
Flexible, service-based content presentation: The

Hellenic Dissertations Presentation System

Christos KK Loverdos and Sarantos Kapidakis

National Documentation Centre,
National Hellenic Research Foundation,

48 Vas. Constantinou Avenue, 11635 Athens, GREECE,
{loverdos,sarantos}@ekt.gr

Abstract. We describe an architecture for the presentation of the dig-
ital content of the Hellenic Dissertations database, consisting of about
twelve thousand records and two million pages. Our architecture is based
on a flexible service registration and discovery mechanism, which can be
used to reconfigure the Presentation System even at runtime. Services
are responsible not only for presentation but also for various document
conversions, format transformations, authorization policies enforcement
and watermarking. The architecture encourages modular programming,
by allowing services to cooperate.

Keywords. service versioning, incremental development, dynamic re-
configuration, servlets

1 Introduction

For a complete handling of a dissertations digital database, work at four distinct
directions is required: 1) Submission, 2) Repository management, 3) Retrieval
and 4) Presentation. There are systems like DIENST [3] which try to implement
different aspects of the above directions. This work focuses on presentation. The
proposed architecture can handle the data organisation and other issues – such
as authorization – quite flexibly and transparently.

A dissertation may come in a variety of content types. Microsoft Word Doc-
ument, Postscript and PDF are probably the most widely used formats. Images
in TIFF or JPG format are also common. The National Documentation Centre
(NDC), for example, hosts about two million TIFF images representing distinct
dissertation physical pages. The situation with formats gets even more compli-
cated by the introduction of “bundles”: each chapter may be a DOC or HTML
document and all the chapters are packed into a tar.gz or zip file.

Also, a client may request the dissertation in a format not originally sub-
mitted. For example, we may have TIFF images, but they are not diplayable
by today’s most widely known Internet browsers. We need a mechanism to au-
tomatically transform to supported formats, such as JPG. Also, watermarking
may be desirable, in order to identify the origins of the distributed images and to
prevent untraceable distribution. This transformation property may be needed



for policy reasons: we may want not to distribute high resolution formats. In-
stead, lower quality formats can be freely given. Such policy enforcement has to
be taken into account.

Supporting new formats, making transformations and enforcing policies in a
flexible and as transparent a way as possible are our main concerns.

In Sec. 2 we describe the proposed architecture, in Sec. 3 we outline an
existing implementation based on state-of-the art web technologies and finally,
in Sec. 4, we conclude.

2 Architecture

2.1 Requests, services, attributes

Each Dissertation, which is our basic digital object, is uniquely identified by
its Hellenic Dissertations Identifier (HDID), typically a number assigned to the
dissertation during the process of its submission to NDC.

A request to the presentation system has the form of a pair which consists of
an HDID and a service description: Request = [HDID, Service]. A service is fur-
ther broken up into a service name and attributes: Service = [Name, Attributes].

Services started as characterizations of what to present, but turned out to
be a more general idea. For example, initially we supported services like:

– getPage: To support one page retrieval as an image.
– getContentsTable: To support the retrieval of the Table of Contents with

hyperlinks to the contents.

Soon though, we created more services to support:

– Authorization: Not everyone is allowed to retrieve the highest quality images.
– Content discovery: To cope with the different storage organisation schemes.

Attributes play the role of service customization data. For example, concerning
the getPage service, we need to supply the actual page number and that is the
role of the pageNumber attribute. An attribute is explicitly given by the client
or is implicitly given by the request as a whole – just like the HOST ADDRESS
and other “attributes” are silently passed to an HTTP server by the browser.
Alternatively, the system itself may change the set of attributes at will, in order
to fulfill certain needs.

An attribute name is unique for a particular service but a service name need
not be unique in the presentation system. This means that we can have two
services named getPage, but we cannot have two attributes named pageNumber
in any of these two services. We chose the capability of multiple versions of
the same service (this is actually what the same names represent), so as to
incrementally support new functionality.

The key idea behind the registration and discovery of a service is the set
of attributes it supports. More specifically, we distinguish between two kinds of



System Main Modules

Service Manager (SM )
Service Repository (SRp)
Service Collector/Distributor (SCD)

Service Manager Module

Service Registration (SRg)

Service Discovery (SD)

Fig. 1. System modules.

attributes: mandatory and optional. Both types are registered along with the
service name but only mandatory attributes are used to discover which service
will handle a particular request. The ordered tupple [L, m1, m2, ..., mN ], where
L is the service name and m1, m2, ..., mN are the names of the mandatory fields,
is used to uniquely identify a service version. This is how we support multiple
services with the same name and it also shows the way to evolve the functionality
of a service: by adding one or more mandatory fields.

Using the previously mentioned technique, it is very easy to experiment with
services. Using mandatory attributes to incrementally support new functionality,
makes it relatively easy to cope with changing requirements without changing
source code: all that is needed is to program a new version that may use the
previous one, if it fits the needs of a particular request. This is actually the initial
motivation behind the ideas presented here.

2.2 System modules

The several modules which are part of the system are shown in Fig. 1 and
analyzed further on.

Service Manager (SM) This module is responsible for the registration and
discovery of services. Each of these two functions is supported by a respective
submodule.

Service Repository (SRp) All registered services are stored here. An imple-
mentation is the one to specify the exact nature of the repository. The only
requirement imposed by our architecture is that it should support active
elements, that is pieces of code which can be activated/executed at will.

Service Collector/Distributor (SCD) This module is the entry and exit
point of our system, its interface to the outer world. The name Collec-
tor/Destributor has been chosen deliberately. Its role is to collect requests,
distribute them to the appropriate services, collect the replies and distribute
them back to the respective clients. Distribution, as used here, means that
- depending of course on the overall implementation - services may be dis-
tributed over the network and even replicated over the network. This way
we may gain performance and fault tolerance. Of course, since the entry and



Fig. 2. Servicing Logic.

exit point is unique, it should be as powerfull as possible, in order to han-
dle extensive request loads. Yet again, well established techniques for load
balancing can be used to increase performance.

We note that no particular (meta)data databases are considered part of the
system, since they can be conveniently abstracted by respective services.

2.3 Servicing Logic

In Fig. 2 we show the steps the system follows to fulfill a request:

Step 1 The client issues a request, which consists of the HDID and the desired
service description. The service description is its name and the mandatory
and a part or all of its optional attributes.

Step 2 The SCD module has received the request and broken it up into its
constituent parts. Those are delivered to the Service Discovery (SD) module
of the Service Manager. The responsibility of SD is to find a particular service
version with the given service name that can handle the request.

Step 3 The SD module uses its internal service tables to discover the most
appropriate service. The proposed and currently used algorithm for service
discovery is a “greedy“ one, which tries to find - among all the transmitted
attributes - as many mandatory ones as possible. The result is returned back
to the SCD module.

Step 4 The SCD module passes the actual request to the correct handler (ser-
vice), which is recalled from the Service Repository (SRp) and activated.

Steps 5, 6 The recalled handler services the request, probably using other ser-
vices for intermediat results. The (meta)data repositories, are queried for
the needed digital objects.

Step 7, 8 The SCD module receives the response and sends it back to the client.



3 Implementation

The aforementioned architecture has been implemented as a web application,
using an Apache Web Server [2] and the Java Servlets technology. We have
designed easily memorized URLs of the form http://thesis.{ndc,ekt}.gr/HDID
to uniquely identify a dissertation over the web.

Our SCD and SM modules and each service provided have been mapped
to servlets. Service attributes correspond to servlet parameters. Using the auto-
matic servlet reloading capabilities of the servlet engine used (Apache JServ [1]),
any change to a service is reflected to the runtime environment. Service regis-
tration is part of the application’s (re)configuration process, which is based on
configuration files. These are always processed when the application starts and
every time its administrator requests a reconfiguration. The Service Repository
is, in this implementation, the servlet engine and the Service Manager is backed
by an API, which cooperates with the servlet API.

Typical service requests take the form of URLs. For example, if
http://thesis.ndc.gr/1 is requested from a browser, it returns the dissertation
with HDID=1. For this particular example, there are JPG images available and
the user is given the opportunity to navigate through the whole set. If the dis-
sertation with HDID=8775 is requested, a hyperlink to the Table of Contents
is also given, which contains more hyperlinks to the actual page images. All the
JPG images are automatically watermarked by a “Watermarking” service. The
html version of the Table of Contents does not exist for all dissertations and is
automatically discovered by a respective “Get Table of Contents” service.

4 Conclusions and Future Work

The aforementioned architecture is based on an extensible service-supporting
mechanism. Easy reconfiguration and incremental development have been our
main concerns in designing it. These, in turn, provide for easy administration, a
shorter development cycle and flexibility in incorporating new requirements.

All the claims above have been proved in practice. The servlet-based im-
plementation, outlined in Section 3, is now serving a database of two million
dissertation pages. Services such as watermarking, automating image transfor-
mation and automatic generation of the Contents Table have been identified
as requirements during the lifetime of the system and have, quite easily and
succesfully, become a part of it with minimal effort.

Although the presentation of content has been our initial motivation, enforc-
ing access policies and supporting other operations (like full-text searching) are
in our immediate plans. The development up to this time shows us that the new
functionality can be incorporated by programming new services.

It is noted that our research emerged from the very demands of our job re-
sponsibilities. It is our belief though that it can be generalized to areas requiring
the presentation of digital content other than that of a Dissertions Database.



References

1. Apache JServ, http://java.apache.org/jserv/
2. Apache Software Foundation, http://www.apache.org
3. Carl Lagoze and Jim Davis, “DIENST: An Architecture for Distributed Document

Libraries”, Communications of the ACM, 38(4), April 1995, p. 47


