
1

Meta Algorithms for Hierarchical Web Caches
Nikolaos Laoutaris, Sofia Syntila, Ioannis Stavrakakis�
laoutaris,stud1245,istavrak � @di.uoa.gr
Department of Informatics and Telecommunications,

University of Athens, 15784 Athens, Greece

Abstract— Large scale hierarchical caches for web content have
been deployed widely in an attempt to reduce delivery delays and
bandwidth consumption and also to improve the scalability of
content dissemination through the world wide web. Irrespectively
of the specific replacement algorithm employed in each cache, a
de facto characteristic of contemporary hierarchical caches is
that a hit for a document at an � -level cache leads to the caching
of the document in all intermediate caches (levels �������
	
	�	
�
�) on
the path towards the leaf cache that received the initial request.
This paper presents various algorithms that revise this standard
behavior and attempt to be more selective in choosing the caches
that get to store a local copy of the requested document. As
these algorithms operate independently of the actual replacement
algorithm running in each individual cache, they are referred to
as meta algorithms. Three new meta algorithms are proposed and
compared against the de facto one and a recently proposed one
by H. Che, Y. Tung, and Z. Wang [1] by means of synthetic and
trace-driven simulations. The best of the new meta algorithms
appears to be able to lead to improved performance under most
simulated scenarios, especially under a low availability of storage.
The latter observation makes the presented meta algorithms
particularly favorable for the handling of large data objects such
as stored music files or short video clips. Additionally, a simple
load balancing algorithm that is based on the concept of meta
algorithms is proposed and evaluated. The algorithm is shown
to be able to provide for an effective balancing of load thus
possibly addressing the recently discovered “filtering-effect” in
hierarchical web caches (C. Williamson [2]).

I. INTRODUCTION

Keeping temporary copies of valuable information on fast
access memories, so as to avoid accesses to slow memories
where the information is stored on a permanent basis, is a
commonly employed technique to reduce the overall access
time. This technique – known as caching – has been employed
extensively in a variety of applications, most notably to speed
up the communication between a CPU and the main memory
or between the main memory and the secondary (permanent)
storage (hard disks). The prevalence of the internet and the
world wide web gave caching new fields of application.
Initially, web browsers implemented local caches where fre-
quently accessed pages were kept for fast access thus avoiding
slow accesses to remote web servers. Soon it was realized that
a higher gain would be achieved if multiple clients shared a
larger cache thus requiring only a single copy of a document
to service all the clients. This led to the development of
dedicated cache (or proxy) servers that lay on the access point

This work and its dissemination efforts have been supported in part by
the IST Program of the European Union under contract IST-2001-32686
(Broadway).

of a local area network to the internet, servicing the entire
local client population. Dedicated proxy servers are known
to be able to reduce the client perceived delay and also the
bandwidth consumption on the backbone network. To be able
to scale to large populations, and also to enhance the degree
of sharing, local dedicated caches have federated thus creating
large hierarchical caches such as the NLANR cache [3] and the
UK JANET cache [4]. A hierarchical cache involves multiple
proxies at different levels. Requests are first received at the
leaf caches and are routed upwards until they reach a cache
that stores a copy of the requested document. A hit is said
to have occurred in that case. Following a hit, the requested
document is sent on the reverse path to the client, and each
cache on this path gets to store a local copy of the document
so as to be able to service future requests.

The focus of this paper is to investigate whether caching
a local copy in all intermediate caches on the reverse path
is indeed a good idea, or are there reasons to revise it, and
keep instead copies in a subset of intermediate caches. Notice
that leaving copies everywhere (here after abbreviated LCE),
has been considered as a de facto behavior. Despite the vast
bibliography on web caching, it wasn’t until very recently that
a work appeared possing similar questions [1] and, in fact,
providing some evidence that LCE can be improved.

The question of whether to cache a document at an inter-
mediate cache is one that may be possed independently of the
specific replacement algorithm operating on the cache. It may
be seen as an admission mechanism, similar in conception to
a Call Admission Control (CAC) mechanism on a multiplexor
node; its sole purpose is to decide whether to keep a copy
of a document coming from upwards in the hierarchy, leaving
the decision of choosing a specific document to evict to make
room for the new one to whichever replacement algorithm is in
effect locally. For this reason, the algorithms that are studied
here may be characterized as meta algorithms for hierarchical
caches (or just meta algorithms) to differentiate them from the
much discussed and well understood replacement algorithms
and to stress the fact that they operate independently of the
latter. Meta algorithms have been employed in the past in the
different, but related to caching, domain of self-organizing lin-
ear search (see [5] and references). Apart from the apparently
different application domain, the meta algorithms employed in
this work operate on groups of caches organized in hierarchies,
whereas earlier work on self-organizing linear search studied
the operation of meta algorithms on isolated linear lists.

In the following, three new meta algorithms are described
and compared against the standard LCE, and the recently

2

proposed one in [1], by means of synthetic and trace-driven
simulations. In all cases it is assumed that the Least Recently
Used (LRU) replacement algorithm runs in all caches of the
hierarchy. LRU is by far the most commonly used replace-
ment algorithm and thus has been chosen as the basis over
which the various meta algorithms are compared. Due to the
aforementioned independent operation of the meta algorithm
from the employed replacement algorithm, it is believed that
the presented results and conclusions should apply to some
extent to other replacement algorithms as well.

The results of the simulation study indicate that the new
proposed algorithms (and most notably the best performing
among them, called LCD) provide significant gains over LCE
in most studied scenarios. It is also found that they can approx-
imate and even exceed the performance of the more complex
algorithm of [1]. The proposed meta algorithms are particu-
larly suited to applications having a limited storage capacity. In
such cases they manage to outperform the standard policy LCE
by being more conservative in admitting documents to caches.
This allows for the suppression of replacement error but also
entails a cost in the form of reduced speed in tracking changing
demand patterns. However, measured client workloads appear
to be quite stable across time. In fact, a recently published
measurement study [6] showed that the top 10% most popular
documents on one day make up to around 80% of all requests
for at least the following week. Thus the cost due to the
reduced adaptability becomes much smaller as compared to
the gain from the suppression of replacement error. Based on
the derived results it is concluded that the new algorithms
appear to be good, low complexity solutions, especially suit-
able for storage constrained applications. Although originally
motivated by hierarchical web caching, it is later argued (see
Sect. V) that the same meta algorithms may be applied to
other applications such as the distribution of stored music files
or short video clips where storage is much more limited as
compared to the case of web content.

A second contribution of this work is a simple fully
distributed load balancing scheme that is based on the con-
cept of meta algorithms and can potentially address the re-
cently discovered “filtering-effect” in hierarchical web caches
(Williamson [2]). The proposed scheme is generic in nature
and can be employed in conjunction with any of the studied
meta algorithms. It prohibits the concentration of all popular
documents at the leaf caches, as done by LCE, and instead
spreads them more evenly, thus, achieving a smoother distri-
bution of load (hits) among the caches of the hierarchy.

As a final note, it should be pointed out that this work
is confined to the study of on-line, request driven, (meta)
algorithms that may be employed with little, or no change, to
the existing hierarchical caches. The idea is to try to improve
these systems by enforcing only minor modifications. The
reader is referred to [7] for the study of off-line co-operative
object placement (replication) and to [8] for the study of co-
operative replacement which, however, unlike the algorithms
discussed here, employ a significant exchange of information
between caches and incur a substantial complexity.

II. META ALGORITHMS FOR HIERARCHICAL CACHES

This section presents some new meta algorithms along with
the design principles that guide their operation. Some older
meta algorithms, which are used for comparison, are also
presented.

A. Description

This section describes three new meta algorithms, Prob,
LCD, MCD, as well as the currently employed one, LCE,
and a recently proposed one, Filter.

1) Leave Copy Everywhere (LCE): This is the standard
mode of operation currently in use in most hierarchical caches.
When a hit occurs at a level � cache or the origin server, a
copy of the requested document is cached in all intermediate
caches (levels �������������	���) on the path from the location of
the hit down to the requesting client.

2) Prob: Prob is a randomized version of LCE. Each
intermediate cache on the path from the location of the hit
down to the requesting client is eligible for storing a copy
of the requested document. An intermediate cache keeps a
local copy with probability
 , thus invoking the replacement
algorithm, and does not keep a copy with probability ����
 .
Prob with
��� is identical to LCE.1

3) Leave Copy Down (LCD): Under LCD a new copy of
the requested document is cached only at the ��������� -level
cache, i.e., the one that resides immediately below the location
of the hit on the path to the requesting client. LCD is more
“conservative” than LCE as it requires multiple requests to
bring a document to a leaf cache, with each request advancing
a new copy of the document one hop closer to the client.

4) Move Copy Down (MCD): Similar to LCD with
the difference that a hit at level � moves the requested
document to the underlaying cache. This requires that the
requested document be deleted2 from the cache where the
hit occurred. No deletion of course takes place when the
hit occurs at the origin server. The idea behind MCD is
to reduce the number of replicas for the same document
on the path between the requesting client and the origin server.

The operation of the above mentioned algorithms is illustrated
in an example in Fig. 1. Note that the three new meta
algorithms require a very small amount of extra co-operation
other than the minimum required to implement a hierarchical
cache, i.e., each cache to know its immediate ancestor so
that it can forward requests upstream, and its immediate
descendants so that it can forward documents downstream.
Prob is oblivious to where the original hit occurred thus runs
solely on local information. LCD needs to know where the
original hit occurred so that it can decide whether to keep a

1Probabilistic algorithms have been recently employed in the domain of web caching,
but in different contexts. The authors of [9] show that replacements algorithms may
be efficiently implemented by utilizing only samples from the cache (instead of the
entire cache content) in order to identify a good eviction candidate. In [10] randomized
algorithms are used in order to handle documents with varying costs (fetch distance) and
sizes.

2The document does not have to be physically deleted from the cache. A better strategy
is to set its timestampt to a very small value thus marking it for eviction upon the next
miss. This has the advantage that in the case that the next request refers to this document,
a hit will occur, whereas a miss would have occurred if physical deletion had taken place.

3

miss

probability p

probability p
copy with

miss

miss

copy

copy

request

hit

miss

miss

request

hit

Prob MCD

delete hit

request

copy

miss

miss

LCDLCE

hit

request

copy

miss

copy with

Fig. 1. Operation of LCE, Prob, LCD, and MCD.

local copy or not. This can be done by piggybacking the IP
address of the hit location along with the document that is
sent downstream. Then an intermediate cache checks whether
the IP address of the hit location matches its ancestor’s IP
and only in that case it keeps a local copy. MCD can be
implemented likewise. It also requires to delete the local copy
of the document at the location of the hit after sending it
downwards, which of course requires no information from
other caches.

5) Filter: a non-memoryless meta algorithm: A major
distinctive factor of replacement algorithms is whether they
are memoryless or non-memoryless. The LRU algorithm is
characterized as memoryless because each permutation of the
cache, following a request, utilizes no additional information
from the memory; the permutation is executed by simply
bringing the requested document to the top of the LRU
list. Frequency based algorithms, however, need to maintain
additional information in the memory to keep track of the
number of requests for each document. Such algorithms are
characterized as non-memoryless. The Least Frequently Used,
LFU, replacement rule is the most popular non-memoryless
replacement algorithm. Non-memoryless algorithms take ad-
vantage of the extra information and thus generally achieve a
better hit ratio.

The aforementioned characterization may be applied to the
field of meta algorithms as well. All the aforementioned meta
algorithms may be characterized as memoryless because they
do not require any extra information other than the actual state
of the hierarchy. Recently, H. Che, Y. Tung, and Z. Wang
have proposed a new meta algorithm for hierarchical caches,
aiming at improving the overall hit ratio [1]. This algorithm,
that will here after be referred to as Filter, appears to be non-
memoryless. We have implemented it, and used it to evaluate
its performance against the memoryless Prob, LCD, and MCD.
It is briefly outlined below.

Under the Filter algorithm, a hit for document � at level � on
behalf of client � leads to the caching of � in an intermediate
cache � on the path to � , when � satisfies the following
condition: ������
	����� . � � is said to be the characteristic time
of cache � . It is equal to the difference between the current
time and a timestamp that indicates the time of last access
to the document that would be replaced to make room for
the caching of � if LCE was to be used. ���� is the frequency
that client � requests document � . Each cache � is seen as
a low pass filter with a cutoff frequency equal to ������ and,
thus, a path of the hierarchy constitutes a line in tandem of
low pass filters having different cutoff frequencies. Documents

that have a low request frequency are allowed to pass from a
cache without storing a local copy with the aim of saving cache
resources since these documents stand a good chance of being
replaced before being requested again. Additionally, when a
document is evicted from a cache at level � the algorithm
forces its caching at level ��� � if not already cached there.
Filter incurs an additional complexity as compared to the
previous memoryless meta algorithms as it needs to estimate
the request frequency of each requested document in all clients
and disseminate this information to all the caches. This extra
processing and the information that must be maintained make
Filter a non-memoryless meta algorithm.

B. Design Principles

The three new meta algorithms, Prob, LCD, and MCD, aim
at improving the performance of a hierarchical cache in terms
of the expected distance to reach a cache hit. To achieve
this goal they take advantage of the following three design
principles:

1) Avoid the amplification of replacement errors: When
focusing on an isolated cache, a replacement algorithm is
said to have committed an error if it chooses to evict a
document � while there exists a document � that if evicted
in place of � would lead to an improved hit ratio. The exact
definition of a replacement error depends on the assumptions
of the problem. For example, under a given sequence of
requests, the optimal replacement algorithm is the one that in
each replacement evicts the document that has the maximum
forward distance (in number of requests) until the next request
for the same document [11]. Any algorithm that violates this
strategy will be committing replacement errors. The LRU
replacement algorithm has a hit ratio that has been proved
to be no more than � times worse than the hit ratio of the
optimal offline algorithm, where � is the capacity of the cache
in unit sized documents [12]. Obviously this optimal offline
algorithm cannot be implemented as it requires knowledge of
future requests which is generally not available (except for
in-advance “reservation” systems).

A more practical model for the evaluation of replacement
algorithms is the so called independent reference model (IR),
under which requests are i.i.d. random variables following a
certain popularity distribution over a given document universe.
The optimal caching strategy under IR demands the static
replication of the most popular documents up to the capacity
of the cache [13]. Let this optimal caching strategy under IR be
called Highest Popularity First (HPF) strategy. A replacement
algorithm that operates under the IR model may evict one
of the most popular documents in order to cache a less
popular document, thus committing a replacement error which
eventually leads to a reduced steady-state hit ratio as compared
to that achieved under the HPF strategy. The LRU replacement
algorithm under the IR model has a worst case hit ratio that
has been proved to be at least � ��� ����� � worse than the hit
ratio of the HPF strategy, � denoting the capacity of the cache
in unit sized documents [14].

From the previous it should be clear that any causal re-
placement algorithm is committing errors as compared to the
optimal strategy (under the assumed model) and these errors

4

lead to inferior performance. This situation becomes even
more critical when considering a hierarchical rather than an
isolated cache. In an � -level hierarchical cache that operates
under the LCE meta algorithm, a request for an unpopular
document may lead to its caching in all � caches on the path
from the requesting client up to the root cache, and by doing so
commit up to � replacement errors. Leaving a copy in all the
intermediate caches is, in effect, leading to the amplification of
replacement errors. The proposed algorithms try to reduce the
extent of this amplification by reducing the number of copies
that are cached with each request.

2) Filter-out one-timer documents: A prominent character-
istic of measured proxy workloads is a very high percentage
of documents that are requested only once, despite of the
duration of the studied workload. These so called ����� ��� � ���
	
documents usually amount up to 45% of the total requests and
75% of the total distinct documents present in the measured
workloads [15], [16]. Caching an one-timer document is the
worse type of replacement error that can occur as it is
guaranteed that the one-timer will not be requested again thus
leading to waste of storage capacity. The insertion of a one-
timer in the cache is equivalent to operating with a cache of a
reduced capacity, equal to � � � , for the time duration that is
required to have � other distinct documents being requested
which lead to the eviction of the one-timer and the release
of the temporarily wasted storage. The aforementioned high
percentages of one-timers clog an entire hierarchical cache that
operates under LCE with useless documents, which deprive
useful popular documents of valuable storage capacity; this
leads to poor hit ratios. The proposed LCD and MCD meta
algorithms guarantee that the one-timers cannot affect any
cache other than the root cache. Thus they completely filter-
out one-timers for all but one caches in the hierarchy. Prob,
likewise, filters out most of the one-timers by using a small
cache probability
 .

3) Rationalize the degree of replication: A request for a
document under LCE may lead to the caching of a local copy
in all caches on the path to the root, if the document was
not previously cached on that path. Despite the location of
the hit, LCE guarantees that a copy will be stored at the
leaf cache that services the requesting client. Since this leaf
cache is the one closest to the client, the upper copies could
have been omitted without affecting the specific client. LCE
“proactively” places copies at the upper levels to achieve the
following two goals: (1) have a nearby copy to service other
clients connected to leaf caches that do not have a copy of the
document; (2) have a “backup” copy for the requesting client
in case its leaf copy is evicted from the leaf cache. Situation
(1) targets the so called first access or cold misses, i.e., the
inavoidable misses occurring when requesting a document that
has not been requested before, thus no copy of it exists at the
leaf cache. Figure 2 gives an example of how the copies at the
upper levels reduce the hit distance for cold misses at other
leaves. Request 1 incurs 3 misses as the requested document
initially resides only at the origin server. Request 2 is for the
same document but this time there is only one miss and the
hit occurs at a level-2 cache. The shorter hit distance owes to
the upper level copies stored by request 1. Request 3 follows,

LCE

server

miss

miss
miss

hit 3

hit 2

hit 1

request 3request 2

misscopy

request 1

miss

misscopy

copy

Fig. 2. Example of how LCE reduces the hit distance for cold misses by proactively
storing multiple copies at upper level caches. Request 1 incurs 3 misses but the following
requests incur a smaller number of misses, 1,2 respectively, owing to the upper level
copies stored by the first request.

originating at the far right leaf cache, and it too experiences a
smaller number of misses, due to the upper copies stored by
the first request.

For the aforementioned reasons, LCE leads to a large
number of document replicas being stored with each request.
There are situations, however, that the appropriateness of this
high degree of replication may be challenged. Consider the
extreme case that each client references a distinct set of docu-
ments without any overlap in the document sets referenced by
different clients. Under such a scenario, goal (1) – reducing the
hit distance for cold misses – ceases to exist because leaving a
copy at an upper level serves no other client. The same applies
to a smaller degree when there is only a partial overlap in
the various document sets. Goal (2) may also be questioned.
Storing a “backup” copy at an intermediate cache may not be
beneficial, especially under a limited storage capacity. Indeed,
a popular document at an intermediate level will probably
receive very few requests and be replaced quickly since copies
of it will probably exist lower at the hierarchy thus filtering
the majority of the requests. Prob, LCD, and MCD create
relatively fewer copies for each requested document thus
leading to a smaller degree of replication for each cached
document, allowing for more distinct documents to be cached.

III. SYNTHETIC SIMULATIONS

For the purpose of evaluating the performance of the
proposed meta algorithms, simulations were conducted using
synthetically generated Zipf-like document popularity distribu-
tions to model client requests, which are assumed to be i.i.d.
random variables, i.e., the independent reference (IR) model
is assumed. Under a Zipf-like distribution the probability
of requesting the � th most popular document is given by

 ��� � ��� ��� , where � �������� � ���� � ��� . � denotes the
number of document in the universe and � is the skewness
parameter of the Zipf-like distribution, indicating the degree
of concentration of requests. Values of � close to 1 indicate
that few distinct documents attract the majority of the requests
while values close to 0 indicate almost uniform document
popularities. A Zipf-like distribution has been reported to be
a good model of actual measured workloads [17], [18], [15],
[16], [2], with typical values of � in the range [0.6,0.9]. The
assumption that successive requests are independent has been
used extensively by many researchers and has been shown to

5

be able to capture asymptotic behaviors that are consistent
with the experimental observations [18].

The simulated hierarchical cache is a regular � -ary tree
with � levels. � -ary trees have been used extensively for
the study of performance issues in hierarchical caches [19].
All the available documents are assumed to originate from an
origin server that resides outside the hierarchy, at a conceptual
level � � � . Each client is co-located with one leaf cache and
represents the population of an entire organization. A client
� has a request rate � � (requests/unit of time) that captures
the volume of traffic requested by the local organization and
a document popularity distribution
 � . A request follows the
unique path from a leaf cache towards the location of the hit,
either an intermediate cache or the origin server. The distance
from a client is 0 hops for a leaf cache, � � � hops for a
� -level cache, and � hops for the origin server. The average
number of hops to achieve a request hit is used to compare
the performance of the various meta algorithms. For simplicity
only hierarchical request forwarding has been used; see [20]
for the effect of request peering between sibling caches. As
the focus of this work is on the meta algorithms and not on
the replacement algorithms themselves, the standard LRU re-
placement is assumed to run in all caches. The meta algorithm
is independent of the employed replacement algorithm and,
thus, it is expected that the presented results and observations
should apply to some extent to other replacement algorithms
as well.

The next results depict the average hit distance under the
studied meta algorithms for a storage capacity of � unit sized
documents, equally allocated to the � caches of a hierarchy
with each cache taking � �� units of storage (� ���� ���� ���for a full � -ary tree with � levels). The equal allocation of
storage has been employed as a baseline storage allocation
strategy, often applied in practice, under which the different
meta algorithms are compared; see [20] for algorithms that
optimize the allocation of � to the nodes of the hierarchy.
Before comparing the different meta algorithms we present a
graph that pertains to the effect of the parameter
 of the Prob
meta algorithm (Prob is the only parametric new algorithm).
As it may be seen from Fig. 3 smaller values of
 lead to a
smaller average hit distance as they filter out more effectively
the one-timer references and reduce the amplification of errors.
The cost paid for the improved performance is a slower
convergence to steady-state. In all the following results we
will be using
 �� � � whenever referring to Prob.

Figure 4 compares the different meta algorithms under the
assumed Zip-like demand. The following may be noted: (1)
LCE has the worse performance across all � ; (2) Prob is
ranking second across all � ; (3) MCD and LCD yield almost
equal performance which is always better than LCE and Prob;
(4) Filter, although non-memoryless, is outperformed by LCD
and closely matched by MCD.3

3It is believed [21] that Filter’s performance could be improved by performing per
cache request frequency estimation, thus being able to use the exact aggregate miss stream
for a document at an upper level cache to govern local caching decisions. The original
version of the algorithm presented in [1] makes local caching decisions based only on
the request frequency of a document at the leaf cache that received the original request.
This request frequency at the leaf is, however, potentially different from the actual miss
stream for this document reaching an upper level cache due to the aggregation of miss
streams from multiple leaf caches.

The next results provide some insight into the effects of
non-stationary document sets, such as those that are common
in the web [22], [23], and are attributed to the creation of
new documents and the extinction of old ones. The simulation
scenario is the same as the previously described one, with the
difference that every 	 requests,
 documents out of the total
� in the current document universe are considered extinct (not
requested anymore) and are replaced by
 new ones. A Zipf-
like popularity distribution is used over the current document
set. Figure 5 shows the performance of the different algorithms
for 	 ������� and
 in the range [1000,10000]. These
values are selected somewhat arbitrarily and it is not suggested
that they represent realistic situations; they aim at revealing
qualitatively the behavior of the various algorithms under non-
stationary document sets. A more realistic evaluation of this
effect is obtained by the trace-driven simulations in Sect. IV.
Figure 5 show that LCE, which is the worst performer under
a stationary document set, progressively approaches the per-
formance of the other algorithms, and eventually outperforms
them, as the volatility of the document set increases (with
larger
). This behavior owes to the fact that LCE is able to
track the new demand more quickly than Prob, MCD, LCD,
and Filter, which require multiple requests to bring a copy
of a new document to a leaf cache. Naturally, the average hit
distance increases, under all algorithms, with increasing values
of
 . The rate of increase for LCE, however, is smaller than
for the other algorithms and, thus, LCE eventually outperforms
them.

IV. TRACE-DRIVEN SIMULATIONS

To gain a clearer perception of the expected performance
of the new meta algorithms, trace driven simulations were
conducted using traces from actual operating caches. The
trace-based workloads reflect features that are not captured
by the employed synthetically generated workloads and, thus,
enhance the understanding of the new algorithms and the
confidence on the obtained results. Specifically, the traces
capture the temporal correlation – also known as locality
of reference – which is known to exist in client request
patterns [17], [18], [16]. Additionally, embedded in the traces
are the volatility of the available document set, which is
attributed to the creation of new documents and the extinction
of old ones, and the non-stationarity of user access patterns.

A. Description of the traces

The trace-based workloads were created by processing the
access logs maintained by the Squid proxy server [24]. These
traces were filtered to keep only the requests for cacheable
documents. Two types of caches were studied: (1) leaf caches,
servicing the client population of an individual organization;
(2) root caches of the NLANR hierarchy [3], which receive
requests originating from a diverse mixture of connected
organizations. The two types of workloads are known to
have different properties which are caused by the progressive
filtering of requests that pass through successive caches while
progressing upwards in the hierarchy [2].

The two leaf caches included in the study belong to the Uni-
versity of Athens (UoA) and the National Technical University

6

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

av
er

ag
e

di
st

an
ce

 to
 h

it
(#

 h
op

s)

S (storage capacity)

synthetical Zip-like requests

p=1.0
p=0.8
p=0.6
p=0.4
p=0.2

Fig. 3. Average hit distance (in number hops) for Prob
with different parameters � , under Zipf-like(0.9) requests
and equal request rates, ��� � � for every client

�
. LRU

runs locally in each cache of the hierarchy. �
�
�
���������

,� ���
, �
��	

.

1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

av
er

ag
e

di
st

an
ce

 to
 h

it
(#

 h
op

s)

S (storage capacity)

synthetical Zip-like requests

LCE
Prob
MCD
LCD
Filter

Fig. 4. Average hit distance (in number hops) for LCE,
Prob, MCD, LCD, and Filter, under Zipf-like(0.9) requests
and equal request rates, ��� � � for every client

�
. LRU

runs locally in each cache of the hierarchy. �
�
�
���������

,� ���
, �
��	

.

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

1000 2000 3000 4000 5000 6000 7000 8000 900010000

av
er

ag
e

di
st

an
ce

 to
 h

it
(#

 h
op

s)

M

non-stationary demand

LCE
Prob
MCD
LCD
Filter

Fig. 5. Average hit distance under non-stationary
demand. The document popularity distribution is Zipf-
like(0.9) and the client request rates are equal, �
� � �
for every client

�
. LRU runs locally in each cache of the

hierarchy. �
�
�
���������

,
� ���

, �
��	

.

Trace Type Requests Tot. distinct 1-timers/
Tot. distinct

1-timers/
Requests

uc root 815194 279375 72% 25%
sv root 1299024 726075 82% 45%
bo root 698691 365060 81% 43%
pb root 709180 405680 84% 48%
sd root 193769 94457 83% 40%
pa root 273511 137497 76% 38%

UoA leaf 282540 41088 71% 10%
NTUA leaf 580460 234432 73% 30%

TABLE I

TRACE CHARACTERISTICS.

of Athens (NTUA), Greece. UoA is a large metropolitan
university including schools of science, medicine, law, and
philosophy totalling to more than 45000 students, faculty and
staff, while NTUA is a large polytechnic university including a
wide variety of engineering departments that amount to around
15000 students, faculty and staff. Both traces include one week
worth of requests gathered during the third week of March,
2003.

The root caches correspond to six root NLANR proxy
servers that are abbreviated following the NLANR nam-
ing conventions as follows: Boulder, Colorado (bo), Palo
Alto, California (pa), Pittsburgh, Pennsylvania (pb), Urbana-
Champaign, Illinois (uc), San Diego, California (sd), Silicon
Valley, California (sv). Each NLANR trace includes one day’s
worth of requests gathered on Wednesday, 19 February, 2003.
A smaller time duration was selected for the root servers as
opposed to the leaf servers because the first tend to receive
many more requests. Table I summarizes the properties of the
various traces used in the simulations.

B. Simulation results

Figure 6 show the simulated performance of the various
meta algorithms on the traces of Table I, following an initial
warm-up period. A regular hierarchy with � �

, � � and
a storage capacity � in the range [1000,10000] were used in
all simulations.

The relative ranking of the various meta algorithms changes
under different traces, whereas it remains almost stable under
the synthetic simulations. The following observations follow
from Fig. 6:

� The relative ranking in terms of average hit distance of
the three new meta algorithms remains unchanged under
all traces and all storage capacities � . The ranking is
Prob, MCD, LCD. The LCD meta algorithm appears to
be the best performing new one across all experiments,
as was also the case with the synthetic simulations.

� LCE, that was constantly the worst performing one under
stationary synthetic input (Fig. 4), while it improved un-
der non-stationary demand (Fig. 5) has a relative ranking
that changes among different traces. As compared to
LCD – the best performing new meta algorithm – LCE
is constantly inferior under all six NLANR traces, it is
almost as good under the trace UoA, and slightly better
under the trace NTUA. Its relative ranking, as compared
to the other meta algorithms improves under the various
traces, following the order uc, sv, bo, pb, sd, pa, UoA,
NTUA, and with increasing � . The behavior may be
attributed to two reasons: (1) LCE that occupies more
storage by storing copies everywhere is expected to be
performing better when a substantial percentage of the
requested documents fit in the hierarchy (i.e., with high
� � ratios); (2) as discussed earlier, LCE, improves with
the degree of non-stationarity as it catches up to the new
demand more quickly than the other algorithms that may
require multiple requests to bring a document to a leaf
cache. It appears that under a high availability of storage,
the gain that LCD achieves by filtering out one-timers
and reducing the amplification of replacement errors, is
surpassed by the cost paid for requiring multiple requests
to bring a document to a leaf cache. With regard to one-
timers, the relative performance of LCE/LCD seems to
depend on the ratio of (number of one-timers) to (total
number of requests), with LCD improving with higher
ratios. E.g., in the UoA trace this ratio is relatively small,
10% (see Table I), thus the gain from the filtering of one-
timers is rather limited and LCD performs nearly as good
as LCE.

� The Filter algorithm has a performance that is relatively
close to the best one in some cases (sv) but can also
deviate significantly (NTUA). It appears to be constantly
inferior to the best performing new one, LCD, across all
traces (except for the trace sv and small �).

Based on these observations it may be concluded that

7

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

av
er

ag
e

di
st

an
ce

 to
 h

it
(#

 h
op

s)

S (storage capacity)

uc

LCE
Prob
MCD
LCD
Filter

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

2.8

1000 2000 3000 4000 5000 6000 7000 8000 900010000

av
er

ag
e

di
st

an
ce

 to
 h

it
(#

 h
op

s)

S (storage capacity)

sv

LCE
Prob
MCD
LCD
Filter

2.1

2.2

2.3

2.4

2.5

2.6

2.7

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

av
er

ag
e

di
st

an
ce

 to
 h

it
(#

 h
op

s)

S (storage capacity)

bo

LCE
Prob
MCD
LCD
Filter

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

1000 2000 3000 4000 5000 6000 7000 8000 900010000

av
er

ag
e

di
st

an
ce

 to
 h

it
(#

 h
op

s)

S (storage capacity)

pb

LCE
Prob
MCD
LCD
Filter

1.9

2

2.1

2.2

2.3

2.4

2.5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

av
er

ag
e

di
st

an
ce

 to
 h

it
(#

 h
op

s)

S (storage capacity)

sd

LCE
Prob
MCD
LCD
Filter

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

1000 2000 3000 4000 5000 6000 7000 8000 900010000

av
er

ag
e

di
st

an
ce

 to
 h

it
(#

 h
op

s)

S (storage capacity)

pa

LCE
Prob
MCD
LCD
Filter

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1000 2000 3000 4000 5000 6000 7000 8000 900010000

av
er

ag
e

di
st

an
ce

 to
 h

it
(#

 h
op

s)

S (storage capacity)

UoA

LCE
Prob
MCD
LCD
Filter

1.95
2

2.05
2.1

2.15
2.2

2.25
2.3

2.35
2.4

2.45
2.5

1000 2000 3000 4000 5000 6000 7000 8000 900010000

av
er

ag
e

di
st

an
ce

 to
 h

it
(#

 h
op

s)

S (storage capacity)

NTUA

LCE
Prob
MCD
LCD
Filter

Fig. 6. The average hit distance under the various meta algorithms for the traces of Table I. The simulated topology is a regular hierarchy with
� ���

(levels) and �
��	

(node
degree).

LCD appears to be an attractive alternative over the currently
employed one LCE. As it has been discussed earlier the
implementation of LCD requires only minor modifications
over the current scheme. It also appears to be performing better
than Filter, despite the fact that is much simpler.

V. OTHER APPLICATIONS: STORED MUSIC AND VIDEO

OVER CONTENT DISTRIBUTION OR PEER-TO-PEER

NETWORKS

Although originally motivated by hierarchical web caching,
the presented meta algorithms have applications to CDN or
even P2P networks. Indeed, typical CDN nodes that cache
content according to the received request, employ replacement
algorithms to self organize [6]. Similarly, some recent research
into the evolution of P2P systems proposes P2P nodes that
lend storage capacity to the P2P community, allowing it to
operate under a replacement algorithm [25]. Although CDN
and P2P networks are flat structured, it is conceivable that
multi-hop search paths might be formed by forwarding misses
towards the direction of a node that is known to be holding
the requested document. Such multi-hop search paths on the
flat structured overlays are a lot similar to multi-hop branches
in hierarchical caches, like the ones studied here. LCD, MCD
or Probe could potentially be applied to these multi-hop paths
to move content more cautiously.

The presented meta algorithms become particularly relevant
when the CDN or P2P application is used for the transfer
of stored music files or video clips. A recent large scale
characterization of http traffic from Saroiu et al. [26] has
shown that more than 75% of internet traffic is generated by
P2P applications that employ the http protocol, such as KaZaa
and Gnutella. The median document size of these P2P systems
is 4MB which represents a thousand-fold increase over the
4KB median size of typical web documents. Furthermore, the
access to these documents is highly repetitive and skewed
towards the most popular ones thus making them highly
amenable to caching as demonstrated by the authors of [26].

Similar is the case with stored audio and video files dis-
tributed by either standard web servers or dedicated video
on demand (VoD) servers. Such document are usually short
videos (advertisements or news) and amount to around 1
MB [27]. Although a 1997 study [28] found that such traffic
represents a rather limited percentage of the total aggregate
traffic in the internet, the percentage was shown to have been
increased significantly by a follow-up measurement study just
a few years later [29]. This trend seems to have persisted, as
recent studies (2001) have shown that stored video and audio
files have by now become almost pervasive [27].

Handling such content in large quantities is challenging. The
thousand-fold increase in size as compared to html content,

8

may lead to the exhaustion of the storage capacity of a
cache or a CDN node, even under a low price of storage
that allows for the deployment of multi-gigabyte disks. This
situation resembles much the presented simulation scenarios
that assume that only a fraction of the requested content fits
in the cache. It is exactly in this storage-limited scenario that
the presented meta algorithms (most notably LCD) clearly
outperform the storage consuming LCE policy. Unfortunately,
a more realistic study of such applications is inhibited by the
unavailability of publicly released P2P and video workload
traces.

VI. LOAD BALANCING

Recently there has been some controversy regarding the
effectiveness of hierarchical caches [30], owing mainly to the
poor hit ratios observed at upper level caches and attributed
to the “filtering effect” [2] (also known as “trickle-down
effect” [31]). The filtering effect is a natural consequence
of the currently employed LCE algorithm. Under LCE the
most popular documents gather at the leaf caches, where they
filter the great majority of requests. Upper level caches store
much less popular documents and also some of the popular
ones which, however, receive only very few requests due to
the filtering of requests by lower level copies. To connect
with the observed low hit ratios, one must note that the hit
ratio depends strongly on the skewness of the demand. The
filtering effect transform a skewed Zipf-like demand into a
progressively uniform demand as progressing upwards in the
hierarchy [2]; this leads to poor hit ratios at upper levels.

From the perspective of the load that is imposed on each
cache, the filtering effect leads to the servicing (hits) of most
of the requests at the lower level caches, leaving upper level
caches severely underutilized. We count as load only the
requests that lead to a hit and disregard the relative smaller
load imposed from a miss.4 A nearby hit at a low level cache
is of course desirable since it is expected to yield a small
propagation delay thus avoiding accessing caches that are
further away in the hierarchy. This, however, does not always
lead to a small total delivery delay since the processing at a
low level cache (involves accessing a document from main
memory or disk and transmitting it) might take too long due
to the overloading of low level caches, as is the case with
the filtering effect. Performance studies of real web proxies
(including Squid, Harvest, CERN httpd) have shown that the
processing delay remains constant only under small to medium
load whereas it increases fast under high load as the system
approaches a thrashing state [32], [33], [34].

To address the filtering effect, and the imbalance in the
handling of load that stems from it, we present a simple load
balancing mechanism that is based on the idea of meta algo-
rithms and runs solely on local information. The fact that the
algorithm is fully distributed gives a significant advantage over
centralized algorithms that require the exchange of messages

4The processing imposed by a miss relates to the establishment of TCP connections
and the lookup for the requested document. The same work applies however to a hit
which, in addition, must retrieve the requested document from either the main memory
or the disk. The additional processing for accessing and streaming a document dominates
all other processing, especially for large documents.

(to report the current level of load, redirect requests, etc.).
The idea is to have each cache monitor its load and accept
new copies of documents only when this load is below a
predetermined threshold that marks the start of the overload
region. Not accepting a new document means that the requests
for this document will have to be serviced by an upper
level cache, thus, effectively allowing for some load to be
removed from the overutilized leaf caches and flow towards the
underutilized upper level caches. This simple mechanism does
not allow all popular documents to gather at the leaf caches.
Instead it requires that some of them be cached only at upper
level caches, thus, prohibiting the development of the filtering
effect. A cache starts caching new documents again as soon
as its load falls beneath the threshold. This can either happen
due to the stochastic nature of request arrival times or can be
a result of changing demand patterns. For example a cache
that reaches the threshold after having cached enough popular
documents will return below the threshold when its documents
cease to be popular (e.g., have expired or substituted by new
ones). Then the cache will start accepting new copies again.

The following experiments evaluate the effectiveness of the
load balancing mechanism using data traces. Although it may
be applied to all discussed meta algorithms, we have chosen
to present results that assume the LCE algorithm, as this is
the one currently employed in practice. We define the LCE-
LB algorithm as a variation of LCE that keeps copies at
all intermediate caches on the reverse path provided that a
cache has not reached its load threshold ��� . In an actual
implementation, the system load would be queried5 upon the
reception of a new document and a copy would be stored
only if this load didn’t exceed ��� . The exact selection of
��� depends on the architecture/implemetation of each proxy
server but can generally be identified (see the previously cited
works [32]-[34]).

In our simulation environment we let each cache estimate
its load by measuring the number of hits that have occurred
in the recent past. Specifically the load of cache � on the � th
time slot is estimated from the following linear recursive filter:
� � ����� ����� 	��
 � � ����� ��� � ��� ��� � ��� �
�������� , where �������
denotes the number of hits in the current time slot � . The
“gain” of the filter � determines the effect of previous hits on
the current load (i.e., accounts for hits that have occurred in
the past but are still under service); � � � � is used in the
following experiments.

A common load threshold is used for all caches. The
threshold is selected relatively to the total request rate from
all clients. Specifically, its value is set to: ���

�
� ����� � where

� is a parameter controlling the intensity of the desired load
balancing, and � is the number of caches in the hierarchy.
The definition of the threshold is justified as follows. The
maximum load that could be imposed on a single cache can
not exceed the sum of request rates from all clients, � � � � ;
this would happen if every request resulted in a hit and all
hits occurred at the root cache. Setting the threshold to

�
� ����

would require a perfect load balancing over this extreme

5In the UNIX operating system this could be easily done by using the ps
command.

9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1000 2000 3000 4000 5000 6000 7000 8000 900010000

av
er

ag
e

lo
ad

 p
er

 c
ac

he

S (storage capacity)

LCE no load balancing

1st level
2nd level
3rd level

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1000 2000 3000 4000 5000 6000 7000 8000 900010000

av
er

ag
e

lo
ad

 p
er

 c
ac

he

S (storage capacity)

LCE-LB k=1

1st level
2nd level
3rd level

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1000 2000 3000 4000 5000 6000 7000 8000 900010000

av
er

ag
e

lo
ad

 p
er

 c
ac

he

S (storage capacity)

LCE-LB k=2

1st level
2nd level
3rd level

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1000 2000 3000 4000 5000 6000 7000 8000 900010000

av
er

ag
e

lo
ad

 p
er

 c
ac

he

S (storage capacity)

LCE-LB k=4

1st level
2nd level
3rd level

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1000 2000 3000 4000 5000 6000 7000 8000 900010000

av
er

ag
e

lo
ad

 p
er

 c
ac

he

S (storage capacity)

LCE-LB k=8

1st level
2nd level
3rd level

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1000 2000 3000 4000 5000 6000 7000 8000 900010000

av
er

ag
e

lo
ad

 p
er

 c
ac

he

S (storage capacity)

LCE-LB k=16

1st level
2nd level
3rd level

Fig. 7. Average load per cache under the trace sd for the following cases: (1) LCE without load balancing; (2) LCE-LB with � ��� 	 � � � � � � � . The simulated topology is a
regular hierarchy with

� ���
(levels) and �

��	
(node degree).

scenario. Such a threshold, however, would be too loose for
more realistic cases because: (1) all requests do not lead to
hits (this would require too much storage); (2) hits occur in
all caches not only the root. Thus we further divide by � to
define more useful load thresholds.

Figure 7 shows the average load per level under the trace sd6

for the following cases: (1) LCE without load balancing; (2)
LCE-LB with � ���� � � � ��� ���	� . One may verify from the plots
that as � increases the load tends to be more evenly distributed
among different levels. Specifically, as compared to the LCE
algorithm that may assign to level-1 caches as much as four
times the load than is assigned to level-2 caches (for �
���������), the various LCE-LB examples limit the asymmetry
in the handling of load, achieving an almost even distribution
under � ��	� , where level-1 caches get no more that 15% extra
load as compared to level-2 caches. Notice that the distribution
of load under LCE-LB with � � is almost identical to the
one under LCE. This is due to the fact that the load constraint
under � � is too loose, almost equal to the maximum load
that is assigned under LCE; the load balancing mechanism
becomes effective for values of � larger than 2.

Figure 8 illustrates the effect of various degrees of load
balancing on the average hit distance. As it may be anticipated,
the average hit distance increases with the intensity of load
balancing (with larger �) as more requests get serviced by
caches upper in the hierarchy. The maximum performance
gap between the load unconstrained LCE and the most load
constrained LCE-LB with � ��	� is almost 10%. This means
that a 10% penalty in average hit distance (which translates to
an equally increased propagation delay) may yield an almost
even distribution of load among the different caches. In terms
of user perceived delay, the 10% increase in the propagation
delay may easily be outweighted by a substantially reduced

6Similar results were obtained under the other traces as well, but are not presented
due to space limitations.

1.9

2

2.1

2.2

2.3

2.4

2.5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

av
er

ag
e

di
st

an
ce

 to
 h

it
(#

 h
op

s)

S (storage capacity)

sd with LCE and LCE-LB

LCE-LB k=16
LCE-LB k=8
LCE-LB k=4
LCE-LB k=2
LCE-LB k=1

LCE

Fig. 8. Average hit distance under the trace sd for the following cases: (1) LCE
without load balancing; (2) LCE-LB with � ��� 	 � � � � � � � . The simulated topology
is a regular hierarchy with

� ���
(levels) and �

��	
(node degree).

processing delay as a result of accessing uncongested caches.
Thus, networks that may tolerate the 10% increase in network
traffic may achieve a reduced overall delay by employing
the load balancing mechanism. These results appear to be
consistent with our previous results pertaining to the tradeoff
between load balancing and hit distance, for the case of object
replication [20].

VII. CONCLUSIONS AND FUTURE WORK

This work has studied the performance of various meta
algorithms that are responsible for deciding whether a new
document will be accepted in a cache following a cache
miss. Three new meta algorithms have been proposed and
compared against the de facto one that always accepts copies
and a recently proposed one from the literature. The design
principles of the new algorithms as well as the presented
numerical results suggest that these algorithms may prove
useful in a variety of situations. In fact, the best performing
new meta algorithm, LCD, seems to be performing very
well under all studied scenarios. We are currently working
towards the development of appropriate analytical models for

10

the performance of the various meta algorithms. Hopefully,
such models will enhance the understanding of the new
algorithms gained from this experimental study and help in
identifying more clearly their performance under the numerous
parameters.

A second contribution of this work has been the description
and evaluation of a simple load balancing mechanism for hier-
archical caches that utilizes the concept of meta algorithms. It
has been shown that with only minor (local) modifications to
the currently employed caching strategy, it is possible to limit
the extent of the so called “filtering effect” that may overutilize
leaf caches while underutilizing higher level caches. The
concept of meta algorithms could have been used for other
interesting purposes as well. Different meta algorithms could
have been used to provide service differentiation to clients that
have different service agreements with a content distributor
(e.g., a CDN). One example would involve the use of Prob
with different parameters
 depending on the service level of
a client; large
 would be used to allow premium clients to
maintain multiple copies of their working sets as opposed to
non premium clients that would be offered a lower
 .

Finally, as the presented algorithms are generic in nature,
they might be employed for the distribution of content other
than the standard web content (html, images), such as large
stored audio and video files. In fact, it has been suggested that
the employed algorithms need not be confined to hierarchical
caching but could potentially extend to CDN or P2P networks.
When handling large content, the judicious filtering of one-
timer references and the reduction of amplification error
offered by the proposed meta algorithms might prove even
more important than in the case of web content as media files
may exhaust the storage capacity of even a large node. We
plan on investigating such issues in the future.

REFERENCES

[1] Hao Che, Ye Tung, and Zhijun Wang, “Hierarchical web caching
systems: Modeling, design and experimental results,” IEEE Journal
on Selected Areas in Communications, vol. 20, no. 7, Sept. 2002.

[2] Carey Williamson, “On filter effects in web caching hierarchies,” ACM
Transactions on Internet Technology, vol. 2, no. 1, Feb. 2002.

[3] The IRCache project, http://www.ircache.net/.
[4] The JANET web cache, http://wwwcache.ja.net/index.html.
[5] James H. Hester and Daniel S. Hirschberg, “Self-organizing linear

search,” ACM Computing Surveys, vol. 17, no. 3, pp. 295–311, Sept.
1985.

[6] Yan Chen, Lili Qiu, Weiyu Chen, Luan Nguyen, and Randy H. Katz,
“Efficient and adaptive web replication using content clustering,” IEEE
Journal on Selected Areas in Communications, vol. 21, no. 6, Aug. 2003.

[7] Madhukar R. Korupolu and Michael Dahlin, “Coordinated placement
and replacement for large-scale distributed caches,” in Proceedings of
the IEEE Workshop on Internet Applications, June 1999, pp. 62–71.

[8] Xueyan Tang and Samuel T. Chanson, “Coordinated en-route web
caching,” IEEE Transactions on Computers, vol. 51, no. 6, pp. 595–607,
June 2002.

[9] Konstantinos Psounis and Balaji Prabhakar, “Efficient randomized web-
cache replacement schemes using samples from past eviciton-times,”
IEEE/ACM Transactions on Networking, vol. 10, no. 4, pp. 441–454,
Aug. 2002.

[10] David Starobinski and David N. C. Tse, “Probabilistic methods for web
caching,” Performance Evaluation, vol. 46, no. 2-3, pp. 125–137, 2001.

[11] E. G. Coffman and P. J. Denning, Operating Systems Theory, Prentice-
Hall Inc., 1980.

[12] Daniel D. Sleator and Robert E. Tarjan, “Amortized efficiency of list
update and paging rules,” Communications of the ACM, vol. 28, no. 2,
pp. 202–208, 1985.

[13] A.V. Aho, P.J. Denning, and J.D. Ullman, “Principles of optimal page
replacement,” Journal of the ACM, vol. 18, no. 1, pp. 80–93, Jan. 1971.

[14] P.A. Franaszek and T.J. Wagner, “Some distribution-free aspects of
paging algorithm performance,” Journal of the ACM, vol. 21, no. 1, pp.
31–39, Jan. 1974.

[15] Anirban Mahanti, Carey Williamson, and Derek Eager, “Traffic analysis
of a web proxy caching hierarchy,” IEEE Network Magazine, vol. 14,
no. 3, pp. 16–23, May 2000.

[16] Anirban Mahanti, Derek Eager, and Carey Williamson, “Temporal
locality and its impact on web proxy cache performance,” Performance
Evaluation, vol. 42, pp. 187–203, 2000.

[17] Martin F. Arlitt and Carey Williamson, “Internet web servers: Workload
characterization and performance implications,” IEEE/ACM Transac-
tions on Networking, vol. 5, no. 5, pp. 631–645, Oct. 1997.

[18] Lee Breslau, Pei Cao, Li Fan, Graham Philips, and Scott Shenker, “Web
caching and Zipf-like distributions: Evidence and implications,” in
Proceedings of the Conference on Computer Communications (IEEE
Infocom), New York, Mar. 1999.

[19] Pablo Rodriguez, Christian Spanner, and Ernst W. Biersack, “Analysis
of web caching architectures: Hierarchical and distributed caching,”
IEEE/ACM Transactions on Networking, vol. 9, no. 4, Aug. 2001.

[20] Nikolaos Laoutaris, Vassilios Zissimopoulos, and Ioannis Stavrakakis,
“Storage capacity allocation algorithms for hierarchical content distri-
bution,” [submitted work].

[21] Hao Che, personal communication, April 2003.
[22] F. Douglis, A. Feldman, B. Krishnamurthy, and J.C. Mogul, “Rate of

change and other metrics: a live study of the world wide web,” in
Proceedings of the USENIX Symposium on Internet Technologies and
Systems, 1997.

[23] B.E. Brewington and G. Cybenko, “How dynamic is the web?,”
WWW9/Computer Networks, vol. 33, no. 1-6, pp. 257–276, 2000.

[24] Duane Wessels and K. Claffy, “ICP and the Squid web cache,” IEEE
Journal on Selected Areas in Communications, vol. 16, no. 3, Apr. 1998.

[25] Jussi Kangasharju, Keith W. Ross, and David A. Turner, “Optimal
content replication in P2P communities,” 2002, in submission.

[26] Stefan Saroiu, Krishna P. Gummadi, Richard J. Dunn, Steven D. Gribble,
and Henry M. Levy, “An analysis of internet content delivery systems,”
in Proceedings of the 5th Symposium on Operating Systems Design and
Implementation (OSDI 2002), Dec. 2002.

[27] Maureen Chesire, Alec Wolman, Geoffrey M. Voelker, and Henry M.
Levy, “Measurement and analysis of a streaming-media workload,” in
Proceedings of USITS, 2001.

[28] S. D. Gribble and E.A. Brewer, “System design issues for internet mid-
dleware service: Deductions from a large client trace,” in Proceedings
of the First USENIX Symposium on Internet Technologies and Systems,
Dec. 1999.

[29] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, M. Brown, T. Landray,
D. Pinnel, A. Karlin, and H. Levy, “Organization-based analysis of web-
object sharing and caching,” in Proceedings of the Second USENIX
Symposium on Internet Technologies and Systems, Oct. 1999.

[30] Sandra G. Dykes and Kay A. Robbins, “Limitations and benefits of co-
operative caching,” IEEE Journal on Selected Areas in Communications,
vol. 20, no. 7, Sept. 2002.

[31] R. Doyle, J. Chase, S. Gadde, and A. Vahdat, “The trickle-down effect:
Web caching and server request distribution,” in Proceedings of the 6th
Int. Workshop on Web Caching and Content Distribution, Boston, MA,
June 2001.

[32] Jussara Almeida and Pei Cao, “Measuring proxy performance with the
wisconsin proxy benchmark,” Computer Networks and ISDN Systems,
vol. 30, pp. 2179–2192, 1998.

[33] P. Barford and M. E. Crovella, “Measuring web performance in the
wide area,” Performance Evaluation Review, Aug. 1999.

[34] Alex Rousskov and Valery Soloviev, “A performance study of the Squid
proxy on http/1.0,” World Wide Web, vol. 2, no. 1, pp. 47–67, 1999.

