
PRACTICAL BYZANTINE FAULT

TOLERANCE
(THE BYZANTINE GENERALS PROBLEM)

The Byzantine Generals Problem

(Lamport, Shostak, Pease, 1982)

 The setting: There are n generals, one of them is the

commanding general. Generals can send (and receive

messages from other generals)

 The problem: Develop a protocol for the commanding general to

send an order to his n-1 lieutenant generals such that

-IC1. All loyal lieutenants obey the same order.

-IC2. If the commanding general is loyal, then every loyal

lieutenant obeys the order he sends.

 The adversary: Any of the generals could be traitors, i.e., could

send inconsistent messages regarding the order to the other

generals

 Note nuanced difference from consensus problem

The Byzantine Generals Problem

Attack!

Wait…

Attack!

Attack!
No, wait!

Surrender!

Wait…

Impossibility with 3 generals,

1traitor

Attack!

Attack?

Retreat?

• For n=3, m=1 there is no

solution

Impossibility Results

 For n = 3 generals and 1 traitor, there is no solution

(protocol). This is because a loyal lieutenant cannot

distinguish who is the traitor when he gets conflicting

information from the commander and the other lieutenant.

Let's call this the 3-Generals Problem.

 BGP for n < 3m+1 generals and m traitors can be reduced

to the 3 - generals problem, with each of the Byzantine

generals simulating at most m lieutenants and taking the

same decision as the loyal lieutenants they simulate. Thus

BGP for n < 3m+1 and m traitors is not solvable.

 Reaching approximation is as hard as reaching agreement.

A Solution with oral messages for n>3m

 A solution for BGP with n>3m nodes and up to m traitors, is

given

 Oral message system properties:

 A1. Every message that is sent is delivered correctly. -> No message

loss.

 A2. The receiver of a message knows who sent it. -> Completely

connected network with reliable links(due to A1).

 A3. The absence of a message can be detected. -> Synchronous

system only.

 Every general can send a message to every other general.

A Solution with oral messages for n>3m

 Solution in brief:

 uses a function “majority” which takes in a set of values and returns the

value that is the majority among them (a possible implementation -

median of the values).

 uses 'rounds' in each of which a general broadcasts the value he has

received in the earlier round to all the other generals through whom

the value has not passed before he received it.

 when returning from the round, for each j, any two loyal lieutenants

receive the same vector of values {v1, ... v(n-1)}. As the majority of the

loyal lieutenants' values in these is ensured, applying the majority

function on {v1, ... v(n-1)} to obtain vn preserves the above fact (that

any two loyal lieutenants receive the same vector of values {v1, ... vn}).

This ensures that BGP is solved.

 Note: If the commander is not a traitor, we can be done in 2 rounds. If

the commander is a traitor, you may need up to m+1 rounds.

BGP Solution with Oral Messages

A solution with (unforgable) signed

messages

 The difficulty of BGP is in the ability of a traitor lieutenant to

lie about the commander's order.

 If we can restrict this ability, BGP is solvable with any number of

traitors as long as their maximum number is known.

 Signed messages:

 Extra A4 assumption needed in addition to the 3 assumptions made

in the solution with oral messages

 A loyal general's signature cannot be forged, any alteration can

be detected. This means a traitor can drop a message, but can't

change it

 Any one can verify the authenticity of a signature. This means that

no one can fool a general

 Again, assume a fully connected message graph among the

generals.

A solution with (unforgable) signed messages

with m traitors and any n generals

 Solution in brief:

 Uses a majority-like function called choice.

 Τhe commander sends a signed order to lieutenants

 Ιf a lieutenant receives an order from someone (either from

commander directly, or from other lieutenants), he verifies it

and then puts it in a set V if it's not already there. Relay the

order if there are less than m distinct signatures on the

order.

 Everyone halts at round m+1, and uses choice(V) as the

desired action

 The algorithm is to make all loyal lieutenants keep the same set of V,

thus choice(V) is the same.

 If the commander is loyal, all loyal lieutenants have the correct order by

round 1 and by unforgablity no more orders can be produced.

 If the commander is not loyal, by running the algorithm to round m+1,

at least one loyal lieutenant will get the order before round m (because

there are only m traitors). And that loyal lieutenant will send it to all

others. In short, if one loyal lieutenant gets an order, all loyal lieutenants

will get it in the next round.

A solution with (unforgable) signed messages

with m traitors and any n generals

A solution with (unforgable) signed messages

with m traitors and any n generals

BGP Theorems

 Theorem 1. For any m, Algorithm OM(m) satisfies
conditions IC1 and IC2 if there are more than 3m
generals and at most m traitors

 Theorem 2. For any m, Algorithm SM(m) solves the
Byzantine Generals Problem if there are at most m
traitors

 Both require message paths of length up to m+1
(very expensive)

 Both require that absence of messages must be
detected (A3) via time-out (vulnerable to DoS)

Relaxing the assumption on full-

connectivity

 Previous 2 solutions can be extended to relax the assumption

that the message graph among the generals is fully connected.

 Oral messages: Solution with oral messages is extended to

solve BGP with up to m traitors in a p-regular graph with m>0

and p>3m-1.

 Unforgable messages: Can solve BGP with up to m traitors in

(m+d-1) rounds, where d is the diameter of the subgraph of

loyal generals.

 Assumption: subgraph of loyal generals is connected (this can be

relaxed by relaxing the problem statement of BGP)

Practical use of BGP in real world

systems

 The best way to provide fault-tolerant decision-making in

redundant systems is by majority voting.

 A faulty input device may generate meaningless inputs, but majority

voting would ensure that the same meaningless values are used.

 For majority voting to yield a reliable system, the following 2

conditions must be satisfied

 All non-faulty processors must use the same input value

 If input unit is non-faulty, then all non-faulty processes use the value it

provides

 But these are just the requirements of the BGP!

 So we can apply the above solutions to the BGP in real-life

Practicality of assumptions made?

 A1. Every message that is sent is delivered correctly. This

means no message loss.

 In real life, link failures occur. However, link failures are

indistinguishable from failures of processors, therefore we

can count the link failures as one of the m.

 Signed message is insensitive to link failures because no

message can be forged even if links fail.

 A2. The receiver of a message knows who sent it. This means

we have a completely connected network with reliable links

(due to A1).

 What is actually required is that no traitor can forge a non-

faulty process' message.

Practicality of assumptions made?

 A3. The absence of a message can be detected. This means

we have a synchronous system only.

 In an asynchronous system, this condition cannot be satisfied.

It is usually implemented via time-outs.

 A4. A loyal general's signature cannot be forged, any

alteration can be detected.

 If processor is non-faulty, then no faulty processor can generate

S(M). This can never be completely guaranteed, but its probability

can be reduced

 Given M and X, any one can verify if X == S(M). This is doable in

real world.

Questions

 Graph connectivity. Are p-regular topologies that

frequent ? Can we extend the BGP solutions to any

network topology ? Has it been extended to any

other topologies ?

 Value of m: How would one obtain a reasonable

value for maximum m in a practical system (note

that this maximum number is required even in the

solution with signed messages).

 Synchronous/asynchronous systems: How many

synchronous system do we really use (SMP

machines, and?) How about asynchronous systems ?

Questions

 Further work after this paper:

 What other solutions to BGP have been proposed after

this paper ?

 Has any attempt been made to extend the BGP

solutions to asynchronous systems to ensure 'some

degree/probability' of reliability ?

 References on next slide

 Bounds on best possible BGP solution (in terms of

messages) ?

Related follow-on work

 Impossibility/necessity results

 Fischer, M. J., Lynch, N. A., and Paterson, M. S. ``Impossibility of

Distributed Consensus with One Faulty Process,'' J. ACM 32, 2 (April

1985), 374--382.

 Dolev, D., Dwork, C., and Stockmeyer, L. ``On the Minimal

Synchronism Needed for Distributed Consensus,'' J. ACM 34, 1

(January 1987), 77--97.

 Approximate agreement

 Bracha, G. ``An O(log n) Expected Rounds Randomized Byzantine

Generals Protocol,'' J. ACM 34, 4 (October 1987), 910--920.

 Bracha, G. and Toueg, S. ``Asynchronous Consensus and Broadcast

Protocols,'' J. ACM 32, 4 (October 1985), 824--840.

 Ben-Or, M. ``Another Advantage of Free Choice: Completely

Asynchronous Agreement Protocols,'' ACM Symposium on Principles of

Distributed Computing, 1983, 27--30.

Related follow-on work

 Approximate agreement (cont’d)

 Dolev, D., Lynch, N. A., Pinter, S. S., Stark, E. W., and Weihl, W. E.

``Reaching Approximate Agreement in the Presence of Faults,'' J.

ACM 33, 3 (July 1986), 499--516.

 Dolev, D., Ruediger, R., and Strong, H. R. ``Early Stopping in

Byzantine Agreement,'' J. ACM 37, 4 (October 1990), 720--741.

 Hadzilacos, V. and Halpern, J. Y. ``Message-Optimal Protocols for

Byzantine Agreement,'' ACM Symposium on Principles of Distributed

Computing, 1991, 309--323.

 Halpern, J. Y., Moses, Y., and Waarts, O. ``A Characterization of

Eventual Byzantine Agreement,'' ACM Symposium on Principles of

Distributed Computing, 1990, 333--346.

Related follow-on work

 Failure detectors

 Chandra, T. D., Hadzilacos, V., and Toueg, S. ``The Weakest Failure

Detector for Solving Consensus,'' ACM Symposium on Principles of

Distributed Computing, 1992, 147--158.

 Chandra, T. D. and Toueg, S. ``Unreliable Failure Detectors for

Asynchronous Systems,'' ACM Symposium on Principles of Distributed

Computing, 1991, 325--340.

Break

Practical Byzantine Fault Tolerance

 Malicious attacks and software errors that can cause
arbitrary behaviors of faulty nodes are increasingly
common

 Previous solutions assumed synchronous system and/or
were too slow to be practical
- e.g. Rampart, OM, SM

 This paper describes a new replication algorithm that
tolerates Byzantine faults and is practical

 asynchronous environment, better performance

PBFT System Model

 Asynchronous distributed system where nodes are
connected by a network

 Byzantine failure model
- faulty nodes behave arbitrarily

- independent node failures

 Cryptographic techniques to prevent spoofing and
replays and to detect corrupted messages

 Very strong adversary

Service Properties

 Any deterministic replicated service with a state and

some operations

 Assuming less than one-third of replicas are faulty

- safety (linearizability)

- liveness (assuming delay(t) >> t)

 Access control to guard against faulty client

 The resiliency (3f+1) of this algorithm is proven to be

optimal for an asynchronous system

The Algorithm

 Basic setup:

-

- A view is a configuration of replicas (a primary

and backups):

- Each replica is deterministic and starts with the

same initial state

- The state of each replica includes the state of the

service, a message log of accepted messages, and

a view number

The Algorithm

 1. A client sends a request to invoke a service

operation to the primary

o= requested operation

t= timestamp

c= client

ϭ= signature

The Algorithm

 2. The primary multicasts the request to the backups

(three-phase protocol)

The Algorithm

 3. Replicas execute the request and send a reply to

the client

v= view

i= replica

r= result

o= requested operation

t= timestamp

c= client

ϭ= signature

The Algorithm

 4. The client waits for f+1 replies from different

replicas with the same result; this is the result of the

operation

Three-phase Protocol

 1.pre-prepare (pp)
- primary assigns n to the request; multicasts pp
- request message m is piggy-backed (request itself is not
included in pp)
- accepted by backup if:

- the messages are properly signed;
- it is in the same view v;
- the backup has not accepted a pp for the same v and n
with different d

- h <= n <= H
- if accepted, then replica i enters prepare phase

Three-phase Protocol

 2.prepare (p)
- if backup accepts pp, multicasts p
- accepted by backup if:

- message signature is correct;
- in the same view;
- h<= n<= H

- prepared(m,v,n,i) is true if i has logged:
- request message m
- pp for m in v
- 2f matching prepares with the same (v,n,d)

- if prepared becomes true, multicasts commit message and
enters commit phase

Three-phase Protocol

 Pre-prepare – prepare phases ensure the following

invariant:
- if prepared(m,v,n,i) is true then prepared(m’,v,n,j) is false for any

non-faulty replica j (inc. i=j) and any m’ such that D(m’) != D(m)

 i.e. ensures requests in the same view are totally

ordered (over all non-faulty replicas)

Three-phase Protocol

 3.commit
- accepted by backup if:

- message signature is correct;

- in the same view;
- h<= n<= H

- committed(m,v,n) is true iff prepared(m,v,n,i) is true for all i in
some set of f+1 non-faulty replicas
- committed-local(m,v,n,i) is true iff prepared(m,v,n,i) is true and
i has accepted 2f+1 matching commits
- replica i executes the operation requested by m after
committed-local(m,v,n,i) is true and i’s state reflects the
sequential execution of all requests with lower n

Three-phase Protocol

 Commit phase ensures the following invariant:
- if committed-local(m,v,n,i) is true for some non-faulty i, then

committed(m,v,n) is true

 i.e. any locally committed request will eventually
commit at f+1 or more non-faulty replicas

 The invariant and view change protocol ensure that
non-faulty replicas agree on the sequence numbers of
requests that commit locally even if they commit in
different views at each replica

 Prepare – commit phases ensure requests that commit
are totally ordered across views

The Algorithm

 Garbage Collection
 must ensure safety still holds after discarding messages from

log

 generates checkpoint (a snapshot of the state) periodically
 checkpoint: multicast checkpoint message with seq number and digest

of state

 if a replica receives 2f+1 matching checkpoint messages, the
checkpoint becomes stable and any messages associated with seq
numbers less than that of the checkpoint are discarded

 View Changes
 provides liveness

 triggered by timeout to prevent backups from waiting
forever

 with commit phase invariant, view change guarantees total
ordering of requests across views (by exchanging
checkpoint information across views)

The Algorithm

 The algorithm provides safety if all non-faulty

replicas agree on the sequence numbers of requests

that commit locally

 To provide liveness, replicas must change view if they

are unable to execute a request

 avoid view change that is too soon or too late

 faulty replicas can’t force frequent view changes; liveness

guaranteed unless message delays grow faster than the

timeout period indefinitely

Optimizations

 Reducing Communication
 avoids sending most of large replies

- only designated replica sends result

 reduces number of message delays for an operation
invocation from 5 to 4
 execute a request tentatively if prepared

 client waits for matching 2f+1 tentative replies

 improves performance of read-only operation
 client multicasts a read-only request to all

 replicas execute it immediately in tentative state

 send back replies after requests reflected in the tentative state
commit

 client waits for 2f+1 replies with the same result

 treating small and big requests differently

Optimizations

 Cryptography

- digital signatures used only for view-change and new-view

messages (but view change is not implemented!)

- authenticate all other messages using message authentication

codes (MACs)

Implementation

 The Replication Library
- basis for any replication service

- client: invoke

- server: execute, make_checkpoint, delete_checkpoint, get_digest,

get_checkpoint, set_checkpoint

- point-to-point communication using UDP

- view change and retransmission can be used to recover from
lost messages
- did not implement view-change or retransmission, but claims
this does not compromise the accuracy of the results

Implementation

 A Byzantine-Fault-tolerant File System

Implementation

 Maintaining Checkpoints
- snfsd uses direct file system operations on memory mapped
file system to preserve locality
- checkpoint record (n, list of modified blocks, d) that keeps
update information for the corresponding checkpoint

- snfsd keeps a copy-on-write bit for every 512-byte block
- copy-on-write technique to reduce space and time overhead
in maintaining checkpoints

 Computing Checkpoint Digests
- AdHash: sum of digest of each block (index+value)
- efficient for a small number of modified blocks

Performance Evaluation

 Micro-benchmark: invoke null-op; provides service
independent evaluation of the performance of the
replication library

 Andrew-benchmark: emulates a software
development workload; compares BFS with NFS V2
and BFS without replication

 Measured normal-case behaviors (i.e. no view
changes) in an isolated network with 4 replicas
 the first correct replicated service in asynchronous

environment like internet

 can tolerate Byzantine faults (liveness) with comparable
normal-behavior performance (when there are no faults)

Performance Evaluation

Some criticisms

 No mention is made on how the group is actually formed. Is it static

or dynamic?

 Pushing checkpointing to the application level makes the application

harder. Checkpoints and copy on write seem a must.

 That’s probably why the authors took the memory-mapped file direction for

NFS implementation, instead of the much simpler layer over an existing OS

file system. This makes it hard to port existing applications to such a

platform.

 Storing all application replies to be able to retransmit them to the

clients might not be efficient enough.

 Database appls might have large result-sets and that would put certain

space/time requirements on each replica peer.

 The comparison with NFS in not apples-to-apples.

Conclusion

 PBFT is the first replicated system that works correctly

in asynchronous system and it improves performance

of previous algorithms by more than an order of

magnitude

 Prior SMR algorithms were too slow to be used in

practice (proportional to the number of faulty nodes

vs. number of phases)

