
A SCALABLE CONTENT-
ADDRESSABLE NETWORK

Mema Roussopoulou

*Slides based in part on Sylvia Ratnasamy’s talk slides.

What kind of paper is this?

 A New big idea?

 A Measurement paper?

 An Experiences/Lessons Learnt paper?

 A System Description?

 A Performance Study?

 A Refute-Conventional-Wisdom paper?

 A Survey paper?

Back to Basics – CS 101

 What is a hash table?

 What is it good for?

� Wise systems folk say: “A hash table and a level of

indirection” is all you need it to solve a problem in
operating systems!!

� Helps keep track of state in the system

 Process tables

 Page tables

 Etc.

New Big Idea!

 (Remember – this is Sigcomm 2001)

 Create a big distributed, Internet-scale Hash Table

� Could prove useful for distributed systems

 Distributed apps that might use this?

 So how DO we build a LARGE distributed indexing
system?

Ideas

 Do not impose a rigid, hierarchical naming structure

� Use uniform hash function

 D-dimensional Cartesian coordinate space on d-
torus

 Coordinate space partitioned dynamically across
nodes

 Each node maintains its own “zone” within the space

Hash Table Operations

 Lookup (key) (key, value) pair

 Insert (key, value) pair

 Delete (key, value) pair

Lookup = Routing in a CAN

 Follow straight line path through the Cartesian

space from source to destination coordinates.

 To find destination coordinates, hash key to a point
in the space

 In d-D space, average routing path length is
(d/4)(n1/d) hops and each node has 2d neighbors.

Lookup = Routing in a CAN

What state does a node maintain?

What state does a node maintain?

 Its zone boundaries

 Zone boundaries of its neighbors

 IP address of its neighbors

 Possible zone boundaries of neighbors’ neighbors

 What determines how much state a node maintains?

Inserting an index entry

 Insert (K1, V1) pair by hashing K1 onto point in
coordinate space

 Route “Store (K1, V1)” request to that point

 Store at node that owns the zone where point lies

Deleting an Index Entry

 Same as insertion

CAN Construction

 What happens at a high level when a node joins
the CAN?

Node Joins

 1) Node picks a random point P in coordinate
space

 2) Finds IP address of a node already in CAN
sends it JOIN(P) request

 3) Request routed to node O with zone containing P

 4) Node O splits. New node takes half with P

 5) O’s old neighbors notified/updated

Node Departures

 Gracefully: zone handover to neighbor with smallest
zone.

 Ungracefully: all neighbors of the failed node
execute a takeover algorithm so that the zone merges
with the smallest neighboring zone.

� How do we detect a node has failed? (next slide)

 Departures imbalance in zone loads

� Background zone reassignment algorithm to make more
uniform

Soft State

 A very well-known mechanism in distributed systems
– what is it?

 When is it used in CAN?

� Periodic keepalive messages

 my zone coordinates

 my neighbors’ zone coordinates

 my neighbors’ IP addresses

Theoretical performance

 O(d) state maintained per node

 O(d(n1/d)) path length between any two nodes

� Avg lookup latency = (avg CAN path length) * (avg IP
latency of a CAN hop)

 Can we do better?

 Yes, lots of design improvements!

It’s all about the Tradeoffs

 Systems design is all about tradeoffs

� Cannot win everywhere

 What do the proposed design improvements trade
off?

 For each improvement, ask

� What do we gain?

� What do we lose?

Multi-dimensioned coordinate spaces

 Path length
scales O(d(n1/d)
)

 Per node state
increases

 More fault-
tolerance

Multiple Realities

 Maintain multiple, independent coordinate spaces
(realities)

 Every node has a different zone in every reality
and a different set of neighbors.

 Node routes to neighbor who is (across all realities)
closest to the destination.

Multiple Realities

 Data replication
=> data
availability (fault-
tolerance)

 Routing to point P
translates to
routing to P on
every reality

 Increased per-
node-state

Better CAN routing metrics

 Each node measures net-level RTT to each neighbor

 Choose neighbor with max progress/RTT

Overloading coordinate zones

 Multiple peers (up to MAXPEERS) share the same
zone.

 Increased state : all peers in same zone but only
one peer (the RTT-closest) from each neighbor zone.

 The index entries of a zone may be either
partitioned or replicated across the peer nodes.

Overloading coordinate zones

 Reduced path length
� It’s like we have fewer nodes in the system

 Reduced per-hop latency
� Can choose from a lot of possible neighbor peers

 Improved fault-tolerance

 BUT more complexity

 Note Table 2: what is the number of dimension
here?

Multiple hash functions

 Assign same key to
many points in space
with the use of k
different hash functions

 A query can be sent
towards the closest
node or all k directions.

Topologically-sensitive construction

 There are m landmarks (well-known set of machines,
e.g. the DNS root name servers).

 Each node orders the landmarks in order of
increasing RTT to them.

 Coordinate space is partitioned into m! portions
(one for each landmark ordering)

 Nodes now join at a random point IN the
corresponding portion of space.

Topologically-sensitive construction

 Improves the path

latency.

 Coordinate space

is no longer

uniformly

populated

=>Background
load balancing
techniques.

On Topologically-sensitive construction

 Landmarks chosen 5 hops away from each other --
Agree?

 Uneven distribution of zones -- what to do?

 How would you continue from here?

More Uniform Partitioning

 On a JOIN request, instead of splitting zone
� Node checks neighbors’ zone sizes

� Forwards request to neighbor with largest zone

 A uniform hash function guarantees that volume of a
node’s zone is indicative of the size of the (key,value)
database the node will have to store

 So uniform partitioning helps balance the load
� Is this correct? (what about hot spots?)

More Uniform Partitioning

Caching and Replication

 Caching: huge technique in distributed systems and
for the Web

� Whole careers based on caching!

 Node maintains a cache of the data keys it recently

accessed. More requests = higher availability

� How long do we cache something?

 Replication: node that is overwhelmed by requests

for a particular data key replicates key at each of its

neighbors

Design Review

Can you think of more experiments?

