HotStuff: BFT Consensus in the Lens of Blockchain J

Stefanos Chaliasos

HotStuff: BFT Consensus in the Lens of Blockchain

Maofan Yin'?, Dahlia Malkhi?, Michael K. Reiter**, Guy Golan Gueta®, and Ittai Abraham®
!Cornell University, *VMware Research, *UNC-Chapel H

Abstract

We present HotStuff. a leader-based Byzantine Euullrtnluawtmphzutmn protocl for the partially synchranous
madel. Once netwark communication becomes synchronous, HotStuif enables a correct leader to drive the pro-
ool toconsens t the pase of et (v i) netvork dely-— property caled resposiencs—and with
omm ion complexity that is linear in the number of replicas. To our knowledge. HolStuff is the first par-
ity ;)mchrnnﬂ\ls BFT replcation potoca exibiing these combined properties. HotStuf s built around a novel
frameor FTIC af ather
known protocols (DLS, PBFT. Tendermint, Casper). and aurs. in & common framework.
Our deployment of HotStuff over 1 network with over 100 replicas achieves throughput and latency comparable
to that of BFT-SMakt, while enjoying
SMakt)

inear communication feotprint during leader failover (vs. cubic with BFT-

1 Introduction

‘a computing dure arbitrary fi e Byzantine) fail

of its companents while taking actions eritical to the system's aperation. In the context of state machine replication
(SMR) [35][47]. the system as a whole provides a replicated service whose state is mirrored across n deterministic
replicas. A BFT SMR protocol is used to ensure that nan-faulty replicas agree on an order of execution for client-
initiated service commands. despite the efforts of f Byzantine replicas. This, in turn, ensures that the ri— [non-faulty
replicas will run commands identically and 5o produce the same response for each command. As is common, we are
concerned here with the partially synchronous communication model [25], whereby a known bound A on message
transmission holds after some unknown global stabiifzation time (GST). In this model, n > 3 + L is required
the

for non-faulty replicas to agx:e on the same commands in the same order (e.g, [T2]) and progress can be ensured
deterministically only after G
Wh

SMR pmm\» were originally anzwell a typical target system size was n = 4 or n = 7, deployed
omalocal-area netwaork. However, the renewed int yzantine ght about by its applicat
that can laxger n._Tn contrast to permissiontess blockchains such

as the one that supports Bitcoin, for example, so-¢alled permissioned blockehains involve a fixed set of replicas that
collectively maintain an ordered ledger of commands ar, in other words, that support SMR_ Despite their permis-
sioned nature, numbers of replicas in the hundreds o even thousands are envisioned (e.g. Additionally.
their deployment to wide-area networks requires setting A to accommodate higher variability in communication
delays

What is HotStuff

Byzantine fault-tolerant (BFT) State machine replication (SMR) protocol for
the partially synchronous model.

What is HotStuff

Byzantine fault-tolerant (BFT) State machine replication (SMR) protocol for
the partially synchronous model.

» Byzantine Fault Tolerance (BFT): ability of a computing system to
endure arbitrary failures of its component while taking actions critical
to the system’s operation.

What is HotStuff

Byzantine fault-tolerant (BFT) State machine replication (SMR) protocol for
the partially synchronous model.

» Byzantine Fault Tolerance (BFT): ability of a computing system to
endure arbitrary failures of its component while taking actions critical
to the system’s operation.

> State Machine Replication (SMR): the system as a whole provides a
replicated service whose state is mirrored across n deterministic
replicas.

What is HotStuff

Byzantine fault-tolerant (BFT) State machine replication (SMR) protocol for
the partially synchronous model.

» Byzantine Fault Tolerance (BFT): ability of a computing system to
endure arbitrary failures of its component while taking actions critical
to the system’s operation.

> State Machine Replication (SMR): the system as a whole provides a

replicated service whose state is mirrored across n deterministic
replicas.

> Ensure that non-faulty replicas agree on an order of execution for
client-initiated service commands, despite the efforts of f Byzantine
replicas.

Synchrony — Asynchrony

» Asynchrony: adversary can delay messages by any finite amount.

Synchrony — Asynchrony

» Asynchrony: adversary can delay messages by any finite amount.

» Synchrony: adversary can delay messages by some known A

Synchrony — Asynchrony

» Asynchrony: adversary can delay messages by any finite amount.

» Synchrony: adversary can delay messages by some known A
» Partial Synchrony:

Synchrony — Asynchrony

» Asynchrony: adversary can delay messages by any finite amount.

» Synchrony: adversary can delay messages by some known A
» Partial Synchrony:
» adversary can delay messages by any finite amount

Synchrony — Asynchrony

» Asynchrony: adversary can delay messages by any finite amount.

» Synchrony: adversary can delay messages by some known A
» Partial Synchrony:

» adversary can delay messages by any finite amount
> until some unknown finite point in time called GST (Global Stabilization
Time)

Synchrony — Asynchrony

» Asynchrony: adversary can delay messages by any finite amount.

» Synchrony: adversary can delay messages by some known A

» Partial Synchrony:

>

>

adversary can delay messages by any finite amount

until some unknown finite point in time called GST (Global Stabilization
Time)

adversary can delay messages by some known A

Safety — Liveness

> Liveness: property is a guarantee that each component will eventually
decide on a value (this can be referred to as termination).

» Safety: property is a guarantee that different components will never
decide on different values (this can be referred to as agreement).

Scaling Consensus

Nakamoto Consensus

Minimised setup (Pow)
Worldwide, large scale

Finality in Minutes

7-15 TPS

Linear Communication
Liveness against adaptive (CR)

Safety depends in synchrony

Large energy consumption

HotStuff

PKI setup

LAN, 4 or 7

Sub-second finality

1000s TPS

Quadratic Communication
Weak liveness against DOS

Always Safe (partial synchrony)

Efficient energy consumption

Scaling Consensus

Nakamoto Consensus

HotStuff BFT SMR

Minimised setup (Pow)
Worldwide, large scale

Finality in Minutes

7-15 TPS

Linear Communication
Liveness against adaptive (CR)

Safety depends in synchrony

Large energy consumption

PoW, PoS or PKI

10s 100s 1000s

Sub-second finality

1000s TPS

Linear Communication

Always Live (partial synchrony)
Always Safe (partial synchrony)

Efficient energy consumption

PKI setup

LAN, 4 or 7

Sub-second finality

1000s TPS

Quadratic Communication
Weak liveness against DOS

Always Safe (partial synchrony)

Efficient energy consumption

HotStuff

PBFT (Scaling challenge)

> A stable leader can drive a consensus decision in two phases of

message exchanges.
> First phase guarantees proposal uniqueness through the formation of a

quorum certificate (QC) consisting of (n-f) votes.
» The second phase guarantees that the next leader can convince replicas

to vote for a safe proposal.

PBFT (Scaling challenge)

> A stable leader can drive a consensus decision in two phases of
message exchanges.
> First phase guarantees proposal uniqueness through the formation of a
quorum certificate (QC) consisting of (n-f) votes.
» The second phase guarantees that the next leader can convince replicas
to vote for a safe proposal.

» The algorithm for a new leader to collect information and propose it to
replicas, called a view-change is the epicenter of replication.

PBFT (Scaling challenge)

> A stable leader can drive a consensus decision in two phases of
message exchanges.

> First phase guarantees proposal uniqueness through the formation of a
quorum certificate (QC) consisting of (n-f) votes.

» The second phase guarantees that the next leader can convince replicas
to vote for a safe proposal.

» The algorithm for a new leader to collect information and propose it to
replicas, called a view-change is the epicenter of replication.

» View-change based on the two-phase paradigm is complicated,
bug-prone, not scalable.

PBFT (Scaling challenge)

> A stable leader can drive a consensus decision in two phases of
message exchanges.

> First phase guarantees proposal uniqueness through the formation of a
quorum certificate (QC) consisting of (n-f) votes.

» The second phase guarantees that the next leader can convince replicas
to vote for a safe proposal.

» The algorithm for a new leader to collect information and propose it to
replicas, called a view-change is the epicenter of replication.

» View-change based on the two-phase paradigm is complicated,
bug-prone, not scalable.

» Zyzzyva SOSP 07 Best paper award (Bug found in 2017)

PBFT (Scaling challenge)

> A stable leader can drive a consensus decision in two phases of
message exchanges.

> First phase guarantees proposal uniqueness through the formation of a
quorum certificate (QC) consisting of (n-f) votes.

» The second phase guarantees that the next leader can convince replicas
to vote for a safe proposal.

» The algorithm for a new leader to collect information and propose it to
replicas, called a view-change is the epicenter of replication.

» View-change based on the two-phase paradigm is complicated,
bug-prone, not scalable.

» Zyzzyva SOSP 07 Best paper award (Bug found in 2017)
» HotStuff propose a three phase protocol.

HotStuff Contributions

> Linear View Change

» Optimistic Responsiveness: After GST, any correct leader, once
designated, needs to wait just for the first n - f responses to guarantee
that it can create a proposal that will make progress.

Asynchronous BFT protocols (after GST)

Authenticator complexity

Protocol Correct leader Leader failure (view-change) f leader failures Responsiveness
DLS [25] O(n*) o(n*) o(n")

PBFT [20] O(n?) O(n®) O(fn) v

SBFT [30] O(n) O(n?) o(fn?) v
Tendermint [15] / Casper [17] O(n?) O(n?) O(fn?)

Tendermint’ / Casper’ O(n) O(n) O(fn)

HotStuff O(n) o(n) o(fn) v

! g can be bined using threshold sig though this optimization is not mentioned in their original works.

> Authenticator complexity is the sum, over all replicas, of the number of
authenticators received by replica i in the protocol to reach a
consensus decision after GST. An authenticator is either a partial
signature or a signature.

HotStuff Model

v

n fixed replicas; Adversary controls f replicas, n = 3f + 1.

» Byzantine faulty replicas coordinated by an adversary that learns
everything.

» Each view v has a single primary.

» Network communication is point-to-point, authenticated and
reliable

> one correct replica receives a message from another correct replica if and
only if the later sent that message

> broadcast: if correct replica sending the same point-to-point messages
to all replicas, including itself

> A node can have multiple roles.
» Partial synchrony model.

» Protocol guarantees progress if the system remains stable (messages
arrive within A time).

» Protocol guarantees safety always.

Basic HotStuff (1)

> Solves the SMR problem
» Deciding on a growing log of command requests by clients

> A client sent a command to all replicas, and waits for response from (f
+ 1) of them.

» The protocol works in a succession of views accompanied by an
incrising number.

» Each viewNumber has a unique dedicated leader known to all.

» Quorum Certificate (QC) is a collection of (n - f) votes over a leader
proposal, assosiated with a particular node and a view number.

Basic HotStuff (2)

> Protocol is described as an iterated view-by-view loop.

» Three phase protocol
» For simplicity, in the begin of each view v a primary broadcasts (sends)
a value x (high QC from replicas, client’s commands)

Force Primary to say just one thing: Safety (1)

> Primary <sends x, v> to all replicas

Force Primary to say just one thing: Safety (1)

> Primary <sends x, v> to all replicas

» Each replica responds <ack x, v> on the first message in view v from
the primary

Force Primary to say just one thing: Safety (1)

> Primary <sends x, v> to all replicas

» Each replica responds <ack x, v> on the first message in view v from
the primary

» Primary waits for (n - f) <ack x, v> and sends <lock x, v> containing (n -

f) ack signatures

Force Primary to say just one thing: Safety (1)

Primary <sends x, v> to all replicas

v

Each replica responds <ack x, v> on the first message in view v from

v

the primary

Primary waits for (n - f) <ack x, v> and sends <lock x, v> containing (n -
f) ack signatures

Replica accepts <lock x, v> if there are (n -f) valid ack signatures

v

v

Force Primary to say just one thing: Safety (1)

> Primary <sends x, v> to all replicas

» Each replica responds <ack x, v> on the first message in view v from
the primary

» Primary waits for (n - f) <ack x, v> and sends <lock x, v> containing (n -
f) ack signatures

> Replica accepts <lock x, v> if there are (n -f) valid ack signatures

» Claim: if honest replica locks on <x, v>, no honest replica locks on <x’,
V>

Force Primary to say just one thing: Safety (1)

> Primary <sends x, v> to all replicas

» Each replica responds <ack x, v> on the first message in view v from
the primary

» Primary waits for (n - f) <ack x, v> and sends <lock x, v> containing (n -
f) ack signatures

> Replica accepts <lock x, v> if there are (n -f) valid ack signatures

» Claim: if honest replica locks on <x, v>, no honest replica locks on <x’,
V>

> Proof: there are at least (n - 2f) honest for <ack x,v>, they block any
other (n - f > 2f) set

Force Primary to say just one thing: Safety (1)

4 nodes
3 correct
1 faulty

P

Force Primary to say just one thing: Safety (1)

4 nodes
3 correct
1 faulty

send

P

/\

@
O

Force Primary to say just one thing: Safety (1)

4 nodes
3 correct
1 faulty

send ack

o,
O,/'

P

/\

Force Primary to say just one thing: Safety (1)

4 nodes
3 correct
1 fault

Y
send ack lock

P

G
A

Force Primary to say just one thing: Safety (1)

4 nodes
3 correct
1 fault

Y
send ack lock

P

G
A

How to never forget a commitment (1)

Suppose malicious primary causes just one replica to commit to x

Must guarantee that newer primaries will never contradict and cause a
commit to x’

» Primary sends <lock x, v> to all replicas

HotStuff

How to never forget a commitment (1)

Suppose malicious primary causes just one replica to commit to x

Must guarantee that newer primaries will never contradict and cause a
commit to x’

» Primary sends <lock x, v> to all replicas

» Each replica responds <lock ack x,v> on the first message in view v
from the primary

HotStuff

How to never forget a commitment (1)

Suppose malicious primary causes just one replica to commit to x
Must guarantee that newer primaries will never contradict and cause a
commit to x’

» Primary sends <lock x, v> to all replicas

» Each replica responds <lock ack x,v> on the first message in view v
from the primary

» Primary waits for (n - f) <lock ack x,v> and sends <commit x,v>
containing (n - f) lock signatures

How to never forget a commitment (1)

Suppose malicious primary causes just one replica to commit to x
Must guarantee that newer primaries will never contradict and cause a
commit to x’

» Primary sends <lock x, v> to all replicas

v

Each replica responds <lock ack x,v> on the first message in view v
from the primary

» Primary waits for (n - f) <lock ack x,v> and sends <commit x,v>
containing (n - f) lock signatures

v

Replica commits to <x,v> if there are (n - f) valid lock signatures

How to never forget a commitment (1)

Suppose malicious primary causes just one replica to commit to x
Must guarantee that newer primaries will never contradict and cause a

commit to x’

»

>

Primary sends <lock x, v> to all replicas

Each replica responds <lock ack x,v> on the first message in view v
from the primary

Primary waits for (n - f) <lock ack x,v> and sends <commit x,v>
containing (n - f) lock signatures

Replica commits to <x,v> if there are (n - f) valid lock signatures

Commit rule: guarentees that there is enough people locked in the
value of a commit

How to never forget a commitment (1)

Suppose malicious primary causes just one replica to commit to x
Must guarantee that newer primaries will never contradict and cause a
commit to x’

» Primary sends <lock x, v> to all replicas

» Each replica responds <lock ack x,v> on the first message in view v
from the primary

» Primary waits for (n - f) <lock ack x,v> and sends <commit x,v>
containing (n - f) lock signatures

» Replica commits to <x,v> if there are (n - f) valid lock signatures

» Commit rule: guarentees that there is enough people locked in the
value of a commit

> Safe leader replacement

How to never forget a commitment (2)

4 nodes
3 correct
1 fault

Yy
send ack lock

P

4
A

How to never forget a commitment (2)

4 nodes
3 correct
1 faulty

How to never forget a commitment (2)

4 nodes
3 correct
1 faulty

ack lock

commit

How to never forget a commitment (2)

4 nodes
3 correct
1 faulty

send lock ack lock commit

.\s .\A
P " W

» When a new Primary comes, it will check if other values are locked,
and it will verify that the commited value is the same with the locked
values from (n - f) nodes.

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
> Replica may be locked on <x’,v’>

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
> Replica may be locked on <x’,v’>

» Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack
x’,v’> signatures

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
> Replica may be locked on <x’,v’>
» Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack

x’,v’> signatures
» How can the primary of view v > v’ convice a locked replica that <x’,v’>

was hot committed?

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind

> Replica may be locked on <x’,v’>

>

Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack

x’,v’> signatures
How can the primary of view v > v’ convice a locked replica that <x’,v’>

was not committed?
For a locked replica on <x’,v’> to change its mind, Primary must:

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind

> Replica may be locked on <x’,v’>

>

Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack

x’,v’> signatures
How can the primary of view v > v’ convice a locked replica that <x’,v’>

was not committed?
For a locked replica on <x’,v’> to change its mind, Primary must:

> Show a lock of a higher view v” > v’

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind

> Replica may be locked on <x’,v’>

>

Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack
x’,v’> signatures
How can the primary of view v > v’ convice a locked replica that <x’,v’>

was not committed?
For a locked replica on <x’,v’> to change its mind, Primary must:

> Show a lock of a higher view v” > v’
> Use the same value x’

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
> Replica may be locked on <x’,v’>
» Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack

x’,v’> signatures

» How can the primary of view v > v’ convice a locked replica that <x’,v’>
was not committed?

> For a locked replica on <x’,v’> to change its mind, Primary must:

> Show a lock of a higher view v” > v
> Use the same value x’
> Otherwite the replica ignores Primary

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
> Replica may be locked on <x’,v’>
» Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack

x’,v’> signatures
» How can the primary of view v > v’ convice a locked replica that <x’,v’>

was not committed?
> For a locked replica on <x’,v’> to change its mind, Primary must:

> Show a lock of a higher view v” > v
> Use the same value x’
> Otherwite the replica ignores Primary

» New Primary can:

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
> Replica may be locked on <x’,v’>
» Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack

x’,v’> signatures
» How can the primary of view v > v’ convice a locked replica that <x’,v’>

was not committed?
> For a locked replica on <x’,v’> to change its mind, Primary must:

> Show a lock of a higher view v” > v
> Use the same value x’
> Otherwite the replica ignores Primary

» New Primary can:
» <send x,v>

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
> Replica may be locked on <x’,v’>
» Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack

x’,v’> signatures
» How can the primary of view v > v’ convice a locked replica that <x’,v’>

was not committed?
> For a locked replica on <x’,v’> to change its mind, Primary must:

> Show a lock of a higher view v” > v
> Use the same value x’
> Otherwite the replica ignores Primary

» New Primary can:

» <send x,v>
> Will be accepted only if no replica is locked

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind

> Replica may be locked on <x’,v’>
» Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack

x’,v’> signatures
» How can the primary of view v > v’ convice a locked replica that <x’,v’>

was not committed?
> For a locked replica on <x’,v’> to change its mind, Primary must:

> Show a lock of a higher view v” > v
> Use the same value x’
> Otherwite the replica ignores Primary

» New Primary can:

» <send x,v>
> Will be accepted only if no replica is locked
» <send y,v, lock y,w> where <lock y,w> is a valid lock (contains n - f ack

signatures)

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind

> Replica may be locked on <x’,v’>
» Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack

x’,v’> signatures
» How can the primary of view v > v’ convice a locked replica that <x’,v’>

was not committed?
> For a locked replica on <x’,v’> to change its mind, Primary must:

> Show a lock of a higher view v” > v
> Use the same value x’
> Otherwite the replica ignores Primary

» New Primary can:

» <send x,v>
> Will be accepted only if no replica is locked
» <send y,v, lock y,w> where <lock y,w> is a valid lock (contains n - f ack

signatures)
> Will be accepted by any replica only if it is locked on value y, or locked on a view v’

< w

How to replace a primary: Liveness (1)

» Each replica sends their lock to the primary

How to replace a primary: Liveness (1)

» Each replica sends their lock to the primary

> Primary uses the lock of the highest view, or <send x,v> if there is no
lock

How to replace a primary: Liveness (1)

» Each replica sends their lock to the primary

> Primary uses the lock of the highest view, or <send x,v> if there is no
lock

> Live if you hear from all non-faulty

How to replace a primary: Liveness (1)

v

Each replica sends their lock to the primary

\4

Primary uses the lock of the highest view, or <send x,v> if there is no
lock

Live if you hear from all non-faulty

v

v

In theory, in the partial synchrony model: requires to wait A

How to replace a primary: Liveness (1)

v

Each replica sends their lock to the primary

\4

Primary uses the lock of the highest view, or <send x,v> if there is no
lock

Live if you hear from all non-faulty

v

v

In theory, in the partial synchrony model: requires to wait A
> Liveness attack requires a malicious and sophisticated attacker

How to replace a primary: Liveness (2)

4 nodes
3 correct

1 faulty
send ack lock T~ Waish
@
/ Te-a :.&

How to replace a primary: Liveness (3) — Hidden lock

4 nodes
3 correct

1 faulty
send ack yo
@

20

How to replace a primary: Liveness (4)

» Each replica sends their lock to the primary

» Primary uses the lock of the highest view, or <send x,v> if there is no

lock
> Live if you hear from all non-faulty

» In theory, in the partial synchrony model: requires to wait A
> Liveness attack requires a malicious and sophisticated attacker

» HotStuff removes this requirement by using one more round

How to replace a primary: Liveness (4)

» Each replica sends their lock to the primary
» Primary uses the lock of the highest view, or <send x,v> if there is no
lock
> Live if you hear from all non-faulty
» In theory, in the partial synchrony model: requires to wait A
> Liveness attack requires a malicious and sophisticated attacker

» HotStuff removes this requirement by using one more round

» Removes the ‘hidden lock’ problem, by making sure a key =
‘lock-precursor’ is always visible

How to replace a primary: Liveness (4)

» Each replica sends their lock to the primary

» Primary uses the lock of the highest view, or <send x,v> if there is no
lock
> Live if you hear from all non-faulty
» In theory, in the partial synchrony model: requires to wait A
> Liveness attack requires a malicious and sophisticated attacker

» HotStuff removes this requirement by using one more round

» Removes the ‘hidden lock’ problem, by making sure a key =
‘lock-precursor’ is always visible
» Important when the gap between A and the actual delay § « A is large

21

How to replace a primary: Liveness (4)

» Each replica sends their lock to the primary

» Primary uses the lock of the highest view, or <send x,v> if there is no

lock
> Live if you hear from all non-faulty

» In theory, in the partial synchrony model: requires to wait A
> Liveness attack requires a malicious and sophisticated attacker

» HotStuff removes this requirement by using one more round

» Removes the ‘hidden lock’ problem, by making sure a key =
‘lock-precursor’ is always visible

» Important when the gap between A and the actual delay § « A is large

» Optimistic responsiveness: protocol makes progress at the speed of §
« A when Primaries are honest

Force Primary to say just one thing: Safety (1)

4 nodes
3 correct

1 faulty

@
PP

/\

§

Force Primary to say just one thing: Safety (1)

4 nodes
3 correct
1 fault;

Y
send ack key

P, P

A

<

22

Force Primary to say just one thing: Safety (1)

4 nodes
3 correct
1 faulty
send ack key key ack
s

P. P.

¢

<

22

Force Primary to say just one thing: Safety (1)

4 nodes
3 correct
1 faulty
send ack key key ack lock

P P.

<sf:f
¢
A

22

Force Primary to say just one thing: Safety (1)

4 nodes
3 correct

P.

@BP‘@P‘

1 faulty
W key key ack yo\ ~

22

Force Primary to say just one thing: Safety (1)

4 nodes
3 correct

1 faulty
send ack key key ack lock ~

» Guarantee that Primary 2 will receive a key from honest nodes to
convice the ‘hidden lock’ node.

22

Complete Protocol

4 nodes
3 correct execute commands

PE P P P~
V W Y \‘8~

Prepare Phase Pre-Commit Phase Commit Phase Decide

23

Chained HotStuff

» Improve Basic HotStuff protocol utility while at the same time
considerable simplifying it.

> Basic idea: change view on every PREPARE phase, so each proposal has
its own view.

> Reduces the number of messages and allows for pipelining of decisions.

24

Implementation

» ~4000 LOC C++.

» Simplify the code by extracting liveness mechanism from the HotStuff
mechanism into a module named Pacemaker.

» Pacemaker is a mechanism that guarantees progress after GST.

25

Evaluation

» Compare HotStuff with state-of-the art (BFT-SMaRt)

» Amazon EC2 16 CPU per instance (one replica per instance)

26

Base Performance

40
—&— BS-b10e (0] —&— BS-p@
—A— BS-b400 Ol 30 1 & —#— BS-p128
- BS-b80O | T @ - BS-p1024
—_ 30 7 _o- mso-nra * — b ? T \1 -6 Hs2-pa
E —#— HS2-b400 P E | —#— Hs2-pi28
~ HS2-b888 f ‘ = 20 i | I HS2-p1024
% 20 | -7 Hs3-biee e g T [T HS3-po
g o HS3-b4on PaE g @ \ & Hs3-p128
= Hs3-baee 4\ = ., n HS3-ple24
= D i = |
10 + of o d (o
i C—
0 T T T T T T T U T T T T T T T
10 60 110 160 210 260 310 10 60 110 160 210 260 310
Throughput (Kops/sec) Throughput (Kops/sec)
Figure 4: Throughput vs. latency with different choices Figure 5: Throughput vs. latency with different choices
of batch size, 4 replicas, 0/0 payload. of payload size, 4 replicas, batch size of 400.

» HotStuff achieves comparable latency performance to BFT-SMaRt, and
its maximum throughput outperformes BFT-SMaRt.

Scalability (1)

§ 300 1 g —B— BFT-SMaRt —B— BFT-SMaRt
& 250 ~~ HOLStuff-25 —~ 30 - ~@— Hotstuff-2s
E‘ 200 —&— HotStuff-35 E —&— HotStuff-35
= = 4
2 150 & 20
a 5}
5 100 + =
=i i
2 50 10
< &
[R o | T T T T T T T
48 16 32 64 128 48 16 32 64 128
Number of Nodes (n) Number of Nodes (n)
(a) Throughput (b) Latency

Figure 6: Scalability with 0/0 payload, batch size of 400.

> Better throughput than BFT-SMaRt, while latency still comparible.

Scalability (2)

Throughput (Kops/sec)

200 1

100 A

i~ BFT-SMaRt-p128
—f— BFT-SMaRt-p1024
—b— HotStuff-25-p128
~§— HotStuff-25-p1824
#— HotStuff-35-p128
HoLSUFF-35-p1024

BFT-SMaRE-p128
— BFT-SHaRL-p1024
L~ HotStuff-25-p128

-
—

100

~§— HotStuff-25-p1024
+

5=

HotStuff-35-p128

50 HotStuff-3s-p1024

Latency (ms)

T T T T
48 16 32 64 128
Number of Nodes (n)

(a) Throughput

Number of Nodes (n)

(b) Latency

Figure 7: Scalability for 128/128 payload or 1024/1024 payload, with batch size of 400.

> Due to its quadratic bandwidth cost, the throughput of BFT-SMaRt
scales worse than HotStuff for reasonably large (1024-byte) payload
size.

HotStuff

29

View Change

x10° x10*
—B— BFT-SHaRC-HAC —A— BFT-SHaRt-Sig
67 — a=31n® — a=42n?
_ i
= =
< <
£ 41 £
= =
32 3
B B
& &
g g
£ 24 £
5 5
< <
04
T T T T T T T T
48 16 32 64 128 48 16 32 64 128
Number of Replicas (n) Number of Replicas (n)
(a) MACs (b) Signatures

Figure 10: Number of extra authenticators used for each BFT-SMaRt view change.

» HotStuff has no ‘extra’ cost for leader changes by definition.

