
CHORD: A SCALABLE PEER-TO-
PEER LOOKUP SERVICE FOR
INTERNET APPLICATIONS

Mema Roussopoulou

*Slides based in part on Sylvia Ratnasamy’s talk slides.

What kind of paper is this?

 A New big idea?

 A Measurement paper?

 An Experiences/Lessons Learnt paper?

 A System Description?

 A Performance Study?

 A Refute-Conventional-Wisdom paper?

 A Survey paper?

Chord’s Intentions

 Given a key, Chord maps the key to a node

 Each node should maintain information for a few
nodes, O(logN)

 It tends to balance the load by distributing roughly
evenly keys to nodes

 Involves little movement of keys when nodes join or
leave the system, O(log2N)

Chord DOs and DONOTs

 DOs
� Storage load balance

 spread keys over nodes evenly
� Decentralization

 fully distributed, no single point of failure
� Scalability

 Chord lookup grows logarithmically in the number of nodes
� Availability

 adjusts tables when nodes join/leave
� Flexible naming

 no constraints on naming

Chord DOs and DONOTs

 DONOTs
� Authentication
� Caching
� Replication
� Naming of data

Suggested applications?

Chord Base Protocol (1/2)

 Keys are ordered binary numbers of
length m

 Nodes are also assigned a random
ID in the same number space

 Nodes are ordered in a circle
according to their IDs

 For a given key k the responsible
node n is the one with the smallest id
larger than k, also called successor(k)

 successor(0) = 0

 successor(1) = 1

 successor(2) = 3

 successor(3) = 3

 successor(4..7) = 0

Chord Base Protocol (2/2)

 Each node holds a pointer to its
next node based on node ID
order

 To speed things up, each node n
has a finger table where its ith

entry contains
successor((n + 2i-1) mod 2m)

 Thus finger table contains O(logn)
entries

Questions

 How does lookup work?

 What is the single piece of information that must be
correct for lookup to work?

 What must happen on a join?

Node join

 Main challenge is to preserve ability to locate all
keys

� each node has a valid pointer to its successor

� for each k, node successor(k) is responsible for k

� in order to have fast search, finger table has to be consistent

 Chord algorithm when node n joins

� initialize predecessor and finger table of n

� update fingers and predecessors of existing nodes

� notify application software to transfer state to new node

Concurrent operations/failures

 Previous algorithm does not work in the face of concurrent joins
and leaves in the system
(unless a global locking algorithm is applied)

 Chord prefers to guarantee availability of keys even at a high
cost and let the system over time optimize itself to provide fast
access to those keys
� ensure successor links are valid (correctness)

� fingers will converge over time (performance)

 Algorithm for concurrent operations (Stabilization)
� when n joins it just locates its successor and updates successor’s

predecessor

� nodes periodically validate their successors by asking for their
predecessors

� nodes periodically refresh their finger table

Storage Load Balance

 Number of keys stored per node in (104 nodes)

� ideally distribution of keys to nodes would be K/N

 PDF of number of keys per node (5x105 keys, 104 nodes)

Path length

 The path length as a function of network size

� path length is almost ½logN

 PDF of path length in a 212 node network

Node failures

 First case lookups happen
after stabilization

� fraction of failed queries
proportional to fraction of lost
nodes

 Second case lookups happen
during stabilization

� nodes stabilize every 30 sec

� Chord’s performance is sensitive to
the frequency of node joins and
leaves versus stabilize frequency

� only failures due to chord
inconsistency are considered, not
failures due to lost keys

Lookup Latency
 Experiment over internet hosts

� only 10 hosts

� experiments run with virtual nodes on the 10 physical hosts

Future Work?

Future Work

 Suggested future directions:

� heal partition rings

� address consistency attack

� address deny attack

� reducing hops

� RTT combined with recursive style of execution

