
DISTRIBUTED SYSTEMS

Communication Basics (Networking Review)

Some slides adapted from material by Kurose and Ross for their book:  Computer 
Networking: A Top Down Approach Featuring the Internet



Overview of Lecture

Introduction to the network layer
� Classic view of network layer

� OSI stack

� Classic view no longer (never was?) accurate

� End-to-end argument

� Internet components (hosts, routers, links, etc.)

� Protocol layering fundamentals

� IP, UDP, TCP, pros and cons



Who recognizes this?

int sockfd; 

struct sockaddr_in addr; 

addr.sin_family = AF_INET; 

addr.sin_addr.s_addr = 

inet_addr(SERV_HOST_ADDR); 

addr.sin_port = htons(SERV_TCP_PORT); 

sockfd = socket(AF_INET, SOCK_STREAM, 0);

connect(sockfd, (struct sockaddr *) &addr, 

sizeof(serv_addr));

do_stuff(stdin, sockfd);



Classic view of network API

� Start with host name 
(maybe)

foo.bar.com



Classic view of network API

� Start with host name

� Get an IP address

foo.bar.com

gethostbyname()

10.5.4.3



Classic view of network API

� Start with host name

� Get an IP address

� Make a socket 
(protocol, address)

foo.bar.com

gethostbyname()

10.5.4.3

sock_id

socket();connect();…



Classic view of network API

� Start with host name

� Get an IP address

� Make a socket 
(protocol, address)

� Send byte stream 
(TCP) or packets 
(UDP)

foo.bar.com

gethostbyname()

10.5.4.3

sock_id

socket();connect();…

TCP sock UDP sock

Network

1,2,3,4,5,6,7,8,9 . . .
…

Eventually 

arrive in order

May or may 

not arrive



Classic approach “broken” in many 
ways

� IP address different depending on who asks for it
� IP address may not be reachable (even though 

destination is up and attached)
� Or may be reachable by you but not by another host

� IP address may change in a few minutes or hours
� Packets may not come from who you think (network 

caches/proxies)



Network components

� Network:  Collection of hosts, links, and routers

� Site: Stub (or edge) network, typically in one location and under control of one 
administration

� ISP: Internet Service Provider.  Transit network that provides IP connectivity for 
sites

� Firewall/NAT: Box between the site and ISP that provides filtering, security, 
and Network Address Translation

� Backbone ISP:  Transit network for regional ISPs and large sites

� Inter-exchange (peering point):  Broadcast link where multiple ISPs connect 
and exchange routing information (peering)

� Hosting center:  Stub network that supports lots of hosts (web services), 
typically with high speed connections to many backbone ISPs.

� Bilateral peering:  Direct connection between two backbone ISPs



Internet topology

S

ISP

Backbone

ISP

IX IX

S S

Site

S

ISP

S S S

ISP

S S

Backbone

ISP

Backbone

ISP

Hosting

Center

Hosting

Center
IXs came first

IXs tend to be 

performance 

bottlenecks

Hosting centers 

and bilateral 

peering are a 

response to poor 

IXs

Sites



Network components

R

H H H H H H

R R

H H H
H H H

Host:  Source and 

sink of IP packets

Router:  Forwards 

IP packets

Point to point link: 

link with two nodes 

(router or host)

Broadcast link: link 

with multiple nodes



Protocol “Layers”

Networks are complex! 

� Many “pieces”:

� hosts

� routers

� links of various media

� applications

� protocols

� hardware, software

Question:
Is there any hope of organizing

structure of network?

Or at least our discussion of 
networks?



Internet Layering Model

� Each layer uses the function of the layer below
� Each layer exports functionality to layer above

� This layering of protocol behavior called a “protocol 
stack” 

� Aka, the “TCP/IP stack”

Link

Network

Transport

Application

Internet Protocol Stack

Physical

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1



Why layering?

Dealing with complex systems:

� explicit structure allows identification, relationship 
of complex system’s pieces

� layered reference model for discussion

� modularization eases maintenance, updating of 
system

� change of implementation of layer’s service 
transparent to rest of system

� layering considered harmful?



Protocol layering (cont’d)

� Communications stack consists of a set of services, 
each providing a service to the layer above, and 
using services of the layer below
� Each service has a programming API, just like any 

software module

� Each service has to convey information to one or 
more peers across the network

� This information is contained in a header
� The headers are transmitted in the same order as the 

layered services



Protocol layering example

Browser

process

HTTP

TCP

Link1

IP

Link1

IP

Link2

Web server

process

HTTP

TCP

Link1

IP

Physical Link 1 Physical Link 2

Router



HTTP

Protocol layering example

Browser

process

TCP

Link1

IP

Link1

IP

Link2

Web server

process

HTTP

TCP

Link1

IP

Physical Link 1 Physical Link 2

Router

H

Browser wants to request a page.  Calls 

HTTP with the web address (URL).

HTTP’s job is to convey the URL to the 

web server.

HTTP learns the IP address of the web 

server, adds its header, and calls TCP.



HTTP

Protocol layering example

Browser

process

TCP

Link1

IP

Link1

IP

Link2

Web server

process

HTTP

TCP

Link1

IP

Physical Link 1 Physical Link 2

H

TCP’s job is to work with server to 

make sure bytes arrive reliably and 

in order.

TCP adds its header and calls IP.

(Before that, TCP establishes a 

connection with its peer.)

T Router



HTTP

Protocol layering example

Browser

process

TCP

Link1

IP

Link1

IP

Link2

Web server

process

HTTP

TCP

Link1

IP

Physical Link 1 Physical Link 2

H

IP’s job is to get the packet routed to 

the peer through zero or more 

routers.

IP determines the next hop towards 

the destination IP address.

IP adds its header and calls the link 

layer (i.e. Ethernet) with the next 

hop address.

T

Router

I



HTTP

Protocol layering example

Browser

process

TCP

Link1

IP

Link1

IP

Link2

Web server

process

HTTP

TCP

Link1

IP

Physical Link 1 Physical Link 2

H

The link’s job is to get the packet to 

the next physical box (here a 

router).

It adds its header and sends the 

resulting packet over the “wire”.

T

Router

I L1



HTTP

Protocol layering example

Browser

process

TCP

Link1

IP

Link1

IP

Link2

Web server

process

HTTP

TCP

Link1

IP

Physical Link 1 Physical Link 2

H

The router’s link layer receives the 

packet, strips the link header, and 

hands the result to the IP forwarding 

process.

T

Router

I



HTTP

Protocol layering example

Browser

process

TCP

Link1

IP

Link1

IP

Link2

Web server

process

HTTP

TCP

Link1

IP

Physical Link 1 Physical Link 2

H

The router’s IP forwarding process 

looks at the destination IP address, 

determines what the next hop is, 

and hands the packet to the 

appropriate link layer with the 

appropriate next hop link address.

T

Router

I



HTTP

Protocol layering example

Browser

process

TCP

Link1

IP

Link1

IP

Link2

Web server

process

HTTP

TCP

Link1

IP

Physical Link 1 Physical Link 2

H

The packet goes over the link to the 

web server, after which each layer 

processes and strips its 

corresponding header.

T

Router

I L2

H T I

H T

H



Basic elements of any protocol header

� Demuxing field
� Indicates which is the next higher layer (or process, or 

context, etc.)

� Length field or header delimiter
� For the header, optionally for the whole packet

� Header format may be text (HTTP, SMTP (email)) or 
binary (IP, TCP, Ethernet)



Demuxing fields

� Ethernet:  Protocol Number

� Indicates IPv4, IPv6, (old: Appletalk, SNA, Decnet, etc.)

� IP:  Protocol Number

� Indicates TCP, UDP, SCTP

� TCP and UDP:  Port Number

� Well known ports indicate FTP, SMTP, HTTP, SIP, many others

� Dynamically negotiated ports indicate specific processes (for these and 
other protocols)

� HTTP:  Host field

� Indicates “virtual web server” within a physical web server

� More like an identifier than a demuxing field



IP (Internet Protocol)

� Three services: 
� Unicast:  transmits a packet to a specific host
� Multicast:  transmits a packet to a group of hosts
� Anycast:  transmits a packet to one of a group of hosts 

(typically nearest)

� Destination and source identified by the IP address 
(32 bits for IPv4, 128 bits for IPv6)

� All services are unreliable
� Packets may be dropped, duplicated, and received in a 

different order 
� Best-effort service



IP address

� The raison d'être for the IP packet

� Both source and destination address may be modified in 
transit 
� By NAT boxes

� But even so, sending a packet back to the source IP address will get the 
packet there

� Unless source address is spoofed, which can easily be done

� IP (unicast) address is hierarchical, but host can treat it as a 
flat identifier
� (almost…needs to know network mask)

� Can’t tell how close or far a host is by looking at its IP address



IP(v4) address format

� In binary, a 32-bit integer

� In text, this:  “128.52.7.243”
� Each decimal digit represents 8 bits (0 – 255)

� “Private” addresses are not globally unique:
� Used behind NAT boxes

� 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16

� Multicast addresses start with 1110 as the first 4 bits (Class 
D address)
� 224.0.0.0/4

� Unicast and anycast addresses come from the same space



UDP (User Datagram Protocol)

� Runs above IP

� Same unreliable service as IP

� Packets can get lost anywhere:

� Outgoing buffer at source

� Router or link

� Incoming buffer at destination

� But adds port numbers

� Why?

� Also a checksum, optional



TCP (Transmission Control Protocol)

� Runs above IP
� Port number and checksum like UDP

� Service is in-order byte stream
� Application does not absolutely know how the bytes are packaged in 

packets

� Flow control and congestion control

� Connection setup and teardown phases
� Why are these needed?

� Can be considerable delay between bytes in at source and 
bytes out at destination
� Because of timeouts and retransmissions

� Works only with unicast (not multicast or anycast)



UDP vs. TCP

� UDP is more real-time
� Packet is sent or dropped, but is not delayed

� UDP has more of a “message” flavor
� One packet = one message

� But must add reliability mechanisms over it

� TCP is great for transferring a file or a bunch of email, but 
kind-of frustrating for messaging
� Interrupts to application don’t conform to message boundaries

� No “Application Layer Framing”

� TCP is vulnerable to DoS (Denial of Service) attacks
� Why?



SCTP (Stream Control Transmission 
Protocol)

� IETF standard

� Overcomes many limitations of TCP

� Motivation is SS7 signaling over IP

� Probably over-designed

� Message oriented---supports message framing

� Multiple streams for a given session

� Interruption in one stream does not effect the others

� Cookie mechanism for DoS attacks

� By no means universally available



Revisiting the end-to-end argument

In a nutshell:

If you want something done right, you gotta do it 
yourself

“End-To-End Arguments In System Design”, Saltzer,  Reed, 
Clark, ACM Transactions on Computer Systems, 1984



End-to-end argument is mostly about 
reliability

� Early 80’s:  industry assumed that the network 
should do everything

� Guaranteed delivery, sequencing, duplicate suppression

� If the network does it, the end system doesn’t have to

� X.25, for example



The network doesn’t always work right

� Applications had to check to see if the network 
really did its job…

� … and repair the problem if the network didn’t do its 
job

� End-to-end insight:

If the application has to do it anyway, why do it in the 

network at all?

� Keep the network simple



So when should the network do more?

� When you get performance gains
� Link-level retransmissions over a lossy link are faster than E2E 

retransmissions

� Also
� When the network doesn’t trust the end user

� Corporation or military encrypt a link because the end user might not 
do it

� Some things just can’t be done at the end
� (IP) Routing algorithms

� Billing

� Membership agreement



The E2E Debate

� E2E followed with religious fervor in IETF

� Often applied to addressing, which has nothing to do with the original 
E2E argument
� Reaction to NAT was to fix the network (IPv6), actively discourage “fixing” the 

host

� Laudable goal, but in a way opposite of E2E “spirit”

� Mis-applied in network neutrality debate 
� (treat all network content equally, do not discriminate)

� Purported E2E Claim: network should be “dumb” and not muck with app data

� Sometimes performance hurt in deference to E2E
� Compression of Voice over IP (RTP, Real Time Protocol)

� Mobile IP



Wireshark 

� Great open-source tool for understanding and 
debugging protocol behavior

� www.wireshark.org

� Features:

� Trace packets over the wire

� Sophisticated filtering language

� Display contents of each protocol

� Dump contents into file

� Display TCP conversation



Captured Frames



TCP conversation



Supports over 300 protocols

802.11 MGT, AARP, AFP, AFS (RX), AH, AIM, AJP13, AODV, AODV6, ARCNET, ARP/RARP, ASAP, ASP, ATM, ATM LANE, ATP, AVS 

WLANCAP, Auto-RP, BACapp, BACnet, BEEP, BGP, BOOTP/DHCP, BOOTPARAMS, BOSSVR, BROWSER, BVLC, CDP, CDS_CLERK, 

CFLOW, CGMP, CHDLC, CLEARCASE, CLNP, CLTP, CONV, COPS, COTP, CPHA, CUPS, CoSine, DCCP, DCERPC, DCERPC_NT, 

DCE_DFS, DDP, DDTP, DEC_STP, DFS, DHCPv6, DLSw, DNS, DNSSERVER, DSI, DTSPROVIDER, DTSSTIME_REQ, DVMRP, Data, 

Diameter, EAP, EAPOL, EIGRP, EPM, ESIS, ESP, Ethernet, FC, FC ELS, FC-SWILS, FCIP, FCP, FDDI, FIX, FLDB, FR, FTP, FTP-DATA, 

FTSERVER, FW-1, Frame, GIOP, GMRP, GNUTELLA, GRE, GSS-API, GTP, GTPv0, GTPv1, GVRP, H.261, H1, HCLNFSD, HSRP, HTTP, 

HyperSCSI, IAPP, IB, ICAP, ICMP, ICMPv6, ICP, ICQ, IEEE 802.11, IGMP, IGRP, ILMI, IMAP, IP, IPComp, IPFC, IPP, IPX, IPX MSG, IPX RIP, 

IPX SAP, IPv6, IRC, ISAKMP, ISDN, ISIS, ISL, ISUP, IUA, KLM, KRB5, KRB5RPC, L2TP, LACP, LANMAN, LAPB, LAPBETHER, LAPD, LDAP, 

LDP, LLAP, LLC, LMI, LMP, LPD, LSA, LSA_DS, Lucent/Ascend, M2PA, M2TP, M2UA, M3UA, MAPI, MGMT, MMSE, MOUNT, MPEG1, MPLS, 

MRDISC, MS Proxy, MSDP, MSNIP, MTP2, MTP3, Mobile IP, Modbus/TCP, NBDS, NBIPX, NBNS, NBP, NBSS, NCP, NDMP, NDPS, 

NETLOGON, NFS, NFSACL, NFSAUTH, NIS+, NIS+ CB, NLM, NMPI, NNTP, NSPI, NTLMSSP, NTP, NetBIOS, Null, OSPF, OXID, PCNFSD, 

PFLOG, PGM, PIM, POP, PPP, PPP BACP, PPP BAP, PPP CBCP, PPP CCP, PPP CDPCP, PPP CHAP, PPP Comp, PPP IPCP, PPP IPV6CP, 

PPP LCP, PPP MP, PPP MPLSCP, PPP PAP, PPP PPPMux, PPP PPPMuxCP, PPP VJ, PPPoED, PPPoES, PPTP, Portmap, Prism, Q.2931, 

Q.931, QLLC, QUAKE, QUAKE2, QUAKE3, QUAKEWORLD, RADIUS, RANAP, REMACT, REP_PROC, RIP, RIPng, RMI, RPC, 

RPC_BROWSER, RPC_NETLOGON, RPL, RQUOTA, RSH, RSTAT, RSVP, RS_ACCT, RS_ATTR, RS_PGO, RS_REPADM, RS_REPLIST, 

RS_UNIX, RTCP, RTMP, RTP, RTSP, RWALL, RX, Raw, Rlogin, SADMIND, SAMR, SAP, SCCP, SCCPMG, SCSI, SCTP, SDP, SECIDMAP, 

SGI MOUNT, SIP, SKINNY, SLARP, SLL, SMB, SMB Mailslot, SMB Pipe, SMPP, SMTP, SMUX, SNA, SNAETH, SNMP, SPNEGO-KRB5, 

SPOOLSS, SPRAY, SPX, SRVLOC, SRVSVC, SSCOP, SSL, STAT, STAT-CB, STP, SUA, Serialization, SliMP3, Socks, Spnego, Syslog, 

TACACS, TACACS+, TAPI, TCP, TDS, TELNET, TFTP, TIME, TKN4Int, TNS, TPKT, TR MAC, TSP, Token-Ring, UBIKDISK, UBIKVOTE, UCP, 

UDP, V.120, VLAN, VRRP, VTP, Vines, Vines FRP, Vines SPP, WCCP, WCP, WHO, WINREG, WKSSVC, WSP, WTLS, WTP, X.25, X11, 

XDMCP, XOT, XYPLEX, YHOO, YPBIND, YPPASSWD, YPSERV, YPXFR, ZEBRA, ZIP, cds_solicit, cprpc_server, dce_update, iSCSI, roverride, 

rpriv, rs_misc, rsec_login, 



Summary

� TCP, UDP, IP provide a nice set of basic tools
� Key is to understand the concept of protocol layering

� But problems/limitations exist
� IP has been compromised by NAT, can’t be used as a stable identifier

� Firewalls can block communications

� TCP has vulnerabilities

� Network performance highly variable

� Next we’ll look at other forms of naming and identification
� Help overcome limitations of IP


