
CHORD: A SCALABLE PEER-TO-
PEER LOOKUP SERVICE FOR
INTERNET APPLICATIONS

Mema Roussopoulou

*Slides based in part on Sylvia Ratnasamy’s talk slides.

What kind of paper is this?

 A New big idea?

 A Measurement paper?

 An Experiences/Lessons Learnt paper?

 A System Description?

 A Performance Study?

 A Refute-Conventional-Wisdom paper?

 A Survey paper?

Chord’s Intentions

 Given a key, Chord maps the key to a node

 Each node should maintain information for a few
nodes, O(logN)

 It tends to balance the load by distributing roughly
evenly keys to nodes

 Involves little movement of keys when nodes join or
leave the system, O(log2N)

Chord DOs and DONOTs

 DOs
� Storage load balance

 spread keys over nodes evenly
� Decentralization

 fully distributed, no single point of failure
� Scalability

 Chord lookup grows logarithmically in the number of nodes
� Availability

 adjusts tables when nodes join/leave
� Flexible naming

 no constraints on naming

Chord DOs and DONOTs

 DONOTs
� Authentication
� Caching
� Replication
� Naming of data

Suggested applications?

Chord Base Protocol (1/2)

 Keys are ordered binary numbers of
length m

 Nodes are also assigned a random
ID in the same number space

 Nodes are ordered in a circle
according to their IDs

 For a given key k the responsible
node n is the one with the smallest id
larger than k, also called successor(k)

 successor(0) = 0

 successor(1) = 1

 successor(2) = 3

 successor(3) = 3

 successor(4..7) = 0

Chord Base Protocol (2/2)

 Each node holds a pointer to its
next node based on node ID
order

 To speed things up, each node n
has a finger table where its ith

entry contains
successor((n + 2i-1) mod 2m)

 Thus finger table contains O(logn)
entries

Questions

 How does lookup work?

 What is the single piece of information that must be
correct for lookup to work?

 What must happen on a join?

Node join

 Main challenge is to preserve ability to locate all
keys

� each node has a valid pointer to its successor

� for each k, node successor(k) is responsible for k

� in order to have fast search, finger table has to be consistent

 Chord algorithm when node n joins

� initialize predecessor and finger table of n

� update fingers and predecessors of existing nodes

� notify application software to transfer state to new node

Concurrent operations/failures

 Previous algorithm does not work in the face of concurrent joins
and leaves in the system
(unless a global locking algorithm is applied)

 Chord prefers to guarantee availability of keys even at a high
cost and let the system over time optimize itself to provide fast
access to those keys
� ensure successor links are valid (correctness)

� fingers will converge over time (performance)

 Algorithm for concurrent operations (Stabilization)
� when n joins it just locates its successor and updates successor’s

predecessor

� nodes periodically validate their successors by asking for their
predecessors

� nodes periodically refresh their finger table

Storage Load Balance

 Number of keys stored per node in (104 nodes)

� ideally distribution of keys to nodes would be K/N

 PDF of number of keys per node (5x105 keys, 104 nodes)

Path length

 The path length as a function of network size

� path length is almost ½logN

 PDF of path length in a 212 node network

Node failures

 First case lookups happen
after stabilization

� fraction of failed queries
proportional to fraction of lost
nodes

 Second case lookups happen
during stabilization

� nodes stabilize every 30 sec

� Chord’s performance is sensitive to
the frequency of node joins and
leaves versus stabilize frequency

� only failures due to chord
inconsistency are considered, not
failures due to lost keys

Lookup Latency
 Experiment over internet hosts

� only 10 hosts

� experiments run with virtual nodes on the 10 physical hosts

Future Work?

Future Work

 Suggested future directions:

� heal partition rings

� address consistency attack

� address deny attack

� reducing hops

� RTT combined with recursive style of execution

