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Lecture VIII

CAP and Clouds



Everyone talking about clouds

� What are these things?
� Fancy buzzword for massive data centers with distributed systems

technologies?

� Any form of computing accessible over a net?

� Any activity involving access to and using massive data sets?

� Outsourcing technology?
� i.e., ship data and computation to a remote place where computing and 

storage are cheap?

� All of the above?

� Support web systems, social networks, e-commerce, and many others
� Significant examples owned by big companies (e.g., Amazon, Microsoft. 

Google)
� Can enable start-ups to be successful “overnight”

� Scalable high assurance applications not well-supported yet
� ATC, banking, mgt of electronic records, military apps in the cloud?



How are clouds structured?
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� Clients talk to clouds using web browsers or the web 
services standards

� But this only gets us to the outer “skin” of the cloud data 
center, not the interior

� Consider Amazon: it can host entire company web sites 
(like Target.com or Netflix.com), data, servers (EC2) 
and even user-provided virtual machines!

� Brings up performance, security, privacy issues



Big picture overview

� Client requests are
handled in the “first
tier” by
� PHP or ASP pages

� Associated logic

� These lightweight 
services are fast
and very nimble

� Much use of caching:
the second tier
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Clouds have multiple tiers
5

� Tier 1: Very lightweight, responsive “web page builders” that can 
also route (or handle) “web services” method invocations.  Limited 
to “soft state”.

� Tier 2: (key,value) stores and services that support tier 1.  
Basically, various forms of caches.

� Inner tiers: Online services that handle requests not handled in the 
first tier.  These can store persistent files, run transactional
services.  But we shield them from load.

� Back end: Runs offline services that do things like indexing the
web overnight for use by tomorrow morning’s tier-1 services.



Replication
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� A central feature of the cloud

� To handle more work, make more copies
� In the first tier, which is highly elastic, data center 

management layer pre-positions inactive copies of virtual 
machines for the services we might run
� Exactly like installing a program on some machine

� If load surges, creating more instances just entails
� Running more copies on more nodes
� Adjusting the load-balancer to spray requests to new nodes

� If load drops... just kill the unwanted copies!
� Little or no warning.  Discard any “state” they created 

locally.



Replication is about keeping copies
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� The term may sound fancier but the meaning isn’t

� Whenever we have many copies of something we say 
that we’ve replicated that thing

� Usually “replica” implies “identical”

� Instead of replication we use the term redundancy for things 
like alternative communication paths (e.g. if we have two 
distinct TCP connections from some client system to the cloud)

� Redundant things might not be identical.  Replicated things 
usually play identical roles and have equivalent data.



Things we can replicate in a cloud
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� Files or other forms of data used to handle requests
� If all our first tier systems replicate the data needed for end-

user requests, then they can handle all the work!

� Two cases:

1. data is “write once” like a photo 

2. data evolves over time, like the current inventory count for the latest 
iPad in the Apple store

� Computation
� Here we replicate some request and then spread work of 

computing the answer over multiple programs in the cloud

� We benefit from parallelism by getting a faster answer

� Can also provide fault-tolerance



Shards
9

� The caching components running in tier two are
central to the responsiveness of tier-one services

� Use cached data at first-tier whenever possible so the 
inner services are shielded from “online” load

� We need to replicate data within our cache to spread 
loads and provide fault-tolerance

� But not everything needs to be “fully” replicated. Hence 
we often use “shards” with just a few replicas
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Sharding used in many ways
10

� The second tier could be any of a number of caching 
services:
� Memcached: a sharable in-memory key-value store
� Other kinds of DHTs that use key-value APIs
� Dynamo: A replicated key-value service created by 

Amazon as a scalable way to represent the shopping cart 
and similar data

� BigTable: A very elaborate key-value store created by 
Google and used not just in tier-two but throughout their 
“GooglePlex” for sharing information

� Notion of sharding is cross-cutting
� Most of these systems replicate data to some degree



Do we always need to shard data?
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� Imagine a tier-one service running on 100k nodes
� Can it ever make sense to replicate data on the entire set?

� Yes, if some kinds of information might be so valuable 
that almost every external request touches it.  
� Must think hard about patterns of data access and use
� Some information needs to be heavily replicated to offer 

super fast access on vast numbers of nodes

� We want the level of replication to match level of load 
and the degree to which the data is needed on the 
critical path



Concept of “consistency”
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� A replicated entity behaves in a consistent manner 
if it mimics the behavior of a non-replicated entity

� E.g. if I ask it some question, and it answers, and then 
you ask it that question, your answer is either the same 
or reflects some update to the underlying state

� Many copies but acts like just one

� An inconsistent service is one that seems “broken”



Consistency lets us ignore implementation

A consistent distributed system will often have many 

components, but users observe behavior 

indistinguishable from that of a single-component 

reference system
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Reference Model Implementation



Dangers of Inconsistency

� Inconsistency causes bugs
� Clients would never be able to 

trust servers… a free-for-all

� Weak or “best effort” consistency?
� Common in today’s cloud replication schemes

� To avoid delaying the “critical path”

� But strong security guarantees demand consistency

� Would you trust a medical electronic-health records system 
or a bank that used “weak consistency” for better 
scalability?

14 My rent check bounced?

That can’t be right!

Jason Fane Properties               1150.00
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Concept of “critical path”
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� Focus on delay until a client receives a reply

� Critical path are actions that contribute to this delay

Update the monitoring and alarms

criteria for Mrs. Marsh as follows…

Confirmed

Response delay seen by 

end-user would include 

Internet latencies
Service response

delay

Service instance



What if a request triggers updates?
16

� If the updates are done “asynchronously” we might 
not experience much delay on the critical path

� Cloud systems often work this way

� Avoids waiting for slow services to process the updates 
but may force the tier-one service to “guess” the 
outcome

� For example, could optimistically apply update to value 
from a cache and just hope this was the right answer

� Many cloud systems use these sorts of “tricks” to 
speed up response time



First-tier parallelism
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� Parallelism is vital to speeding up first-tier services

� Key question:
� Request has reached some service instance X

� Will it be faster…
� … For X to just compute the response

� … Or for X to subdivide the work by asking subservices to do 
parts of the job?

� Glimpse of an answer
� Werner Vogels, CTO at Amazon, commented in one talk 

that many Amazon pages have content from 50 or more 
parallel subservices that ran, in real-time, on your request!



Concept of “critical path”
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� In this example of a parallel read-only request, the 
critical path centers on the middle “subservice”

Check value of blood sugar alarm

for Mrs. Marsh…

Confirmed

Response delay seen by 

end-user would include 

Internet latencies
Service response

delay

Service instance

Critical path

Critical path

Critical path



With replicas we just load balance
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Update the monitoring and alarms

criteria for Mrs. Marsh as follows…

Confirmed

Response delay seen by 

end-user would include 

Internet latencies
Service response

delay

Service instance



But when we add updates….
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Update the monitoring and alarms 

criteria for Mrs. Marsh as follows…

Confirmed

Response delay seen by 

end-user would also 

include Internet latencies 

not measured in our work
Now the delay associated with 

waiting for the multicasts to finish 

could impact the critical path 

even in a single service

Send

Send

Send

Execution timeline for an 

individual  first-tier replica

Soft-state first-tier service

A              B              C              D



What if we send updates without 
waiting?
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� Several issues now arise

� Are all the replicas applying updates in the same order?

� Might not matter unless the same data item is being changed

� But then we clearly need some “agreement” on order

� What if the leader replies to the end user but then 
crashes and it turns out that the updates were lost in the 
network?

� Data center networks are surprisingly lossy at times

� Also, bursts of updates can queue up

� Such issues result in inconsistency



Eric Brewer’s CAP theorem
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� In a famous 2000 keynote talk at ACM PODC, Eric 
Brewer proposed that “you can have just two from 
Consistency, Availability and Partition Tolerance”



Eric Brewer’s CAP theorem
23

� Consistency 

� any data item has a value reached by applying all prior 
updates in some agreed upon order

� Must never forget an update once it has been accepted and 
client has been sent a reply (durability)

� Availability

� Service should keep running and offer rapid responses even 
if a few replicas have crashed/are unresponsive

� No client ever left waiting (even if can’t get needed data 
now)

� Partition tolerance

� System should continue to run even if net fails, cutting off 
some nodes from the others



Eric Brewer’s CAP theorem
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� Brewer argues that data centers need very snappy 
response, hence availability is paramount

� And they should be responsive even if a transient fault 
makes it hard to reach some service (hence, partition 
tolerance)

� Thus, should use cached data to respond faster even if 
the cached entry can’t be validated and might be stale, 
wrong, or partially missing

� Conclusion: weaken consistency for faster response



CAP theorem
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� A proof of CAP was later introduced by MIT’s Seth 
Gilbert and Nancy Lynch

� Suppose a data center service is active in two parts of 
the country with a wide-area Internet link between them

� We temporarily cut the link (“partitioning” the network)

� And present the service with conflicting requests

� The replicas can’t talk to each other so can’t sense 
the conflict

� If they respond at this point, inconsistency arises



Is inconsistency a bad thing?
26

� How much consistency is really needed in the first 
tier of the cloud?

� Think about YouTube videos.  Would consistency be an 
issue here?

� What about the Amazon “number of units available”
counters.  Will people notice if those are a bit off?

� Puzzle: can you come up with a general policy for 
knowing how much consistency a given thing needs?



THE WISDOM OF 
THE SAGES
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eBay’s Five Commandments
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� As described by Randy Shoup at LADIS 2008

Thou shalt…

1. Partition Everything

2. Use Asynchrony Everywhere

3. Automate Everything

4. Remember: Everything Fails

5. Embrace Inconsistency



Vogels at the Helm
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� Werner Vogels is CTO at Amazon.com…

� He was involved in building a new shopping cart 
service

� The old one used strong consistency for replicated data

� New version was build over a DHT, like Chord, and has 
weak consistency with eventual convergence

� This weakens guarantees… but 

� Speed matters more than correctness



James Hamilton’s advice
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� Key to scalability is decoupling, 
loosest possible synchronization

� Any synchronized mechanism is a risk

� His approach: create a committee

� Anyone who wants to deploy a highly consistent 
mechanism needs committee approval

…. They don’t meet very often

VP & Engineer,
Amazon



Consistency
31

Consistency technologies 

just don’t scale!



But inconsistency brings risks too!

� Inconsistency causes bugs

� Clients would never be able to 
trust servers… a free-for-all

� Weak or “best effort” consistency?

� Strong security guarantees demand consistency

� Would you trust a medical electronic-health records 
system or a bank that used “weak consistency” for 
better scalability?

My rent check bounced?

That can’t be right!

Jason Fane Properties               1150.00

Sept 2009                Tommy Tenant

32



Puzzle: Is CAP valid in the cloud?
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� Facts: data center networks don’t normally 
experience partitioning failures
� Wide-area links do fail

� But most services are designed to do updates in a 
single place and mirror read-only data at others

� So the CAP scenario used in the proof can’t arise

� Brewer’s argument about not waiting for a slow 
service to respond does make sense
� Argues for using any single replica you can find



Example – new X-Box released

� New X-Box released weeks before X-mas

� 100,000s of parents visit web page on Amazon

� Amazon does not want to miss a single sale

� Options

� Perfect accuracy: delay response by forcing user to wait while 
web-page builder (first-tier) asks inventory service (inner tier) to 
reserve X-Box

� not all reservations pan out, may lose real sales this way

� Optimistic mode: book sale without checking inventory

� Highly responsive service with some risk of overselling

� Amazon: Each 100ms delay reduces sales by 1%!


