A SCALABLE CONTENT-
ADDRESSABLE NETWORK

What kind of paper is this?

A New big idea?

A Measurement paper?

An Experiences/Lessons Learnt paper?
A System Description?

A Performance Study?

A Refute-Conventional-Wisdom paper?
A Survey paper?

Back to Basics — CS 101 ©

]
- What is a hash table?

7 What is it good for?

Wise systems folk say: “A hash table and a level of
indirection” is all you need it to solve a problem in
operating systems!!

Helps keep track of state in the system

® Process tables

" Page tables

w Etc.

New Big Idedl!

(Remember — this is Sigcomm 2001)

Create a big distributed, Internet-scale Hash Table

Could prove useful for distributed systems

Distributed apps that might use this?

So how DO we build a LARGE distributed indexing
system?

ldeas

Do not impose a rigid, hierarchical naming structure

Use uniform hash function

D-dimensional Cartesian coordinate space on d-
forus

Coordinate space partitioned dynamically across
nodes

Each node maintains its own “zone” within the space

Hash Table Operations

T
7 Lookup (key) =2 (key, value) pair
1 Insert (key, value) pair

11 Delete (key, value) pair

Lookup = Routing in a CAN

Follow straight line path through the Cartesian
space from source to destination coordinates.

To find destination coordinates, hash key to a point
in the space

In d-D space, average routing path length is
(d/4)(n'/9) hops and each node has 2d neighbors.

Lookup = Routing in a CAN
-—

6 2
3 1 5
L
--"":
(xyr \
™ sample routing
path from node 1

to point (x.¥)

What state does a node maintain?
I

What state does a node maintain?

lts zone boundaries
Zone boundaries of its neighbors
IP address of its neighbors

Possible zone boundaries of neighbors’ neighbors

What determines how much state a node maintains?e

Inserting an index entry

0 Insert (K1, V1) pair by hashing K1 onto point in
coordinate space

- Route “Store (K1, V1)” request to that point

11 Store at node that owns the zone where point lies

Deleting an Index Entry
I

1 Same as insertion

CAN Construction
I

1 What happens at a high level when a node joins
the CANZ?

Node Joins

1) Node picks a random point P in coordinate
space

2) Finds IP address of a node already in CAN =
sends it JOIN(P) request

3) Request routed to node O with zone containing P
4) Node O splits. New node takes half with P
5) O’s old neighbors notified /updated

Node Departures

Gracefully: zone handover to neighbor with smallest
Zone.

Ungracefully: all neighbors of the failed node
execute a takeover algorithm so that the zone merges
with the smallest neighboring zone.

How do we detect a node has failed? (next slide)

Departures = imbalance in zone loads

Background zone reassignment algorithm to make more
uniform

Soft State

A very well-known mechanism in distributed systems
— what is it?

When is it used in CANZ?

Periodic keepalive messages
my zone coordinates
my neighbors’ zone coordinates

my neighbors’ IP addresses

Theoretical performance

O(d) state maintained per node

O(d(n'/9)) path length between any two nodes

Avg lookup latency = (avg CAN path length) * (avg IP
latency of a CAN hop)

Can we do better?

Yes, lots of design improvements!

It’s all about the Tradeoffs

Systems design is all about tradeoffs

Cannot win everywhere

What do the proposed design improvements trade
off?
For each improvement, ask

What do we gain?

What do we lose?

Multi-dimensioned coordinate spaces

Nimberof hops

01 Path length
scales O(d(n'/9)
)

1 Per node state
increases

-1 More fault-
tolerance

Multiple Realities

Maintain multiple, independent coordinate spaces
(realities)

Every node has a different zone in every reality
and a different set of neighbors.

Node routes to neighbor who is (across all realities)
closest to the destination.

Multiple Realities

- s nE=2
— 1 0 Data replication
128 : => data
- 1 availability (fault-
é . | tolerance)
3 . | © Routing to point P
5 translates to
: 1 routing to P on
4 = 1 every reality
2 : : . .4 1 Increased per-

256 1024 40655 16K 64K 286K M
Number of nodes node-state

Better CAN routing metrics

Each node measures net-level RTT to each neighbor

Choose neighbor with max progress/RTT

Number of | Non-RTT weighted | RTT weighted

dimensions routing (ms) routing (ms)
2 116.8 88.3
3 116.7 76.1
4 115.8 71.2
5 115.4 70.9

Overloading coordinate zones

Multiple peers (up to MAXPEERS) share the same
Zone.

Increased state : all peers in same zone but only
one peer (the RTT-closest) from each neighbor zone.

The index entries of a zone may be either
partitioned or replicated across the peer nodes.

Overloading coordinate zones

Reduced path length

It’s like we have fewer nodes in the system

Reduced per-hop latency

Can choose from a lot of possible neighbor peers
Improved fault-tolerance

BUT more complexity

Note Table 2: what is the number of dimension
here?

s erpemceiwed Cuery Labency (s)

Multiple hash functions

Fdimensions=2, $reolitiscm

160 | ' ' 1 haeh funcion —A— -
7 hazh functions J'
ian b & hash functiors ¢ i
."'
iz | ;; -
100 | A
gn | -
g0 | .
40 | -
20 e et .

2548 1034 4795 168K Edi 256K
Fumbsr of nodss

Assign same key to
many points in space
with the use of k
different hash functions

A query can be sent
towards the closest
node or all k directions.

Topologically-sensitive construction

There are m landmarks (well-known set of machines,
e.g. the DNS root name servers).

Each node orders the landmarks in order of
increasing RTT to them.

Coordinate space is partitioned into m! portions
(one for each landmark ordering)

Nodes now join at a random point IN the
corresponding portion of space.

Lakency Stmeich

Topologically-sensitive construction

26

20

18

10

flandmarks=d, frealitinc=1

2-d, with landmark ordering ——
2-d, without landmark crdering -+~ -~
4-d, with landmark crdering .
4-d, without landmerk crdering

1024
Number of nodas

o Improves the path
latency.

-1 Coordinate space
is no longer
uniformly
populated
=>Background
load balancing
techniques.

On Topologically-sensitive construction
o

7 Landmarks chosen 5 hops away from each other --
Agree?

1 Uneven distribution of zones -- what to do?

7 How would you continue from here?

More Uniform Partitioning

On a JOIN request, instead of splitting zone
Node checks neighbors’ zone sizes

Forwards request to neighbor with largest zone

A uniform hash function guarantees that volume of a
node’s zone is indicative of the size of the (key,value)
database the node will have to store

So uniform partitioning helps balance the load
Is this correct? (what about hot spots?)

More Uniform Partitioning

Fercentage of nodes

1o [m without uniform- iioning feature]

= with uniform-partitioning feature
+
an b
an }
a0 [
[
0 r C
u .
L
o8 A 1 (SN E—

Viie Vs Va4 Vi2 v 2v 4V
Volume

Caching and Replication

Caching: huge technique in distributed systems and
for the Web

Whole careers based on caching!

Node maintains a cache of the data keys it recently
accessed. More requests = higher availability

How long do we cache something?

Replication: hode that is overwhelmed by requests
for a particular data key replicates key at each of its
neighbors

Design Review

Parameter “bare bones® | “knobs on full® |
CAN CAN
d 2 10
T 1 1
p 0 4
k 1 1
RTT weighted OFF ON
routing metric
Uniform OFF ON
partitioning
Landmark OFF OFF
ordering
Metric “bare bones” CAN | “knobs on full CAN”
path length 198.0 5.0
neighbors 4.57 27.1
peers 0 2.95
IP latency 115.9ms 82.4ms
CAN path latency 23,008ms 135.29ms

Can you think of more experiments?
N

