1992.

[12] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan, “G-commerce: Market
Formulations Controlling Resource Allocation on the Computational
Grid,” in International Parallel and Distributed Processing Symposium

(IPDPS 01). San Francisco: IEEE, April 2001.

[13] Amazon, “Elastic Cloud,” http://aws.amazon.com/ec2/, 2010.
[14] http://aws.amazon.com/ec2/spot instances/, “Amazon EC2 Spot In-

stances,” 2010.
[15] V. Marbukh and K. Mills, “Demand Pricing & Resource Allocation in

Market-Based Compute Grids: A Model and Initial Results,” in ICN ’08:

Proceedings of the Seventh International Conference on Networking.
Cancun, Mexico: IEEE Computer Society, Apr. 2008, pp. 752–757.

[16] C. E. Volker, V. Hamscher, and R. Yahyapour, “Economic Scheduling in
Grid Computing,” in JSSPP ’02: Revised Papers from the 8th Interna-

tional Workshop on Job Scheduling Strategies for Parallel Processing.
London, UK: Springer, 2002, pp. 128–152.

[17] M. Stokely, J. Winget, E. Keyes, C. Grimes, and B. Yolken, “Using
a Market Economy to Provision Compute Resources Across Planet-
wide Clusters,” in Proc. for the International Parallel and Distributed

Processing Symposium, Rome, Italy, May 2009.
[18] B. N. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. C. Parkes, J. Shnei-

dman, A. C. Snoeren, and A. Vahdat, “Mirage: A Microeconomic
Resource Allocation System for Sensornet Testbeds,” in Proc. of the

2nd IEEE Workshop on Embedded Networked Sensors, May 2005.
[19] A. Danak and S. Mannor, “Resource Allocation with Supply Adjustment

in Distributed Computing Systems,” in Proceedings of the 30th IEEE

International Conference on Distributed Computing Systems (ICDCS),
Genoa, Italy, June 2010.

[20] J. Broberg, S. Venugopal, and R. Buyya, “Market-oriented Grids and
Utility Computing: The state-of-the-art and future directions,” Journal

of Grid Computing, vol. 6, no. 3, pp. 255–276, Sep. 2008.
[21] D. E. Irwin, L. E. Grit, and J. S. Chase, “Balancing Risk and Reward in

a Market-Based Task Service,” in Proc. of the 13th IEEE International

Symposium on High Performance Distributed Computing. Munich,
Germany: IEEE Computer Society, 2004, pp. 160–169.

[22] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. A. Huberman,
“Tycoon: An Implementation of a Distributed, Market-based Resource
Allocation System,” Multiagent Grid Systems, vol. 1, no. 3, 2005.

[23] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya, “Libra: A
Computational Economy-Based Job Scheduling System For Clusters,”
Software: Practice and Experience, vol. 34, no. 6, pp. 573–590, 2004.

[24] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-Oriented Cloud
Computing: Vision, Hype, and Reality for Delivering IT Services as
Computing Utilities,” in Proc of the 10th International Conference on

High Performance and Communications(HPCC 08). Dalian, China:
IEEE Computer Society, Sept 2008.

[25] D. Dash, V. Kantere, and A. Ailamaki, “An Economic Model for
Self-Tuned Cloud Caching,” in Proc of the 25th IEEE International

Conference on Data Engineering, Shanghai, China, Mar. 2009.
[26] B. N. Chun and D. E. Culler, “Market-based Proportional Resource

Sharing for Clusters,” University of California at Berkeley, Berkeley,
CA, USA, Tech. Rep., 2000.

[27] B. Urgaonkar, B. Urgaonkar, P. Shenoy, P. Shenoy, T. Roscoe, and
T. Roscoe, “Resource Overbooking and Application Profiling in Shared
Hosting Platforms,” in Proc. of the 5th USENIX Symposium on Operat-

ing Systems Design and Implementation, 2002, pp. 239–254.
[28] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Sing-

hal, and A. Merchant, “Automated Control of Multiple Virtualized
Resources,” in Proceedings of the 4th ACM European Conference on

Computer Systems. New York, USA: ACM, 2009, pp. 13–26.
[29] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Mer-

chant, and K. Salem, “Adaptive Control of Virtualized Resources in
Utility Computing Environments,” in Proc. of the European Conference

on Computer Systems, Nuremberg, Germany, 2007, pp. 289–302.
[30] H. R. Varian, Intermediate Microeconomics : A Modern Approach,

7th ed. W. W. Norton and Company, Dec. 2005, ch. 25, Monopoly
Behavior.

[31] T. Sandholm and K. Lai, “MapReduce Optimization Using Regulated
Dynamic Prioritization,” in SIGMETRICS ’09: Proceedings of the

eleventh international joint conference on Measurement and modeling

of computer systems. New York, NY, USA: ACM, 2009, pp. 299–310.
[32] V. Jacobson, “Congestion avoidance and control,” in SIGCOMM ’88:

Symposium proceedings on Communications architectures and proto-

cols. Stanford, California, United States: ACM, 1988, pp. 314–329.
[33] Apache, “Hadoop,” http://hadoop.apache.org/, July 2010.
[34] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in
Proc. of the 19th ACM Symposium on Operating Systems Principles.
Lake George, NY: ACM, October 2003, pp. 164–177.

[35] “OpenNebula,” http://www.opennebula.org, March 2010.
[36] K. Tsakalozos, M. Roussopoulos, V. Floros, and A. Delis, “Nefeli:

Hint-based Execution of Workloads in Clouds,” in Procedings of the

30th IEEE International Conference on Distributed Computing Systems

(ICDCS 2010), June 2010.
[37] Apache, “Lucene,” http://lucene.apache.org/, July 2010.
[38] J. Zillman, M. Bauhardt, M. Schaaf, and S. Groschupf, “Katta,”

http://katta.sourceforge.net/, July 2010.

