
Distributed Systems
1

Lecture VIII

CAP and Clouds

Everyone talking about clouds

� What are these things?
� Fancy buzzword for massive data centers with distributed systems

technologies?

� Any form of computing accessible over a net?

� Any activity involving access to and using massive data sets?

� Outsourcing technology?
� i.e., ship data and computation to a remote place where computing and

storage are cheap?

� All of the above?

� Support web systems, social networks, e-commerce, and many others
� Significant examples owned by big companies (e.g., Amazon, Microsoft.

Google)
� Can enable start-ups to be successful “overnight”

� Scalable high assurance applications not well-supported yet
� ATC, banking, mgt of electronic records, military apps in the cloud?

How are clouds structured?
3

� Clients talk to clouds using web browsers or the web
services standards

� But this only gets us to the outer “skin” of the cloud data
center, not the interior

� Consider Amazon: it can host entire company web sites
(like Target.com or Netflix.com), data, servers (EC2)
and even user-provided virtual machines!

� Brings up performance, security, privacy issues

Big picture overview

� Client requests are
handled in the “first
tier” by
� PHP or ASP pages

� Associated logic

� These lightweight
services are fast
and very nimble

� Much use of caching:
the second tier

1
11

1

1
1

1

1

1
Index

DB

2
2

Shards

2
2

2

2

2

2

4

Clouds have multiple tiers
5

� Tier 1: Very lightweight, responsive “web page builders” that can
also route (or handle) “web services” method invocations. Limited
to “soft state”.

� Tier 2: (key,value) stores and services that support tier 1.
Basically, various forms of caches.

� Inner tiers: Online services that handle requests not handled in the
first tier. These can store persistent files, run transactional
services. But we shield them from load.

� Back end: Runs offline services that do things like indexing the
web overnight for use by tomorrow morning’s tier-1 services.

Replication
6

� A central feature of the cloud

� To handle more work, make more copies
� In the first tier, which is highly elastic, data center

management layer pre-positions inactive copies of virtual
machines for the services we might run
� Exactly like installing a program on some machine

� If load surges, creating more instances just entails
� Running more copies on more nodes
� Adjusting the load-balancer to spray requests to new nodes

� If load drops... just kill the unwanted copies!
� Little or no warning. Discard any “state” they created

locally.

Replication is about keeping copies
7

� The term may sound fancier but the meaning isn’t

� Whenever we have many copies of something we say
that we’ve replicated that thing

� Usually “replica” implies “identical”

� Instead of replication we use the term redundancy for things
like alternative communication paths (e.g. if we have two
distinct TCP connections from some client system to the cloud)

� Redundant things might not be identical. Replicated things
usually play identical roles and have equivalent data.

Things we can replicate in a cloud
8

� Files or other forms of data used to handle requests
� If all our first tier systems replicate the data needed for end-

user requests, then they can handle all the work!

� Two cases:

1. data is “write once” like a photo

2. data evolves over time, like the current inventory count for the latest
iPad in the Apple store

� Computation
� Here we replicate some request and then spread work of

computing the answer over multiple programs in the cloud

� We benefit from parallelism by getting a faster answer

� Can also provide fault-tolerance

Shards
9

� The caching components running in tier two are
central to the responsiveness of tier-one services

� Use cached data at first-tier whenever possible so the
inner services are shielded from “online” load

� We need to replicate data within our cache to spread
loads and provide fault-tolerance

� But not everything needs to be “fully” replicated. Hence
we often use “shards” with just a few replicas

1

11
1

1

1

1

1

1

Inde
x

DB

2
2

Shards

2
2

2

2

2

2

Sharding used in many ways
10

� The second tier could be any of a number of caching
services:
� Memcached: a sharable in-memory key-value store
� Other kinds of DHTs that use key-value APIs
� Dynamo: A replicated key-value service created by

Amazon as a scalable way to represent the shopping cart
and similar data

� BigTable: A very elaborate key-value store created by
Google and used not just in tier-two but throughout their
“GooglePlex” for sharing information

� Notion of sharding is cross-cutting
� Most of these systems replicate data to some degree

Do we always need to shard data?
11

� Imagine a tier-one service running on 100k nodes
� Can it ever make sense to replicate data on the entire set?

� Yes, if some kinds of information might be so valuable
that almost every external request touches it.
� Must think hard about patterns of data access and use
� Some information needs to be heavily replicated to offer

super fast access on vast numbers of nodes

� We want the level of replication to match level of load
and the degree to which the data is needed on the
critical path

Concept of “consistency”
12

� A replicated entity behaves in a consistent manner
if it mimics the behavior of a non-replicated entity

� E.g. if I ask it some question, and it answers, and then
you ask it that question, your answer is either the same
or reflects some update to the underlying state

� Many copies but acts like just one

� An inconsistent service is one that seems “broken”

Consistency lets us ignore implementation

A consistent distributed system will often have many

components, but users observe behavior

indistinguishable from that of a single-component

reference system

13

Reference Model Implementation

Dangers of Inconsistency

� Inconsistency causes bugs
� Clients would never be able to

trust servers… a free-for-all

� Weak or “best effort” consistency?
� Common in today’s cloud replication schemes

� To avoid delaying the “critical path”

� But strong security guarantees demand consistency

� Would you trust a medical electronic-health records system
or a bank that used “weak consistency” for better
scalability?

14 My rent check bounced?

That can’t be right!

Jason Fane Properties 1150.00

Sept 2009 Tommy Tenant

Concept of “critical path”
15

� Focus on delay until a client receives a reply

� Critical path are actions that contribute to this delay

Update the monitoring and alarms

criteria for Mrs. Marsh as follows…

Confirmed

Response delay seen by

end-user would include

Internet latencies
Service response

delay

Service instance

What if a request triggers updates?
16

� If the updates are done “asynchronously” we might
not experience much delay on the critical path

� Cloud systems often work this way

� Avoids waiting for slow services to process the updates
but may force the tier-one service to “guess” the
outcome

� For example, could optimistically apply update to value
from a cache and just hope this was the right answer

� Many cloud systems use these sorts of “tricks” to
speed up response time

First-tier parallelism
17

� Parallelism is vital to speeding up first-tier services

� Key question:
� Request has reached some service instance X

� Will it be faster…
� … For X to just compute the response

� … Or for X to subdivide the work by asking subservices to do
parts of the job?

� Glimpse of an answer
� Werner Vogels, CTO at Amazon, commented in one talk

that many Amazon pages have content from 50 or more
parallel subservices that ran, in real-time, on your request!

Concept of “critical path”
18

� In this example of a parallel read-only request, the
critical path centers on the middle “subservice”

Check value of blood sugar alarm

for Mrs. Marsh…

Confirmed

Response delay seen by

end-user would include

Internet latencies
Service response

delay

Service instance

Critical path

Critical path

Critical path

With replicas we just load balance
19

Update the monitoring and alarms

criteria for Mrs. Marsh as follows…

Confirmed

Response delay seen by

end-user would include

Internet latencies
Service response

delay

Service instance

But when we add updates….
20

Update the monitoring and alarms

criteria for Mrs. Marsh as follows…

Confirmed

Response delay seen by

end-user would also

include Internet latencies

not measured in our work
Now the delay associated with

waiting for the multicasts to finish

could impact the critical path

even in a single service

Send

Send

Send

Execution timeline for an

individual first-tier replica

Soft-state first-tier service

A B C D

What if we send updates without
waiting?

21

� Several issues now arise

� Are all the replicas applying updates in the same order?

� Might not matter unless the same data item is being changed

� But then we clearly need some “agreement” on order

� What if the leader replies to the end user but then
crashes and it turns out that the updates were lost in the
network?

� Data center networks are surprisingly lossy at times

� Also, bursts of updates can queue up

� Such issues result in inconsistency

Eric Brewer’s CAP theorem
22

� In a famous 2000 keynote talk at ACM PODC, Eric
Brewer proposed that “you can have just two from
Consistency, Availability and Partition Tolerance”

Eric Brewer’s CAP theorem
23

� Consistency

� any data item has a value reached by applying all prior
updates in some agreed upon order

� Must never forget an update once it has been accepted and
client has been sent a reply (durability)

� Availability

� Service should keep running and offer rapid responses even
if a few replicas have crashed/are unresponsive

� No client ever left waiting (even if can’t get needed data
now)

� Partition tolerance

� System should continue to run even if net fails, cutting off
some nodes from the others

Eric Brewer’s CAP theorem
24

� Brewer argues that data centers need very snappy
response, hence availability is paramount

� And they should be responsive even if a transient fault
makes it hard to reach some service (hence, partition
tolerance)

� Thus, should use cached data to respond faster even if
the cached entry can’t be validated and might be stale,
wrong, or partially missing

� Conclusion: weaken consistency for faster response

CAP theorem
25

� A proof of CAP was later introduced by MIT’s Seth
Gilbert and Nancy Lynch

� Suppose a data center service is active in two parts of
the country with a wide-area Internet link between them

� We temporarily cut the link (“partitioning” the network)

� And present the service with conflicting requests

� The replicas can’t talk to each other so can’t sense
the conflict

� If they respond at this point, inconsistency arises

Is inconsistency a bad thing?
26

� How much consistency is really needed in the first
tier of the cloud?

� Think about YouTube videos. Would consistency be an
issue here?

� What about the Amazon “number of units available”
counters. Will people notice if those are a bit off?

� Puzzle: can you come up with a general policy for
knowing how much consistency a given thing needs?

THE WISDOM OF
THE SAGES

27

eBay’s Five Commandments
28

� As described by Randy Shoup at LADIS 2008

Thou shalt…

1. Partition Everything

2. Use Asynchrony Everywhere

3. Automate Everything

4. Remember: Everything Fails

5. Embrace Inconsistency

Vogels at the Helm
29

� Werner Vogels is CTO at Amazon.com…

� He was involved in building a new shopping cart
service

� The old one used strong consistency for replicated data

� New version was build over a DHT, like Chord, and has
weak consistency with eventual convergence

� This weakens guarantees… but

� Speed matters more than correctness

James Hamilton’s advice
30

� Key to scalability is decoupling,
loosest possible synchronization

� Any synchronized mechanism is a risk

� His approach: create a committee

� Anyone who wants to deploy a highly consistent
mechanism needs committee approval

…. They don’t meet very often

VP & Engineer,
Amazon

Consistency
31

Consistency technologies

just don’t scale!

But inconsistency brings risks too!

� Inconsistency causes bugs

� Clients would never be able to
trust servers… a free-for-all

� Weak or “best effort” consistency?

� Strong security guarantees demand consistency

� Would you trust a medical electronic-health records
system or a bank that used “weak consistency” for
better scalability?

My rent check bounced?

That can’t be right!

Jason Fane Properties 1150.00

Sept 2009 Tommy Tenant

32

Puzzle: Is CAP valid in the cloud?
33

� Facts: data center networks don’t normally
experience partitioning failures
� Wide-area links do fail

� But most services are designed to do updates in a
single place and mirror read-only data at others

� So the CAP scenario used in the proof can’t arise

� Brewer’s argument about not waiting for a slow
service to respond does make sense
� Argues for using any single replica you can find

Example – new X-Box released

� New X-Box released weeks before X-mas

� 100,000s of parents visit web page on Amazon

� Amazon does not want to miss a single sale

� Options

� Perfect accuracy: delay response by forcing user to wait while
web-page builder (first-tier) asks inventory service (inner tier) to
reserve X-Box

� not all reservations pan out, may lose real sales this way

� Optimistic mode: book sale without checking inventory

� Highly responsive service with some risk of overselling

� Amazon: Each 100ms delay reduces sales by 1%!

