
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

HotStuff: BFT Consensus in the Lens of Blockchain

Stefanos Chaliasos

HotStuff 1



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

HotStuff 2



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

What is HotStuff

Byzantine fault-tolerant (BFT) State machine replication (SMR) protocol for
the partially synchronous model.

▶ Byzantine Fault Tolerance (BFT): ability of a computing system to
endure arbitrary failures of its component while taking actions critical
to the system’s operation.

▶ State Machine Replication (SMR): the system as a whole provides a
replicated service whose state is mirrored across n deterministic
replicas.

▶ Ensure that non-faulty replicas agree on an order of execution for
client-initiated service commands, despite the efforts of f Byzantine
replicas.

HotStuff 3



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

What is HotStuff

Byzantine fault-tolerant (BFT) State machine replication (SMR) protocol for
the partially synchronous model.

▶ Byzantine Fault Tolerance (BFT): ability of a computing system to
endure arbitrary failures of its component while taking actions critical
to the system’s operation.

▶ State Machine Replication (SMR): the system as a whole provides a
replicated service whose state is mirrored across n deterministic
replicas.

▶ Ensure that non-faulty replicas agree on an order of execution for
client-initiated service commands, despite the efforts of f Byzantine
replicas.

HotStuff 3



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

What is HotStuff

Byzantine fault-tolerant (BFT) State machine replication (SMR) protocol for
the partially synchronous model.

▶ Byzantine Fault Tolerance (BFT): ability of a computing system to
endure arbitrary failures of its component while taking actions critical
to the system’s operation.

▶ State Machine Replication (SMR): the system as a whole provides a
replicated service whose state is mirrored across n deterministic
replicas.

▶ Ensure that non-faulty replicas agree on an order of execution for
client-initiated service commands, despite the efforts of f Byzantine
replicas.

HotStuff 3



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

What is HotStuff

Byzantine fault-tolerant (BFT) State machine replication (SMR) protocol for
the partially synchronous model.

▶ Byzantine Fault Tolerance (BFT): ability of a computing system to
endure arbitrary failures of its component while taking actions critical
to the system’s operation.

▶ State Machine Replication (SMR): the system as a whole provides a
replicated service whose state is mirrored across n deterministic
replicas.

▶ Ensure that non-faulty replicas agree on an order of execution for
client-initiated service commands, despite the efforts of f Byzantine
replicas.

HotStuff 3



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Synchrony – Asynchrony

▶ Asynchrony: adversary can delay messages by any finite amount.

▶ Synchrony: adversary can delay messages by some known ∆

▶ Partial Synchrony:

▶ adversary can delay messages by any finite amount
▶ until some unknown finite point in time called GST (Global Stabilization

Time)
▶ adversary can delay messages by some known ∆

HotStuff 4



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Synchrony – Asynchrony

▶ Asynchrony: adversary can delay messages by any finite amount.
▶ Synchrony: adversary can delay messages by some known ∆

▶ Partial Synchrony:

▶ adversary can delay messages by any finite amount
▶ until some unknown finite point in time called GST (Global Stabilization

Time)
▶ adversary can delay messages by some known ∆

HotStuff 4



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Synchrony – Asynchrony

▶ Asynchrony: adversary can delay messages by any finite amount.
▶ Synchrony: adversary can delay messages by some known ∆

▶ Partial Synchrony:

▶ adversary can delay messages by any finite amount
▶ until some unknown finite point in time called GST (Global Stabilization

Time)
▶ adversary can delay messages by some known ∆

HotStuff 4



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Synchrony – Asynchrony

▶ Asynchrony: adversary can delay messages by any finite amount.
▶ Synchrony: adversary can delay messages by some known ∆

▶ Partial Synchrony:
▶ adversary can delay messages by any finite amount

▶ until some unknown finite point in time called GST (Global Stabilization
Time)

▶ adversary can delay messages by some known ∆

HotStuff 4



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Synchrony – Asynchrony

▶ Asynchrony: adversary can delay messages by any finite amount.
▶ Synchrony: adversary can delay messages by some known ∆

▶ Partial Synchrony:
▶ adversary can delay messages by any finite amount
▶ until some unknown finite point in time called GST (Global Stabilization

Time)

▶ adversary can delay messages by some known ∆

HotStuff 4



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Synchrony – Asynchrony

▶ Asynchrony: adversary can delay messages by any finite amount.
▶ Synchrony: adversary can delay messages by some known ∆

▶ Partial Synchrony:
▶ adversary can delay messages by any finite amount
▶ until some unknown finite point in time called GST (Global Stabilization

Time)
▶ adversary can delay messages by some known ∆

HotStuff 4



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Safety – Liveness

▶ Liveness: property is a guarantee that each component will eventually
decide on a value (this can be referred to as termination).

▶ Safety: property is a guarantee that different components will never
decide on different values (this can be referred to as agreement).

HotStuff 5



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Scaling Consensus

HotStuff 6



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Scaling Consensus

HotStuff 6



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

PBFT (Scaling challenge)

▶ A stable leader can drive a consensus decision in two phases of
message exchanges.

▶ First phase guarantees proposal uniqueness through the formation of a
quorum certificate (QC) consisting of (n−f) votes.

▶ The second phase guarantees that the next leader can convince replicas
to vote for a safe proposal.

▶ The algorithm for a new leader to collect information and propose it to
replicas, called a view-change is the epicenter of replication.

▶ View-change based on the two-phase paradigm is complicated,
bug-prone, not scalable.

▶ Zyzzyva SOSP 07 Best paper award (Bug found in 2017)
▶ HotStuff propose a three phase protocol.

HotStuff 7



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

PBFT (Scaling challenge)

▶ A stable leader can drive a consensus decision in two phases of
message exchanges.

▶ First phase guarantees proposal uniqueness through the formation of a
quorum certificate (QC) consisting of (n−f) votes.

▶ The second phase guarantees that the next leader can convince replicas
to vote for a safe proposal.

▶ The algorithm for a new leader to collect information and propose it to
replicas, called a view-change is the epicenter of replication.

▶ View-change based on the two-phase paradigm is complicated,
bug-prone, not scalable.

▶ Zyzzyva SOSP 07 Best paper award (Bug found in 2017)
▶ HotStuff propose a three phase protocol.

HotStuff 7



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

PBFT (Scaling challenge)

▶ A stable leader can drive a consensus decision in two phases of
message exchanges.

▶ First phase guarantees proposal uniqueness through the formation of a
quorum certificate (QC) consisting of (n−f) votes.

▶ The second phase guarantees that the next leader can convince replicas
to vote for a safe proposal.

▶ The algorithm for a new leader to collect information and propose it to
replicas, called a view-change is the epicenter of replication.

▶ View-change based on the two-phase paradigm is complicated,
bug-prone, not scalable.

▶ Zyzzyva SOSP 07 Best paper award (Bug found in 2017)
▶ HotStuff propose a three phase protocol.

HotStuff 7



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

PBFT (Scaling challenge)

▶ A stable leader can drive a consensus decision in two phases of
message exchanges.

▶ First phase guarantees proposal uniqueness through the formation of a
quorum certificate (QC) consisting of (n−f) votes.

▶ The second phase guarantees that the next leader can convince replicas
to vote for a safe proposal.

▶ The algorithm for a new leader to collect information and propose it to
replicas, called a view-change is the epicenter of replication.

▶ View-change based on the two-phase paradigm is complicated,
bug-prone, not scalable.

▶ Zyzzyva SOSP 07 Best paper award (Bug found in 2017)

▶ HotStuff propose a three phase protocol.

HotStuff 7



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

PBFT (Scaling challenge)

▶ A stable leader can drive a consensus decision in two phases of
message exchanges.

▶ First phase guarantees proposal uniqueness through the formation of a
quorum certificate (QC) consisting of (n−f) votes.

▶ The second phase guarantees that the next leader can convince replicas
to vote for a safe proposal.

▶ The algorithm for a new leader to collect information and propose it to
replicas, called a view-change is the epicenter of replication.

▶ View-change based on the two-phase paradigm is complicated,
bug-prone, not scalable.

▶ Zyzzyva SOSP 07 Best paper award (Bug found in 2017)
▶ HotStuff propose a three phase protocol.

HotStuff 7



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

HotStuff Contributions

▶ Linear View Change
▶ Optimistic Responsiveness: After GST, any correct leader, once

designated, needs to wait just for the first n − f responses to guarantee
that it can create a proposal that will make progress.

HotStuff 8



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Asynchronous BFT protocols (after GST)

▶ Authenticator complexity is the sum, over all replicas, of the number of
authenticators received by replica i in the protocol to reach a
consensus decision after GST. An authenticator is either a partial
signature or a signature.

HotStuff 9



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

HotStuff Model

▶ n fixed replicas; Adversary controls f replicas, n = 3f + 1.
▶ Byzantine faulty replicas coordinated by an adversary that learns

everything.
▶ Each view v has a single primary.
▶ Network communication is point-to-point, authenticated and

reliable
▶ one correct replica receives a message from another correct replica if and

only if the later sent that message
▶ broadcast: if correct replica sending the same point-to-point messages

to all replicas, including itself

▶ A node can have multiple roles.
▶ Partial synchrony model.
▶ Protocol guarantees progress if the system remains stable (messages

arrive within ∆ time).
▶ Protocol guarantees safety always.

HotStuff 10



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Basic HotStuff (1)

▶ Solves the SMR problem
▶ Deciding on a growing log of command requests by clients
▶ A client sent a command to all replicas, and waits for response from (f

+ 1) of them.
▶ The protocol works in a succession of views accompanied by an

incrising number.
▶ Each viewNumber has a unique dedicated leader known to all.
▶ Quorum Certificate (QC) is a collection of (n - f) votes over a leader

proposal, assosiated with a particular node and a view number.

HotStuff 11



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Basic HotStuff (2)

▶ Protocol is described as an iterated view-by-view loop.
▶ Three phase protocol
▶ For simplicity, in the begin of each view v a primary broadcasts (sends)

a value x (high QC from replicas, client’s commands)

HotStuff 12



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Force Primary to say just one thing: Safety (1)

▶ Primary <sends x, v> to all replicas

▶ Each replica responds <ack x, v> on the first message in view v from
the primary

▶ Primary waits for (n - f) <ack x, v> and sends <lock x, v> containing (n -
f) ack signatures

▶ Replica accepts <lock x, v> if there are (n -f) valid ack signatures
▶ Claim: if honest replica locks on <x, v>, no honest replica locks on <x’,

v>
▶ Proof: there are at least (n - 2f) honest for <ack x,v>, they block any

other (n - f > 2f) set

HotStuff 13



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Force Primary to say just one thing: Safety (1)

▶ Primary <sends x, v> to all replicas
▶ Each replica responds <ack x, v> on the first message in view v from

the primary

▶ Primary waits for (n - f) <ack x, v> and sends <lock x, v> containing (n -
f) ack signatures

▶ Replica accepts <lock x, v> if there are (n -f) valid ack signatures
▶ Claim: if honest replica locks on <x, v>, no honest replica locks on <x’,

v>
▶ Proof: there are at least (n - 2f) honest for <ack x,v>, they block any

other (n - f > 2f) set

HotStuff 13



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Force Primary to say just one thing: Safety (1)

▶ Primary <sends x, v> to all replicas
▶ Each replica responds <ack x, v> on the first message in view v from

the primary
▶ Primary waits for (n - f) <ack x, v> and sends <lock x, v> containing (n -

f) ack signatures

▶ Replica accepts <lock x, v> if there are (n -f) valid ack signatures
▶ Claim: if honest replica locks on <x, v>, no honest replica locks on <x’,

v>
▶ Proof: there are at least (n - 2f) honest for <ack x,v>, they block any

other (n - f > 2f) set

HotStuff 13



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Force Primary to say just one thing: Safety (1)

▶ Primary <sends x, v> to all replicas
▶ Each replica responds <ack x, v> on the first message in view v from

the primary
▶ Primary waits for (n - f) <ack x, v> and sends <lock x, v> containing (n -

f) ack signatures
▶ Replica accepts <lock x, v> if there are (n -f) valid ack signatures

▶ Claim: if honest replica locks on <x, v>, no honest replica locks on <x’,
v>

▶ Proof: there are at least (n - 2f) honest for <ack x,v>, they block any
other (n - f > 2f) set

HotStuff 13



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Force Primary to say just one thing: Safety (1)

▶ Primary <sends x, v> to all replicas
▶ Each replica responds <ack x, v> on the first message in view v from

the primary
▶ Primary waits for (n - f) <ack x, v> and sends <lock x, v> containing (n -

f) ack signatures
▶ Replica accepts <lock x, v> if there are (n -f) valid ack signatures
▶ Claim: if honest replica locks on <x, v>, no honest replica locks on <x’,

v>

▶ Proof: there are at least (n - 2f) honest for <ack x,v>, they block any
other (n - f > 2f) set

HotStuff 13



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Force Primary to say just one thing: Safety (1)

▶ Primary <sends x, v> to all replicas
▶ Each replica responds <ack x, v> on the first message in view v from

the primary
▶ Primary waits for (n - f) <ack x, v> and sends <lock x, v> containing (n -

f) ack signatures
▶ Replica accepts <lock x, v> if there are (n -f) valid ack signatures
▶ Claim: if honest replica locks on <x, v>, no honest replica locks on <x’,

v>
▶ Proof: there are at least (n - 2f) honest for <ack x,v>, they block any

other (n - f > 2f) set

HotStuff 13



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Force Primary to say just one thing: Safety (1)

HotStuff 14



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Force Primary to say just one thing: Safety (1)

HotStuff 14



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Force Primary to say just one thing: Safety (1)

HotStuff 14



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Force Primary to say just one thing: Safety (1)

HotStuff 14



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Force Primary to say just one thing: Safety (1)

HotStuff 14



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to never forget a commitment (1)

Suppose malicious primary causes just one replica to commit to x
Must guarantee that newer primaries will never contradict and cause a
commit to x’

▶ Primary sends <lock x, v> to all replicas

▶ Each replica responds <lock ack x,v> on the first message in view v
from the primary

▶ Primary waits for (n - f) <lock ack x,v> and sends <commit x,v>
containing (n - f) lock signatures

▶ Replica commits to <x,v> if there are (n - f) valid lock signatures
▶ Commit rule: guarentees that there is enough people locked in the

value of a commit
▶ Safe leader replacement

HotStuff 15



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to never forget a commitment (1)

Suppose malicious primary causes just one replica to commit to x
Must guarantee that newer primaries will never contradict and cause a
commit to x’

▶ Primary sends <lock x, v> to all replicas
▶ Each replica responds <lock ack x,v> on the first message in view v

from the primary

▶ Primary waits for (n - f) <lock ack x,v> and sends <commit x,v>
containing (n - f) lock signatures

▶ Replica commits to <x,v> if there are (n - f) valid lock signatures
▶ Commit rule: guarentees that there is enough people locked in the

value of a commit
▶ Safe leader replacement

HotStuff 15



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to never forget a commitment (1)

Suppose malicious primary causes just one replica to commit to x
Must guarantee that newer primaries will never contradict and cause a
commit to x’

▶ Primary sends <lock x, v> to all replicas
▶ Each replica responds <lock ack x,v> on the first message in view v

from the primary
▶ Primary waits for (n - f) <lock ack x,v> and sends <commit x,v>

containing (n - f) lock signatures

▶ Replica commits to <x,v> if there are (n - f) valid lock signatures
▶ Commit rule: guarentees that there is enough people locked in the

value of a commit
▶ Safe leader replacement

HotStuff 15



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to never forget a commitment (1)

Suppose malicious primary causes just one replica to commit to x
Must guarantee that newer primaries will never contradict and cause a
commit to x’

▶ Primary sends <lock x, v> to all replicas
▶ Each replica responds <lock ack x,v> on the first message in view v

from the primary
▶ Primary waits for (n - f) <lock ack x,v> and sends <commit x,v>

containing (n - f) lock signatures
▶ Replica commits to <x,v> if there are (n - f) valid lock signatures

▶ Commit rule: guarentees that there is enough people locked in the
value of a commit

▶ Safe leader replacement

HotStuff 15



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to never forget a commitment (1)

Suppose malicious primary causes just one replica to commit to x
Must guarantee that newer primaries will never contradict and cause a
commit to x’

▶ Primary sends <lock x, v> to all replicas
▶ Each replica responds <lock ack x,v> on the first message in view v

from the primary
▶ Primary waits for (n - f) <lock ack x,v> and sends <commit x,v>

containing (n - f) lock signatures
▶ Replica commits to <x,v> if there are (n - f) valid lock signatures
▶ Commit rule: guarentees that there is enough people locked in the

value of a commit

▶ Safe leader replacement

HotStuff 15



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to never forget a commitment (1)

Suppose malicious primary causes just one replica to commit to x
Must guarantee that newer primaries will never contradict and cause a
commit to x’

▶ Primary sends <lock x, v> to all replicas
▶ Each replica responds <lock ack x,v> on the first message in view v

from the primary
▶ Primary waits for (n - f) <lock ack x,v> and sends <commit x,v>

containing (n - f) lock signatures
▶ Replica commits to <x,v> if there are (n - f) valid lock signatures
▶ Commit rule: guarentees that there is enough people locked in the

value of a commit
▶ Safe leader replacement

HotStuff 15



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to never forget a commitment (2)

▶ When a new Primary comes, it will check if other values are locked,
and it will verify that the commited value is the same with the locked
values from (n - f) nodes.

HotStuff 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to never forget a commitment (2)

▶ When a new Primary comes, it will check if other values are locked,
and it will verify that the commited value is the same with the locked
values from (n - f) nodes.

HotStuff 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to never forget a commitment (2)

▶ When a new Primary comes, it will check if other values are locked,
and it will verify that the commited value is the same with the locked
values from (n - f) nodes.

HotStuff 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to never forget a commitment (2)

▶ When a new Primary comes, it will check if other values are locked,
and it will verify that the commited value is the same with the locked
values from (n - f) nodes.

HotStuff 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
▶ Replica may be locked on <x’,v’>

▶ Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack
x’,v’> signatures

▶ How can the primary of view v > v’ convice a locked replica that <x’,v’>
was not committed?

▶ For a locked replica on <x’,v’> to change its mind, Primary must:

▶ Show a lock of a higher view v” > v’
▶ Use the same value x’
▶ Otherwite the replica ignores Primary

▶ New Primary can:

▶ <send x,v>

▶ Will be accepted only if no replica is locked

▶ <send y,v, lock y,w> where <lock y,w> is a valid lock (contains n - f ack
signatures)

▶ Will be accepted by any replica only if it is locked on value y, or locked on a view v’
< w

HotStuff 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
▶ Replica may be locked on <x’,v’>

▶ Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack
x’,v’> signatures

▶ How can the primary of view v > v’ convice a locked replica that <x’,v’>
was not committed?

▶ For a locked replica on <x’,v’> to change its mind, Primary must:

▶ Show a lock of a higher view v” > v’
▶ Use the same value x’
▶ Otherwite the replica ignores Primary

▶ New Primary can:

▶ <send x,v>

▶ Will be accepted only if no replica is locked

▶ <send y,v, lock y,w> where <lock y,w> is a valid lock (contains n - f ack
signatures)

▶ Will be accepted by any replica only if it is locked on value y, or locked on a view v’
< w

HotStuff 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
▶ Replica may be locked on <x’,v’>

▶ Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack
x’,v’> signatures

▶ How can the primary of view v > v’ convice a locked replica that <x’,v’>
was not committed?

▶ For a locked replica on <x’,v’> to change its mind, Primary must:

▶ Show a lock of a higher view v” > v’
▶ Use the same value x’
▶ Otherwite the replica ignores Primary

▶ New Primary can:

▶ <send x,v>

▶ Will be accepted only if no replica is locked

▶ <send y,v, lock y,w> where <lock y,w> is a valid lock (contains n - f ack
signatures)

▶ Will be accepted by any replica only if it is locked on value y, or locked on a view v’
< w

HotStuff 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
▶ Replica may be locked on <x’,v’>

▶ Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack
x’,v’> signatures

▶ How can the primary of view v > v’ convice a locked replica that <x’,v’>
was not committed?

▶ For a locked replica on <x’,v’> to change its mind, Primary must:

▶ Show a lock of a higher view v” > v’
▶ Use the same value x’
▶ Otherwite the replica ignores Primary

▶ New Primary can:

▶ <send x,v>

▶ Will be accepted only if no replica is locked

▶ <send y,v, lock y,w> where <lock y,w> is a valid lock (contains n - f ack
signatures)

▶ Will be accepted by any replica only if it is locked on value y, or locked on a view v’
< w

HotStuff 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
▶ Replica may be locked on <x’,v’>

▶ Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack
x’,v’> signatures

▶ How can the primary of view v > v’ convice a locked replica that <x’,v’>
was not committed?

▶ For a locked replica on <x’,v’> to change its mind, Primary must:
▶ Show a lock of a higher view v” > v’

▶ Use the same value x’
▶ Otherwite the replica ignores Primary

▶ New Primary can:

▶ <send x,v>

▶ Will be accepted only if no replica is locked

▶ <send y,v, lock y,w> where <lock y,w> is a valid lock (contains n - f ack
signatures)

▶ Will be accepted by any replica only if it is locked on value y, or locked on a view v’
< w

HotStuff 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
▶ Replica may be locked on <x’,v’>

▶ Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack
x’,v’> signatures

▶ How can the primary of view v > v’ convice a locked replica that <x’,v’>
was not committed?

▶ For a locked replica on <x’,v’> to change its mind, Primary must:
▶ Show a lock of a higher view v” > v’
▶ Use the same value x’

▶ Otherwite the replica ignores Primary

▶ New Primary can:

▶ <send x,v>

▶ Will be accepted only if no replica is locked

▶ <send y,v, lock y,w> where <lock y,w> is a valid lock (contains n - f ack
signatures)

▶ Will be accepted by any replica only if it is locked on value y, or locked on a view v’
< w

HotStuff 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
▶ Replica may be locked on <x’,v’>

▶ Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack
x’,v’> signatures

▶ How can the primary of view v > v’ convice a locked replica that <x’,v’>
was not committed?

▶ For a locked replica on <x’,v’> to change its mind, Primary must:
▶ Show a lock of a higher view v” > v’
▶ Use the same value x’
▶ Otherwite the replica ignores Primary

▶ New Primary can:

▶ <send x,v>

▶ Will be accepted only if no replica is locked

▶ <send y,v, lock y,w> where <lock y,w> is a valid lock (contains n - f ack
signatures)

▶ Will be accepted by any replica only if it is locked on value y, or locked on a view v’
< w

HotStuff 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
▶ Replica may be locked on <x’,v’>

▶ Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack
x’,v’> signatures

▶ How can the primary of view v > v’ convice a locked replica that <x’,v’>
was not committed?

▶ For a locked replica on <x’,v’> to change its mind, Primary must:
▶ Show a lock of a higher view v” > v’
▶ Use the same value x’
▶ Otherwite the replica ignores Primary

▶ New Primary can:

▶ <send x,v>

▶ Will be accepted only if no replica is locked

▶ <send y,v, lock y,w> where <lock y,w> is a valid lock (contains n - f ack
signatures)

▶ Will be accepted by any replica only if it is locked on value y, or locked on a view v’
< w

HotStuff 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
▶ Replica may be locked on <x’,v’>

▶ Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack
x’,v’> signatures

▶ How can the primary of view v > v’ convice a locked replica that <x’,v’>
was not committed?

▶ For a locked replica on <x’,v’> to change its mind, Primary must:
▶ Show a lock of a higher view v” > v’
▶ Use the same value x’
▶ Otherwite the replica ignores Primary

▶ New Primary can:
▶ <send x,v>

▶ Will be accepted only if no replica is locked
▶ <send y,v, lock y,w> where <lock y,w> is a valid lock (contains n - f ack

signatures)

▶ Will be accepted by any replica only if it is locked on value y, or locked on a view v’
< w

HotStuff 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
▶ Replica may be locked on <x’,v’>

▶ Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack
x’,v’> signatures

▶ How can the primary of view v > v’ convice a locked replica that <x’,v’>
was not committed?

▶ For a locked replica on <x’,v’> to change its mind, Primary must:
▶ Show a lock of a higher view v” > v’
▶ Use the same value x’
▶ Otherwite the replica ignores Primary

▶ New Primary can:
▶ <send x,v>

▶ Will be accepted only if no replica is locked

▶ <send y,v, lock y,w> where <lock y,w> is a valid lock (contains n - f ack
signatures)

▶ Will be accepted by any replica only if it is locked on value y, or locked on a view v’
< w

HotStuff 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
▶ Replica may be locked on <x’,v’>

▶ Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack
x’,v’> signatures

▶ How can the primary of view v > v’ convice a locked replica that <x’,v’>
was not committed?

▶ For a locked replica on <x’,v’> to change its mind, Primary must:
▶ Show a lock of a higher view v” > v’
▶ Use the same value x’
▶ Otherwite the replica ignores Primary

▶ New Primary can:
▶ <send x,v>

▶ Will be accepted only if no replica is locked
▶ <send y,v, lock y,w> where <lock y,w> is a valid lock (contains n - f ack

signatures)

▶ Will be accepted by any replica only if it is locked on value y, or locked on a view v’
< w

HotStuff 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Safety

If a replica is locked, it does not easily change its mind
▶ Replica may be locked on <x’,v’>

▶ Lock = maximal view where replica saw a <lock x’,v’> with (n - f) <ack
x’,v’> signatures

▶ How can the primary of view v > v’ convice a locked replica that <x’,v’>
was not committed?

▶ For a locked replica on <x’,v’> to change its mind, Primary must:
▶ Show a lock of a higher view v” > v’
▶ Use the same value x’
▶ Otherwite the replica ignores Primary

▶ New Primary can:
▶ <send x,v>

▶ Will be accepted only if no replica is locked
▶ <send y,v, lock y,w> where <lock y,w> is a valid lock (contains n - f ack

signatures)
▶ Will be accepted by any replica only if it is locked on value y, or locked on a view v’

< w

HotStuff 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Liveness (1)

▶ Each replica sends their lock to the primary

▶ Primary uses the lock of the highest view, or <send x,v> if there is no
lock

▶ Live if you hear from all non-faulty
▶ In theory, in the partial synchrony model: requires to wait ∆

▶ Liveness attack requires a malicious and sophisticated attacker

HotStuff 18



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Liveness (1)

▶ Each replica sends their lock to the primary
▶ Primary uses the lock of the highest view, or <send x,v> if there is no

lock

▶ Live if you hear from all non-faulty
▶ In theory, in the partial synchrony model: requires to wait ∆

▶ Liveness attack requires a malicious and sophisticated attacker

HotStuff 18



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Liveness (1)

▶ Each replica sends their lock to the primary
▶ Primary uses the lock of the highest view, or <send x,v> if there is no

lock
▶ Live if you hear from all non-faulty

▶ In theory, in the partial synchrony model: requires to wait ∆

▶ Liveness attack requires a malicious and sophisticated attacker

HotStuff 18



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Liveness (1)

▶ Each replica sends their lock to the primary
▶ Primary uses the lock of the highest view, or <send x,v> if there is no

lock
▶ Live if you hear from all non-faulty
▶ In theory, in the partial synchrony model: requires to wait ∆

▶ Liveness attack requires a malicious and sophisticated attacker

HotStuff 18



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Liveness (1)

▶ Each replica sends their lock to the primary
▶ Primary uses the lock of the highest view, or <send x,v> if there is no

lock
▶ Live if you hear from all non-faulty
▶ In theory, in the partial synchrony model: requires to wait ∆

▶ Liveness attack requires a malicious and sophisticated attacker

HotStuff 18



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Liveness (2)

HotStuff 19



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Liveness (3) – Hidden lock

HotStuff 20



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Liveness (4)

▶ Each replica sends their lock to the primary
▶ Primary uses the lock of the highest view, or <send x,v> if there is no

lock
▶ Live if you hear from all non-faulty
▶ In theory, in the partial synchrony model: requires to wait ∆

▶ Liveness attack requires a malicious and sophisticated attacker

▶ HotStuff removes this requirement by using one more round

▶ Removes the ‘hidden lock’ problem, by making sure a key =
‘lock-precursor’ is always visible

▶ Important when the gap between ∆ and the actual delay δ « ∆ is large
▶ Optimistic responsiveness: protocol makes progress at the speed of δ

« ∆ when Primaries are honest

HotStuff 21



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Liveness (4)

▶ Each replica sends their lock to the primary
▶ Primary uses the lock of the highest view, or <send x,v> if there is no

lock
▶ Live if you hear from all non-faulty
▶ In theory, in the partial synchrony model: requires to wait ∆

▶ Liveness attack requires a malicious and sophisticated attacker

▶ HotStuff removes this requirement by using one more round
▶ Removes the ‘hidden lock’ problem, by making sure a key =

‘lock-precursor’ is always visible

▶ Important when the gap between ∆ and the actual delay δ « ∆ is large
▶ Optimistic responsiveness: protocol makes progress at the speed of δ

« ∆ when Primaries are honest

HotStuff 21



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Liveness (4)

▶ Each replica sends their lock to the primary
▶ Primary uses the lock of the highest view, or <send x,v> if there is no

lock
▶ Live if you hear from all non-faulty
▶ In theory, in the partial synchrony model: requires to wait ∆

▶ Liveness attack requires a malicious and sophisticated attacker

▶ HotStuff removes this requirement by using one more round
▶ Removes the ‘hidden lock’ problem, by making sure a key =

‘lock-precursor’ is always visible
▶ Important when the gap between ∆ and the actual delay δ « ∆ is large

▶ Optimistic responsiveness: protocol makes progress at the speed of δ
« ∆ when Primaries are honest

HotStuff 21



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How to replace a primary: Liveness (4)

▶ Each replica sends their lock to the primary
▶ Primary uses the lock of the highest view, or <send x,v> if there is no

lock
▶ Live if you hear from all non-faulty
▶ In theory, in the partial synchrony model: requires to wait ∆

▶ Liveness attack requires a malicious and sophisticated attacker

▶ HotStuff removes this requirement by using one more round
▶ Removes the ‘hidden lock’ problem, by making sure a key =

‘lock-precursor’ is always visible
▶ Important when the gap between ∆ and the actual delay δ « ∆ is large
▶ Optimistic responsiveness: protocol makes progress at the speed of δ

« ∆ when Primaries are honest

HotStuff 21



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Force Primary to say just one thing: Safety (1)

▶ Guarantee that Primary 2 will receive a key from honest nodes to
convice the ‘hidden lock’ node.

HotStuff 22



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Force Primary to say just one thing: Safety (1)

▶ Guarantee that Primary 2 will receive a key from honest nodes to
convice the ‘hidden lock’ node.

HotStuff 22



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Force Primary to say just one thing: Safety (1)

▶ Guarantee that Primary 2 will receive a key from honest nodes to
convice the ‘hidden lock’ node.

HotStuff 22



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Force Primary to say just one thing: Safety (1)

▶ Guarantee that Primary 2 will receive a key from honest nodes to
convice the ‘hidden lock’ node.

HotStuff 22



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Force Primary to say just one thing: Safety (1)

▶ Guarantee that Primary 2 will receive a key from honest nodes to
convice the ‘hidden lock’ node.

HotStuff 22



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Force Primary to say just one thing: Safety (1)

▶ Guarantee that Primary 2 will receive a key from honest nodes to
convice the ‘hidden lock’ node.

HotStuff 22



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Complete Protocol

HotStuff 23



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Chained HotStuff

▶ Improve Basic HotStuff protocol utility while at the same time
considerable simplifying it.

▶ Basic idea: change view on every PREPARE phase, so each proposal has
its own view.

▶ Reduces the number of messages and allows for pipelining of decisions.

HotStuff 24



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Implementation

▶ ~4000 LOC C++.
▶ Simplify the code by extracting liveness mechanism from the HotStuff

mechanism into a module named Pacemaker.
▶ Pacemaker is a mechanism that guarantees progress after GST.

HotStuff 25



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Evaluation

▶ Compare HotStuff with state-of-the art (BFT-SMaRt)
▶ Amazon EC2 16 CPU per instance (one replica per instance)

HotStuff 26



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Base Performance

▶ HotStuff achieves comparable latency performance to BFT-SMaRt, and
its maximum throughput outperformes BFT-SMaRt.

HotStuff 27



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Scalability (1)

▶ Better throughput than BFT-SMaRt, while latency still comparible.

HotStuff 28



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Scalability (2)

▶ Due to its quadratic bandwidth cost, the throughput of BFT-SMaRt
scales worse than HotStuff for reasonably large (1024-byte) payload
size.

HotStuff 29



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

View Change

▶ HotStuff has no ‘extra’ cost for leader changes by definition.

HotStuff 30


