
A SCALABLE CONTENT-
ADDRESSABLE NETWORK

Mema Roussopoulou

*Slides based in part on Sylvia Ratnasamy’s talk slides.

What kind of paper is this?

 A New big idea?

 A Measurement paper?

 An Experiences/Lessons Learnt paper?

 A System Description?

 A Performance Study?

 A Refute-Conventional-Wisdom paper?

 A Survey paper?

Back to Basics – CS 101 

 What is a hash table?

 What is it good for?

� Wise systems folk say: “A hash table and a level of

indirection” is all you need it to solve a problem in
operating systems!!

� Helps keep track of state in the system

 Process tables

 Page tables

 Etc.

New Big Idea!

 (Remember – this is Sigcomm 2001)

 Create a big distributed, Internet-scale Hash Table

� Could prove useful for distributed systems

 Distributed apps that might use this?

 So how DO we build a LARGE distributed indexing
system?

Ideas

 Do not impose a rigid, hierarchical naming structure

� Use uniform hash function

 D-dimensional Cartesian coordinate space on d-
torus

 Coordinate space partitioned dynamically across
nodes

 Each node maintains its own “zone” within the space

Hash Table Operations

 Lookup (key)  (key, value) pair

 Insert (key, value) pair

 Delete (key, value) pair

Lookup = Routing in a CAN

 Follow straight line path through the Cartesian

space from source to destination coordinates.

 To find destination coordinates, hash key to a point
in the space

 In d-D space, average routing path length is
(d/4)(n1/d) hops and each node has 2d neighbors.

Lookup = Routing in a CAN

What state does a node maintain?

What state does a node maintain?

 Its zone boundaries

 Zone boundaries of its neighbors

 IP address of its neighbors

 Possible zone boundaries of neighbors’ neighbors

 What determines how much state a node maintains?

Inserting an index entry

 Insert (K1, V1) pair by hashing K1 onto point in
coordinate space

 Route “Store (K1, V1)” request to that point

 Store at node that owns the zone where point lies

Deleting an Index Entry

 Same as insertion

CAN Construction

 What happens at a high level when a node joins
the CAN?

Node Joins

 1) Node picks a random point P in coordinate
space

 2) Finds IP address of a node already in CAN 
sends it JOIN(P) request

 3) Request routed to node O with zone containing P

 4) Node O splits. New node takes half with P

 5) O’s old neighbors notified/updated

Node Departures

 Gracefully: zone handover to neighbor with smallest
zone.

 Ungracefully: all neighbors of the failed node
execute a takeover algorithm so that the zone merges
with the smallest neighboring zone.

� How do we detect a node has failed? (next slide)

 Departures  imbalance in zone loads

� Background zone reassignment algorithm to make more
uniform

Soft State

 A very well-known mechanism in distributed systems
– what is it?

 When is it used in CAN?

� Periodic keepalive messages

 my zone coordinates

 my neighbors’ zone coordinates

 my neighbors’ IP addresses

Theoretical performance

 O(d) state maintained per node

 O(d(n1/d)) path length between any two nodes

� Avg lookup latency = (avg CAN path length) * (avg IP
latency of a CAN hop)

 Can we do better?

 Yes, lots of design improvements!

It’s all about the Tradeoffs

 Systems design is all about tradeoffs

� Cannot win everywhere

 What do the proposed design improvements trade
off?

 For each improvement, ask

� What do we gain?

� What do we lose?

Multi-dimensioned coordinate spaces

 Path length
scales O(d(n1/d)
)

 Per node state
increases

 More fault-
tolerance

Multiple Realities

 Maintain multiple, independent coordinate spaces
(realities)

 Every node has a different zone in every reality
and a different set of neighbors.

 Node routes to neighbor who is (across all realities)
closest to the destination.

Multiple Realities

 Data replication
=> data
availability (fault-
tolerance)

 Routing to point P
translates to
routing to P on
every reality

 Increased per-
node-state

Better CAN routing metrics

 Each node measures net-level RTT to each neighbor

 Choose neighbor with max progress/RTT

Overloading coordinate zones

 Multiple peers (up to MAXPEERS) share the same
zone.

 Increased state : all peers in same zone but only
one peer (the RTT-closest) from each neighbor zone.

 The index entries of a zone may be either
partitioned or replicated across the peer nodes.

Overloading coordinate zones

 Reduced path length
� It’s like we have fewer nodes in the system

 Reduced per-hop latency
� Can choose from a lot of possible neighbor peers

 Improved fault-tolerance

 BUT more complexity

 Note Table 2: what is the number of dimension
here?

Multiple hash functions

 Assign same key to
many points in space
with the use of k
different hash functions

 A query can be sent
towards the closest
node or all k directions.

Topologically-sensitive construction

 There are m landmarks (well-known set of machines,
e.g. the DNS root name servers).

 Each node orders the landmarks in order of
increasing RTT to them.

 Coordinate space is partitioned into m! portions
(one for each landmark ordering)

 Nodes now join at a random point IN the
corresponding portion of space.

Topologically-sensitive construction

 Improves the path

latency.

 Coordinate space

is no longer

uniformly

populated

=>Background
load balancing
techniques.

On Topologically-sensitive construction

 Landmarks chosen 5 hops away from each other --
Agree?

 Uneven distribution of zones -- what to do?

 How would you continue from here?

More Uniform Partitioning

 On a JOIN request, instead of splitting zone
� Node checks neighbors’ zone sizes

� Forwards request to neighbor with largest zone

 A uniform hash function guarantees that volume of a
node’s zone is indicative of the size of the (key,value)
database the node will have to store

 So uniform partitioning helps balance the load
� Is this correct? (what about hot spots?)

More Uniform Partitioning

Caching and Replication

 Caching: huge technique in distributed systems and
for the Web

� Whole careers based on caching!

 Node maintains a cache of the data keys it recently

accessed. More requests = higher availability

� How long do we cache something?

 Replication: node that is overwhelmed by requests

for a particular data key replicates key at each of its

neighbors

Design Review

Can you think of more experiments?

