
M120: DISTRIBUTED SYSTEMS

Fundamentals

*Slides are variant of slides provided by Ken Birman

Overview of Lecture

 Fundamentals: terminology and components of a
reliable distributed computing system

 Communication technologies and their properties

 Basic communication services

 Internet protocols

 End-to-end argument

Some terminology

 A program is the code you type in

 A process is what you get when you run it

 A message is used to communicate between processes.
Arbitrary size.

 A packet is a fragment of a message that might travel on
the wire. Variable size but limited, usually to 1400 bytes
or less.

 A protocol is an algorithm by which processes cooperate to
do something using message exchanges.

More terminology

 A network is the infrastructure that links the computers,
workstations, terminals, servers, etc.
� It consists of routers

� They are connected by communication links

 A network application is one that fetches needed data from
servers over the network

 A distributed system is a more complex application designed
to run on a network. Such a system typically has multiple
processes that cooperate to do something. Remember our
working definition:

A distributed system is a collection of entities, each of which is
autonomous, programmable, asynchronous and failure-prone, and
which communicate through an unreliable communication medium.

Protocol defines

 Types of messages exchanged,

� e.g., request, response

 Message syntax:

� what fields in messages & how
fields are delineated

 Message semantics

� meaning of information in
fields

 Rules for when and how processes
send & respond to messages

Public-domain protocols:

 defined in RFCs

 allows for interoperability

 e.g., HTTP, SMTP

Proprietary protocols:

 e.g., KaZaA, Skype

A network is like a “mostly reliable” post
office

Why isn’t it totally reliable?

 Links can corrupt messages
� Rare in the high quality links on the Internet “backbone”

� More common with wireless connections, cable modems,
ADSL

 Routers can get overloaded
� When this happens they drop messages

 this is very common

 But protocols that retransmit lost packets can increase
reliability

How do distributed systems differ from network
applications?

 Distributed systems may have many components but are often
designed to mimic a single, non-distributed process running at
a single place.

 “State” is spread around in a distributed system
� Networked application is free-standing and centered around the user or

computer where it runs. (E.g. “web browser”.)

� Distributed system is spread out, decentralized. (E.g. “air traffic control
system”)

What about the Web?

 Browsers are independent: a browser fetches data you
request.

 Web servers don’t keep track of who is using them. Each
request is self-contained and treated independently of all
others.
� Cookies don’t count: they sit on your machine

� And the database of account info doesn’t count either… this is “ancient”
history, nothing recent

 ... So the web has two network applications that talk to each
other
� The browser on your machine

� The web server it happens to connect with… which has a database
“behind” it

What about the Web?

Database
Web browser with

stashed cookies

Cookie identifies this

user, encodes past

preferences

HTTP request

What about the Web?

Reply updates cookie

Web servers immediately

forget the interaction

What about the Web?

Purchase is a “transaction”

on the database

Web servers have no

memory of the interaction

What about the Web?

 But… the data center that serves your request may
be a complex distributed system
� Many servers and perhaps multiple physical sites

� Opinions about which clients should talk to which servers

� Data replicated for load balancing and high availability

� Complex security and administration policies

 So: we have a “networked application” talking to a
“distributed system”

Is the Web “reliable”?

 We want to build distributed systems that can be relied upon
to do the correct thing and to provide services according to
user expectations

 Not all systems need reliability (e.g., the “old” Web)
� If a web site doesn’t respond, you just try again later

� If you end up with two wheels of brie, not a big problem!

 Reliability is a growing requirement in critical settings but these
remain a small percentage of the overall market for
networked computers
� Reliability requires satisfying multiple properties (next slide).

Reliability is a broad term

 Fault-Tolerance: remains correct despite failures

 High or continuous availability: resumes service quickly after failures,
doesn’t wait for repairs

 Performance: provides desired responsiveness

 Recoverability: can restart failed components

 Consistency/Correctness: coordinates actions by multiple
components, so they mimic a single one

 Security: authenticates access to data, services

 Privacy: protects identity and locations of users

“Failure” also has many meanings

 Halting failures: component simply stops

 Fail-stop: halting failures with notifications

 Omission failures: failure to send/recv. message

 Network failures: network link breaks

 Network partition: network fragments into two or more disjoint
subnetworks

 Timing failures: action early/late; clock fails, etc.

 Byzantine failures: arbitrary malicious behavior
� Most difficult of all to deal with

Examples of failures

 My PC suddenly freezes up while running a text processing
program. No damage is done. This is a halting failure.

 A network file server tells its clients that it is about to shut
down, then goes offline. This is a fail-stop failure. (The
notification can be trusted.)

 An intruder hacks the network and replaces some parts with
fakes. This is a Byzantine failure.

The Internet – Quick

Refresher
 Underlies many distributed systems.

 A vast interconnected collection of computer networks of many
types.

 Intranets – subnetworks operated by companies and
organizations.

 Intranets contain LANs (local area networks).

 WAN – wide area networks, consists of subnets (intranets, LANs,
etc.)

 ISPs – Internet Service Providers. Companies that provide modem
links and other types of connections to users.

 Intranets (actually the ISPs’ core routers) are linked by backbones
– network links of large bandwidth, such as satellite connections,
fiber optic cables, and other high-bandwidth circuits.

 UC2B? Google Fiber? (MAN = Metropolitan Area Networks)

18

An Intranet & a distributed system

Running over this Intranet

is a distributed file system

prevents unauthorized messages from leaving/entering;
implemented by filtering incoming and outgoing messages
via firewall “rules” (configurable)

the rest of

email server

Web server

Desktop
computers

File server

router/firewall

print and other servers

other servers

print

Local area

network

email server

the Internet

19

Internet Layering Model

 Each layer uses the function of the layer below
 Each layer exports functionality to layer above

 This layering of protocol behavior called a “protocol
stack”

 Aka, the “TCP/IP stack”

Link

Network

Transport

Application

Internet Protocol Stack

Physical

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Internet protocol suite

 Can be understood in terms of Internet Layering
Model

 Defines “addressing” standard, basic network layer
(IP packets, limited to 1400 bytes), and session
protocols (TCP, UDP, UDP-multicast)
� For example, TCP is a “session” protocol

 Includes standard “domain name service” that maps
host names to IP addresses

 DNS itself is tree-structured and caches data

 (See two slide sets on class web page for more
detailed refreshers on networking basics and DNS)

Major internet protocols

 TCP, UDP, FTP, Telnet

 Email: Simple Mail Transfer Protocol (SMTP)

 News: Network News Transfer Protocol (NNTP)

 DNS: Domain name service protocol

 NIS: Network information service (a.k.a. “YP”)

 LDAP: Protocol for talking to the management information database (MIB)
on a computer

 NFS: Network file system protocol for UNIX

 X11: X-server display protocol

 Web: HyperText Transfer Protocol (HTTP), and SSL (one of the widely used
security protocols)

Networking Stacks

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

remote file server
internet telephony

Application

layer protocol

smtp [RFC 821]
telnet [RFC 854]
http [RFC 2068]
ftp [RFC 959]
proprietary
(e.g. RealNetworks)
NFS
proprietary
(e.g., Skype)

Underlying

transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP
typically UDP

TCP=Transmission Control Protocol

UDP=User Datagram Protocol

(Implemented via sockets)

Distributed System Protocols! Networking Protocols

23

Typical network hardware options

 Ethernet: 10Mbit CSMA technology, limited to 1400 byte
packets. Uses single coax cable.

 FDDI: twisted pair, self-repairing if cable breaks (100Mbit)

 Bridged Ethernet: common in big LAN’s, ring with multiple
ethernet segments

 Fast Ethernet: 100Mbit version of ethernet. Since 1998, we
have seen 1 Gbit Ethernet, 10Gbit, 100Gbit…

 ATM: switching technology for fiber optic paths. Can run at
155Mbits/second or more. Very reliable, but mostly used in
telephone systems.

Implications for reliability?

 Protocol designers have problems predicting the
properties of local-area networks

 Latencies and throughput may vary widely even in
a single installation

 Hardware properties differ widely; often, must
assume the least-common-denominator

 Packet loss a minor problem in hardware itself

Hardware evolution

 Over the last two decades:

� storage capacity has improved by 10,000x

� CPU speeds by 1,000x

� core counts by 50x

� network speeds by 10,000x

� and I/O latency by 1,000x

Trends: Users

 Then and Now

Biologists:

� 1990: were running small single-molecule simulations

� Today: CERN’s Large Hadron Collider producing

many PB/year

27

Trends: Technology

 Doubling Periods – storage: 12 mos, bandwidth: 9 mos,
and (what law is this?) cpu compute capacity: 18 mos

 Then and Now

� Bandwidth

 1985: mostly 56Kbps links nationwide

 2015: Tbps links widespread

� Disk capacity

 Today’s PCs have TBs, far more than a 1990 supercomputer

28

Impact of technology trends

 A discontinuity is currently occurring in communication speeds

� LANs getting super fast

 Disks (HDDs) have “maxed out” and hence are looking slower and
slower and SSDs still expensive for widespread use

 Memory is cheaper (DRAM, NVRAM)

 Avoid disk for critical path; leave disk for persistence and storage of
entire data set

 Memory of remote computers looks “closer and closer” (RDMA)

 Shift from disk storage towards more use of access to remote objects “over
the network”

 Affects application/system design (e.g., distributed in-memory key value
store, distributed file system)

 O/S imposed communication latencies has risen in relative terms
over past decade

Reliability versus Performance

 Some think that more reliable means “slower”
� Indeed, it usually costs time to overcome failure

� For example, if a packet is lost probably need to resend it, and may
need to solicit the retransmission

 But for many applications, performance is a big part of the
application itself: too slow means “not reliable” for these!

 Reliable systems thus must look for highest possible
performance

 ... but unlike unreliable systems, they can’t cut corners in ways
that make them faster but flaky

Moving up (the stack) to the
Application

 Internet protocol stack stops at the application
layer

� Assumes applications know about one another (ie., can
find each other)

� Client looks up the server… connects… sends a
request…response comes back

 But how did the client know which server it wanted?

Discovery Problem

 Consider the problem of discovering the right
server to connect with

� Suppose your computer needs to find the Amazon
server that will sell you Disney film DVDs (European
format)

Why is discovery hard?

 Boston client has opinions
� You can only play European format, so your search is

partly controlled by client goals

 Service has opinions
� Amazon might have data centers in Europe and in the US

and may want your request to go to a particular one

 Once we find the server name we need to map it
to an IP address

 And the Internet itself has routing “opinions” too

So… four layers of discovery

 Potentially, we might want to customize each one
of these layers to get a given application
functionality to work

 The Internet protocol stack doesn’t include any of
these layers, so this is an example of a situation
where we need much more

Other things we might need, NOT
provided by the stack

 Standard ways to handle
� Reliability, in all the senses we listed

� Life cycle management of the service
 Automated startup of services, if someone asks for one

and it isn’t running; backup; etc…

 Automated migration and load-balancing, monitoring,
parameter adaptation, self-diagnosis and repair…

� Tools for integrating legacy applications with new,
modern ones

Concept of a middleware platform

 Large software systems that automate many
aspects of application management and
development

� CORBA – by now a stable and outmoded platform
focused on “objects” (has lost steam)

� SOAP

� REST

� Web Services – service oriented architecture

AWS, microservices, etc.

Layers: Modern perspective

End-user applications

Middleware platform

Internet and Web Standards (TCP, XML, etc)

Built over and with…

Built over and with…

Example

 Imagine a banking system with many programs, one
at each branch

 And suppose that only some can talk to others due
to firewalls and other restrictions

� E.g. A can talk to B and B can talk to C, but A can’t talk
to C

How to handle this?

 In the distant past, people cooked up all sorts of
weird hacks

 Today, a standard approach is to build a routing
layer

� Inside the application, it would automatically forward
messages towards their destinations

� Thus A can talk to C (via B)

Once we have this…

 Now we can split our brains, in a good way:

� Above this routing layer, we write code as if routing from
anyone to anyone was automatic

� Inside the routing layer, we implement this functionality

� Below the routing layer we just do point-to-point messaging
where the bank permits it and we never end up trying to
send messages over links not available to us

This layering looks elegant!

 It lets us focus attention on issues in one place and
simplifies code as a result

 Also helpful when debugging…

 Platform architectures simply take the same approach

further

Using a platform

 Distributed application developers have often used
� Java/J2EE: An outgrowth from CORBA which is closely

integrated with developer tools and very easy to use
� Microsoft C# (or C++) on .NET in Visual Studio: similar in

concept but focused more on Web Services
� Software as a Service: cloud-based services

 Often just using their editor and clicking “build and
run” is enough to use the service framework!
� But you inherit its power… and limits…
� E.g., the reliability model in Web Services doesn’t

automate data replication

