
M 120: DISTRIBUTED
SYSTEMS
Course Overview

*Slides include material provided by Indranil (Indy) Gupta and Ken Birman

What This Course is About

 US Elections

 Movies

 Travel to Mars

 Company Acquisitions

 (Not Kidding)

2

What This Course is Really About

 Distributed Systems

 How to Design Algorithms for them

 How to Design the Systems

 How they work in real life

 How to build real distributed systems

3

Our Main Goal Today

To Define the Term Distributed System

4

Can you name some examples of
Operating Systems?

5

…

Linux WinXP Vista 7/8 Unix FreeBSD macOS OSX

2K Aegis Scout Hydra Mach SPIN

OS/2 Express Flux Hope Spring

AntaresOS EOS LOS SQOS LittleOS TINOS

PalmOS WinCE TinyOS iOS

…

Can you name some examples of
Operating Systems?
6

What is an Operating System?
7

 Provides abstractions (processes, files)

 Resource manager (scheduler)

 User interface to hardware (device driver)

 Means of communication (networking)

 …

What is an Operating System?
8

FOLDOC definition

Operating System - The low-level software which
handles the interface to peripheral hardware,
schedules tasks, allocates storage, and presents a
default interface to the user when no application
program is running.

(FOLDOC = Free On-Line Dictionary of Computing)
9

Can you name some examples of
Distributed Systems?

10

 Answers that people might give:

� Client-Server (NFS)

� The Web

� The internet

� A wireless network

� DNS

� Gnutella or BitTorrent (peer to peer overlays)

� A “cloud”, e.g., Amazon EC2/S3, Microsoft Azure

� A datacenter, e.g., NCSA, a Google datacenter, AWS

Can you name some examples of
Distributed Systems?

11

What is a Distributed System?
12

FOLDOC definition

A collection of (probably heterogeneous) automata whose
distribution is transparent to the user so that the system
appears as one local machine. This is in contrast to a
network, where the user is aware that there are several
machines, and their location, storage replication, load
balancing and functionality is not transparent. Distributed
systems usually use some kind of client-server
organization.

13

Textbook definitions

 A distributed system is a collection of independent
computers that appear to the users of the system as a
single computer.

[Andrew Tanenbaum]

 A distributed system is several computers doing something
together. Thus, a distributed system has three primary
characteristics: multiple computers, interconnections, and
shared state.

[Michael Schroeder]

14

Unsatisfactory

 Why are these definitions short?

 Why do these definitions look inadequate to us?

 Because we are interested in the insides of a
distributed system

� Design and implementation

� Maintenance

� Algorithmics (“protocols” or “distributed algorithms”)

15

(A) Facebook Social Network Graph among humans

(A)

Which is a Distributed System – (A) or (B)?Which is a Distributed System – (A) or (B)?

Source: https://www.facebook.com/note.php?note_id=469716398919

16

(B) Peer to peer file-sharing system (Gnutella)

(B)

17

A working definition for us (programmers)

A distributed system is a collection of entities, each of which is

autonomous, programmable, asynchronous and failure-prone,

and which communicate through an unreliable communication

medium.

 Entity=a process on a device (PC, PDA)

 Communication Medium=Wired or wireless network

 Our interest in distributed systems involves

� design and implementation, maintenance, algorithmics

18

Gnutella Peer to Peer System

Source: GnuMap Project

What are the ““““entities””””
(nodes)?

What is the

communication medium

(links)?

19

Source: http://www.vlib.us/web/worldwideweb3d.html

What are the ““““entities””””
(nodes)?

What is the

communication medium

(links)?

Web Domains
20

Datacenter

What are the ““““entities””””
(nodes)?

What is the

communication medium

(links)?

21

Overall Objective

How can we build distributed systems that do what

we need them to do, reliably, accurately, and

securely?

Critical apps are built on
distributed systems

 If these distributed systems don’t work

� When we need them

� Correctly

� Fast enough

� Securely and privately

 ... then revenue, health and safety, and national
security may be at risk!

Examples of mission-critical
applications

 Air traffic control

 Healthcare, hospital automation

 Telecommunications infrastructure

 Control of power plants, electric grid

 Banking, stock markets, stock brokerages

 Electronic commerce and electronic cash on the Web (apps
built on blockchain technologies)

 Corporate “information” base: a company’s memory of
decisions, technologies, strategy

 Military command, control, intelligence systems

Typical Distributed Systems Design
Goals

 Common Goals:

� Heterogeneity – can the system handle a large variety of types of PCs and
devices?

� Robustness – is the system resilient to host crashes and failures, and to the
network dropping messages?

� Availability – are data+services always there for clients?

� Transparency – can the system hide its internal workings from the users?
(warning: term means the opposite of what the name implies!)

� Concurrency – can the system handle multiple clients simultaneously?

� Efficiency – is the service fast enough? Does it utilize 100% of all
resources?

� Scalability – can it handle 100 million nodes without degrading service?
(nodes=clients and/or servers) How about 6 B? More?

� Security – can the system withstand hacker attacks?

� Openness – is the system extensible?

25

So what makes it hard?

 Many prior/existing web service platforms (e.g.,
J2EE, .NET)
� Enable higher productivity and provide “ease of

development” but…

� Lack automated management features

� Handle errors in ad-hoc, inconsistent ways

� Offer only one form of fault-tolerance mechanism
(transactions), and it isn’t compatible with high availability

 Developers often forced to step outside of the box…
and might stumble.
� So why don’t platforms standardize such things?

End-to-End argument

 Commonly cited as a justification for not tackling
reliability in “low levels” of a platform

 Originally posed in the Internet:
� Suppose an IP packet will take n hops to its destination,

and can be lost with probability p on each hop

� Now, say that we want to transfer a file of k records that
each fit in one IP (or UDP) packet

� Should we use a retransmission protocol running “end-to-
end” or n TCP protocols in a chain?

“End-to-End Arguments for Systems Design” by Saltzer, Read, Clark, ICDCS 1981.

End-to-End argument

source dest

Probability of successful transit: (1-p)n,

Expected packets lost: k-k*(1-p)n

Loss rate: p%

Saltzer et. al. analysis

 If p is very small, then even with many hops most
packets will get through

� The overhead of using TCP protocols in the links will slow
things down and won’t benefit us much

� And we’ll need an end-to-end recovery mechanism “no
matter what” since routers can fail, too.

 Conclusion: let the end-to-end mechanism worry about
reliability

E2E Principle said differently…

 Don’t place functionality at lower layer if entities at
higher level won’t use it

 Don’t place functionality at lower layer if can’t get
it completely right there

� Higher layer may have knowledge to get it right

� Classic file transfer example

Generalized End-to-End view?

 Low-level mechanisms should focus on speed, not
reliability

 The application should worry about “properties” it
needs

 OK to violate the E2E philosophy if E2E mechanism
would be much slower

E2E argument is visible in J2EE and
.NET

 If something fails, these technologies report timeouts

� But they also report timeouts when nothing has failed

� And when they report timeouts, they don’t tell you what
failed

� And they don’t offer much help to fix things up after the
failure, either

E2E Example: Server replication

 Suppose that we have an Air Traffic Control service
that needs a highly available server.

 One option: “primary/backup”
� We run two servers on separate platforms

� The primary sends a log to the backup

� If primary crashes, the backup soon catches up and can
take over

Split brain Syndrome…

primary

backup

Clients initially connected to primary, which keeps

backup up-to-date. Backup collects the log

log

Split brain Syndrome…

Transient problem causes some links to break but not all.

Backup thinks it is now primary, primary thinks backup is down

primary

backup

Split brain Syndrome

Some clients still connected to primary, but one has switched

to backup and one is completely disconnected from both

primary

backup

Implication?

 Air Traffic System with a split brain could
malfunction disastrously!

� For example, suppose the service is used to answer the
question “is anyone flying in such-and-such a sector of
the sky”

� With the split-brain version, each half might say
“nope”… in response to different queries!

Can we fix this problem?

 No, if we insist on an end-to-end solution
� We need some form of “agreement” on which

machines are up and which have crashed

� Can’t implement “agreement” on a purely 1-to-1
(hence, end-to-end) basis.
 Separate decisions can lead to inconsistency

 So we need a “membership service”… and this is
fundamentally not an end-to-end concept!

Can we fix this problem?

 Yes, many options, once we accept this
� Just use a single server and wait for it to restart

 This is common today, but too slow for ATC

� Give backup a way to physically “kill” the primary, e.g.
unplug it
 If backup takes over… primary shuts down

� Or require some form of “majority vote”
 Maintains agreement on system status

 Split-brain is just one example the types of issues a
distributed systems developer must handle
� Bottom line? You need to anticipate the issue… and to

implement a solution.

Typical Distributed Systems Design
Goals

 Common Goals:

� Heterogeneity – can the system handle a large variety of types of PCs and
devices?

� Robustness – is the system resilient to host crashes and failures, and to the
network dropping messages?

� Availability – are data+services always there for clients?

� Transparency – can the system hide its internal workings from the users?
(warning: term means the opposite of what the name implies!)

� Concurrency – can the server handle multiple clients simultaneously?

� Efficiency – is the service fast enough? Does it utilize 100% of all
resources?

� Scalability – can it handle 100 million nodes without degrading service?
(nodes=clients and/or servers) How about 6 B? More?

� Security – can the system withstand hacker attacks?

� Openness – is the system extensible?

40

“Important” Distributed Systems Issues

 No global clock; no single global notion of the correct time
(asynchrony)

 Unpredictable failures of components: lack of response may be
due to either failure of a network component, network path
being down, or a computer crash (failure-prone, unreliable)

 Highly variable bandwidth: from 16Kbps (slow modems or
Google Balloon) to Gbps (Internet2) to Tbps (in between DCs of
same big company)

 Possibly large and variable latency: few ms to several seconds

 Large numbers of hosts: 2 to several million –

41

“Important” Issues = Headache?

 If you’re already complaining that the list of topics we’ve
discussed so far has been perplexing…

� You’re right!

� It was meant to be (perplexing)

 The Goal for the Rest of the Course: see enough examples
and learn enough concepts so these topics and issues will
make sense

42

Class Logistics

 Professor: Mema Roussopoulou
� Office: A38

� Office hours: by appt

 Please enroll in class Piazza forum (Required)

 Course info on readings, office hours, etc. at:

http://cgi.di.uoa.gr/~mema/courses/m120/m120.html

Class Logistics (2)

 Graduate course:

� Prerequisites:

 Undergrad Operating Systems

 Computer Networks

 Advanced OS

 Class attendance required

Textbooks and readings

 Distributed Systems: Principles and Paradigms, by
Andrew Tanenbaum and Maarten Van Steen;
Prentice Hall

 Reliable Distributed Systems, by Ken Birman;
Springer Verlag

 We’ll also read papers: Web page has references
and links

Class Logistics (3)

 Lectures

� Based on concepts in textbooks

 Paper discussions

� Write a review (in specified format)

� Reviews are due via email before class time

(ASCII text is fine)

 Paper presentations

 Project

Paper Discussions

 Participate in class discussions on the papers
� Be prepared to discuss questions/comments in detail

� Send email before class with questions if shy asking
about a particular detail

� Print out papers and bring them to class

Paper Presentations

 You will present one or more papers during the semester
� 25-30 minute presentation

� Explain overall contributions of the paper
 What problem does the paper focus on?

 Why is this problem important?

 What solution do the authors propose?

 How do the authors evaluate the solution?

� Lead the class discussion on the paper
 This is an interactive class – you are not meant to drone on

 Solicit opinions from others

 I will help you

� Send presentation day preferences to me to be assigned papers

Final Project

 Full specification to be defined by the students

� Problem definition

� Approach

� Related work

 Deliverables:
� design document

� programming library/framework
 … including documentation

� demonstrator application

 I will give you a list you can choose from

Real Research Projects

 Internet voting system

� Vote collection backend

 Mobile phone data collection system

� Sensors on phones, multiple data collection points per
city, global archival backend

 Online health monitoring system

� Real-time data streaming, querying, and response

Other example projects

 Fault-tolerant key-value store

� replicated data

 File distribution service:

� read-only

� peer-to-peer

� Lookup protocol + parallelized I/O

 Implement a protocol/algorithm covered in class

You can work in small teams

 Teams of 2-3 members

� 3-person teams should tackle a more ambitious
problem and will also face some coordination
challenges

� Experience is like working in commercial setting

Project Deadlines

 April 28: Project proposal

 June 7: Interim reports

 July 7: Final project, write-up, and
demo/presentation

Grading

 Reviews: 10%

 Class Participation: 10%

 Paper Presentations 20%

 Final Project: 60%

