
PRACTICAL BYZANTINE FAULT 

TOLERANCE
(THE BYZANTINE GENERALS PROBLEM)



The Byzantine Generals Problem 

(Lamport, Shostak, Pease, 1982)

 The setting: There are n generals, one of them is the 

commanding general.  Generals can send (and receive 

messages from other generals)

 The problem: Develop a protocol for the commanding general to 

send an order to his n-1 lieutenant generals such that

-IC1. All loyal lieutenants obey the same order.

-IC2. If the commanding general is loyal, then every loyal 

lieutenant obeys the order he sends.

 The adversary: Any of the generals could be traitors, i.e., could 

send inconsistent messages regarding the order to the other 

generals

 Note nuanced difference from consensus problem



The Byzantine Generals Problem
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Impossibility with 3 generals, 

1traitor
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• For n=3, m=1 there is no 

solution



Impossibility Results

 For n = 3 generals and 1 traitor, there is no solution 

(protocol). This is because a loyal lieutenant cannot 

distinguish who is the traitor when he gets conflicting 

information from the commander and the other lieutenant. 

Let's call this the 3-Generals Problem.

 BGP for n < 3m+1 generals and m traitors can be reduced 

to the 3 - generals problem, with each of the Byzantine 

generals simulating at most m lieutenants and taking the 

same decision as the loyal lieutenants they simulate. Thus 

BGP for n < 3m+1 and m traitors is not solvable.

 Reaching approximation is as hard as reaching agreement. 



A Solution with oral messages for n>3m

 A solution for BGP with n>3m nodes and up to m traitors, is 

given

 Oral message system properties:

 A1. Every message that is sent is delivered correctly. -> No message 

loss.

 A2. The receiver of a message knows who sent it. -> Completely 

connected network with reliable links(due to A1).

 A3. The absence of a message can be detected. -> Synchronous 

system only.

 Every general can send a message to every other general.



A Solution with oral messages for n>3m

 Solution in brief:

 uses a function “majority” which takes in a set of values and returns the 

value that is the majority among them (a possible implementation -

median of the values).

 uses 'rounds' in each of which a general broadcasts the value he has 

received in the earlier round to all the other generals through whom 

the value has not passed before he received it.

 when returning from the round, for each j, any two loyal lieutenants 

receive the same vector of values {v1, ... v(n-1)}. As the majority of the 

loyal lieutenants' values in these is ensured, applying the majority 

function on {v1, ... v(n-1)} to obtain vn preserves the above fact (that 

any two loyal lieutenants receive the same vector of values {v1, ... vn}). 

This ensures that BGP is solved.

 Note: If the commander is not a traitor, we can be done in 2 rounds. If 

the commander is a traitor, you may need up to m+1 rounds.



BGP Solution with Oral Messages



A solution with (unforgable) signed 

messages

 The difficulty of BGP is in the ability of a traitor lieutenant to 

lie about the commander's order. 

 If we can restrict this ability, BGP is solvable with any number of 

traitors as long as their maximum number is known.

 Signed messages:

 Extra A4 assumption needed in addition to the 3 assumptions made 

in the solution with oral messages

 A loyal general's signature cannot be forged, any alteration can 

be detected.  This means a traitor can drop a message, but can't 

change it

 Any one can verify the authenticity of a signature.  This means that 

no one can fool a general

 Again, assume a fully connected message graph among the 

generals.



A solution with (unforgable) signed messages 

with m traitors and any n generals

 Solution in brief:

 Uses a majority-like function called choice.

 Τhe commander sends a signed order to lieutenants 

 Ιf a lieutenant receives an order from someone (either from 

commander directly, or from other lieutenants), he verifies it 

and then puts it in a set V if it's not already there. Relay the 

order if there are less than m distinct signatures on the 

order.

 Everyone halts at round m+1, and uses choice(V) as the 

desired action



 The algorithm is to make all loyal lieutenants keep the same set of V, 

thus choice(V) is the same. 

 If the commander is loyal, all loyal lieutenants have the correct order by 

round 1 and by unforgablity no more orders can be produced. 

 If the commander is not loyal, by running the algorithm to round m+1, 

at least one loyal lieutenant will get the order before round m (because 

there are only m traitors). And that loyal lieutenant will send it to all 

others. In short, if one loyal lieutenant gets an order, all loyal lieutenants 

will get it in the next round. 

A solution with (unforgable) signed messages 

with m traitors and any n generals



A solution with (unforgable) signed messages 

with m traitors and any n generals



BGP Theorems

 Theorem 1. For any m, Algorithm OM(m) satisfies 
conditions IC1 and IC2 if there are more than 3m 
generals and at most m traitors

 Theorem 2. For any m, Algorithm SM(m) solves the 
Byzantine Generals Problem if there are at most m 
traitors

 Both require message paths of length up to m+1 
(very expensive)

 Both require that absence of messages must be 
detected (A3) via time-out (vulnerable to DoS)



Relaxing the assumption on full-

connectivity

 Previous 2 solutions can be extended to relax the assumption 

that the message graph among the generals is fully connected. 

 Oral messages: Solution with oral messages is extended to 

solve BGP with up to m traitors in a p-regular graph with m>0 

and p>3m-1. 

 Unforgable messages: Can solve BGP with up to m traitors in 

(m+d-1) rounds, where d is the diameter of the subgraph of 

loyal generals. 

 Assumption: subgraph of loyal generals is connected (this can be 

relaxed by relaxing the problem statement of BGP)



Practical use of BGP in real world 

systems

 The best way to provide fault-tolerant decision-making in 

redundant systems is by majority voting. 

 A faulty input device may generate meaningless inputs, but majority 

voting would ensure that the same meaningless values are used. 

 For majority voting to yield a reliable system, the following 2 

conditions must be satisfied

 All non-faulty processors must use the same input value

 If input unit is non-faulty, then all non-faulty processes use the value it 

provides

 But these are just the requirements of the BGP!

 So we can apply the above solutions to the BGP in real-life



Practicality of assumptions made?

 A1. Every message that is sent is delivered correctly. This 

means no message loss.

 In real life, link failures occur. However, link failures are 

indistinguishable from failures of processors, therefore we 

can count the link failures as one of the m. 

 Signed message is insensitive to link failures because no 

message can be forged even if links fail.

 A2. The receiver of a message knows who sent it. This means 

we  have a completely connected network with reliable links 

(due to A1).

 What is actually required is that no traitor can forge a non-

faulty process' message.



Practicality of assumptions made?

 A3. The absence of a message can be detected. This means 

we have a synchronous system only.

 In an asynchronous system, this condition cannot be satisfied. 

It is usually implemented via time-outs.

 A4. A loyal general's signature cannot be forged, any 

alteration can be detected.

 If processor is non-faulty, then no faulty processor can generate 

S(M). This can never be completely guaranteed, but its probability 

can be reduced 

 Given M and X, any one can verify if X == S(M). This is doable in 

real world.



Questions

 Graph connectivity. Are p-regular topologies that 

frequent ? Can we extend the BGP solutions to any 

network topology ? Has it been extended to any 

other topologies ?

 Value of m: How would one obtain a reasonable 

value for maximum m in a practical system (note 

that this maximum number is required even in the 

solution with signed messages).

 Synchronous/asynchronous systems: How many 

synchronous system do we really use (SMP 

machines, and?) How about asynchronous systems ?



Questions

 Further work after this paper:

 What other solutions to BGP have been proposed after 

this paper ?

 Has any attempt been made to extend the BGP 

solutions to asynchronous systems to ensure 'some 

degree/probability' of reliability ?

 References on next slide

 Bounds on best possible BGP solution (in terms of 

messages) ? 
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Practical Byzantine Fault Tolerance

 Malicious attacks and software errors that can cause 
arbitrary behaviors of faulty nodes are increasingly 
common

 Previous solutions assumed synchronous system and/or 
were too slow to be practical
- e.g. Rampart, OM, SM

 This paper describes a new replication algorithm that 
tolerates Byzantine faults and is practical 

 asynchronous environment, better performance



PBFT System Model

 Asynchronous distributed system where nodes are 
connected by a network

 Byzantine failure model
- faulty nodes behave arbitrarily

- independent node failures

 Cryptographic techniques to prevent spoofing and 
replays and to detect corrupted messages

 Very strong adversary



Service Properties

 Any deterministic replicated service with a state and 

some operations

 Assuming less than one-third of replicas are faulty

- safety (linearizability)

- liveness (assuming delay(t) >> t)

 Access control to guard against faulty client

 The resiliency (3f+1) of this algorithm is proven to be 

optimal for an asynchronous system



The Algorithm

 Basic setup:

-

- A view is a configuration of replicas (a primary 

and backups): 

- Each replica is deterministic and starts with the 

same initial state

- The state of each replica includes the state of the 

service, a message log of accepted messages, and 

a view number



The Algorithm

 1. A client sends a request to invoke a service 

operation to the primary 

o= requested operation

t= timestamp

c= client

ϭ= signature



The Algorithm

 2. The primary multicasts the request to the backups 

(three-phase protocol)



The Algorithm

 3. Replicas execute the request and send a reply to 

the client 

v= view

i= replica

r= result

o= requested operation

t= timestamp

c= client

ϭ= signature



The Algorithm

 4. The client waits for f+1 replies from different 

replicas with the same result; this is the result of the 

operation 



Three-phase Protocol

 1.pre-prepare (pp)
- primary assigns n to the request; multicasts pp
- request message m is piggy-backed (request itself is not 
included in pp)
- accepted by backup if:

- the messages are properly signed;
- it is in the same view v;
- the backup has not accepted a pp for the same v and n   
with different d

- h <= n <= H
- if accepted, then replica i enters prepare phase



Three-phase Protocol

 2.prepare (p)
- if backup accepts pp, multicasts p
- accepted by backup if:

- message signature is correct;
- in the same view;
- h<= n<= H

- prepared(m,v,n,i) is true if i has logged:
- request message m
- pp for m in v
- 2f matching prepares with the same (v,n,d)

- if prepared becomes true, multicasts commit message and 
enters commit phase



Three-phase Protocol

 Pre-prepare – prepare phases ensure the following 

invariant:
- if prepared(m,v,n,i) is true then prepared(m’,v,n,j) is false for any 

non-faulty replica j (inc. i=j) and any m’ such that D(m’) != D(m)

 i.e. ensures requests in the same view are totally 

ordered (over all non-faulty replicas)



Three-phase Protocol

 3.commit
- accepted by backup if:

- message signature is correct;

- in the same view;
- h<= n<= H

- committed(m,v,n) is true iff prepared(m,v,n,i) is true for all i in 
some set of f+1 non-faulty replicas
- committed-local(m,v,n,i) is true iff prepared(m,v,n,i) is true and 
i has accepted 2f+1 matching commits
- replica i executes the operation requested by m after 
committed-local(m,v,n,i) is true and i’s state reflects the 
sequential execution of all requests with lower n



Three-phase Protocol

 Commit phase ensures the following invariant: 
- if committed-local(m,v,n,i) is true for some non-faulty i, then 

committed(m,v,n) is true

 i.e. any locally committed request will eventually 
commit at f+1 or more non-faulty replicas

 The invariant and view change protocol ensure that 
non-faulty replicas agree on the sequence numbers of 
requests that commit locally even if they commit in 
different views at each replica

 Prepare – commit phases ensure requests that commit 
are totally ordered across views



The Algorithm

 Garbage Collection
 must ensure safety still holds after discarding messages from 

log

 generates checkpoint (a snapshot of the state) periodically
 checkpoint: multicast checkpoint message with seq number and digest 

of state

 if a replica receives 2f+1 matching checkpoint messages, the 
checkpoint becomes stable and any messages associated with seq
numbers less than that of the checkpoint are discarded

 View Changes 
 provides liveness

 triggered by timeout to prevent backups from waiting 
forever

 with commit phase invariant, view change guarantees total 
ordering of requests across views (by exchanging 
checkpoint information across views)



The Algorithm

 The algorithm provides safety if all non-faulty 

replicas agree on the sequence numbers of requests 

that commit locally

 To provide liveness, replicas must change view if they 

are unable to execute a request

 avoid view change that is too soon or too late 

 faulty replicas can’t force frequent view changes; liveness 

guaranteed unless message delays grow faster than the 

timeout period indefinitely



Optimizations

 Reducing Communication
 avoids sending most of large replies 

- only designated replica sends result 

 reduces number of message delays for an operation 
invocation from 5 to 4 
 execute a request tentatively if prepared

 client waits for matching 2f+1 tentative replies

 improves performance of read-only operation
 client multicasts a read-only request to all 

 replicas execute it immediately in tentative state

 send back replies after requests reflected in the tentative state 
commit

 client waits for 2f+1 replies with the same result

 treating small and big requests differently



Optimizations

 Cryptography

- digital signatures used only for view-change and new-view 

messages (but view change is not implemented!)

- authenticate all other messages using message authentication 

codes (MACs)



Implementation

 The Replication Library
- basis for any replication service

- client: invoke

- server: execute, make_checkpoint, delete_checkpoint, get_digest, 

get_checkpoint, set_checkpoint

- point-to-point communication using UDP

- view change and retransmission can be used to recover from 
lost messages
- did not implement view-change or retransmission, but claims 
this does not compromise the accuracy of the results



Implementation

 A Byzantine-Fault-tolerant File System



Implementation

 Maintaining Checkpoints
- snfsd uses direct file system operations on memory mapped 
file system to preserve locality 
- checkpoint record (n, list of modified blocks, d) that keeps 
update information for the corresponding checkpoint

- snfsd keeps a copy-on-write bit for every 512-byte block 
- copy-on-write technique to reduce space and time overhead 
in maintaining checkpoints

 Computing Checkpoint Digests
- AdHash: sum of digest of each block (index+value)
- efficient for a small number of modified blocks



Performance Evaluation

 Micro-benchmark: invoke null-op; provides service 
independent evaluation of the performance of the 
replication library

 Andrew-benchmark: emulates a software 
development workload; compares BFS with NFS V2 
and BFS without replication

 Measured normal-case behaviors (i.e. no view 
changes) in an isolated network with 4 replicas
 the first correct replicated service in asynchronous 

environment like internet

 can tolerate Byzantine faults (liveness) with comparable 
normal-behavior performance (when there are no faults)



Performance Evaluation



Some criticisms

 No mention is made on how the group is actually formed. Is it static 

or dynamic?

 Pushing checkpointing to the application level makes the application 

harder. Checkpoints and copy on write seem a must. 

 That’s probably why the authors took the memory-mapped file direction for 

NFS implementation, instead of the much simpler layer over an existing OS 

file system. This makes it hard to port existing applications to such a 

platform.

 Storing all application replies to be able to retransmit them to the 

clients might not be efficient enough. 

 Database appls might have large result-sets and that would put certain 

space/time requirements on each replica peer.

 The comparison with NFS in not apples-to-apples. 



Conclusion

 PBFT is the first replicated system that works correctly 

in asynchronous system and it improves performance 

of previous algorithms by more than an order of 

magnitude

 Prior SMR algorithms were too slow to be used in 

practice (proportional to the number of faulty nodes 

vs. number of phases)


