CHORD: A SCALABLE PEER-TO-
PEER LOOKUP SERVICE FOR
INTERNET APPLICATIONS

What kind of paper is this?

A New big idea?

A Measurement paper?

An Experiences/Lessons Learnt paper?
A System Description?

A Performance Study?

A Refute-Conventional-Wisdom paper?
A Survey paper?

Chord’s Intentions

Given a key, Chord maps the key to a node

Each node should maintain information for a few

nodes, O(logN)

It tends to balance the load by distributing roughly
evenly keys to nodes

Involves little movement of keys when nodes join or
leave the system, O(log?N)

Chord DOs and DONOTs

DOs

Storage load balance

spread keys over nodes evenly
Decentralization

fully distributed, no single point of failure
Scalability

Chord lookup grows logarithmically in the number of nodes
Availability

adijusts tables when nodes join/leave
Flexible naming

no constraints on naming

Chord DOs and DONOTs

0o DONOTs
o1 Authentication
o1 Caching
o1 Replication
= Naming of data

Suggested applications?
N

Chord Base Protocol (1/2)

Keys are ordered binary numbers of

length m /

2
Nodes are also assigned a random \
ID in the same number space 5

Nodes are ordered in a circle successor(0) =

successor(1

according to their IDs E

successor(2) =
(
(

For a given key k the responsible

r
node n is the one with the smallest id successor(3) =

larger than k, also called successor(k) successor(4.-7)=-0

Chord Base Protocol (2/2)

idntf. | intrvl.

° ° 7+1 8.8

Each node holds a pointer to its 72 o0
7+4 [11.14
7+8 | 15.22
7+16 | 23.38
39..6

next node based on node ID

order

To speed things up, each node n
has a finger table where its i
entry contains

successor((n + 2') mod 2™M)

Thus finger table contains O(logn)
entries

Questions

How does lookup work?

What is the single piece of information that must be
correct for lookup to work?

What must happen on a join?

Node join

Main challenge is to preserve ability to locate all
keys

each node has a valid pointer to its successor

for each k, node successor(k) is responsible for k

in order to have fast search, finger table has to be consistent
Chord algorithm when node n joins
initialize predecessor and finger table of n

update fingers and predecessors of existing nodes

notify application software to transfer state to new node

Concurrent operations/failures

Previous algorithm does not work in the face of concurrent joins

and leaves in the system
(unless a global locking algorithm is applied)

Chord prefers to guarantee availability of keys even at a high
cost and let the system over time optimize itself to provide fast
access to those keys

ensure successor links are valid (correctness)

fingers will converge over time (performance)

Algorithm for concurrent operations (Stabilization)

when n joins it just locates its successor and updates successor’s
predecessor

nodes periodically validate their successors by asking for their
predecessors

nodes periodically refresh their finger table

Storage Load Balance

Number of keys stored per node in (10 nodes)

ideally distribution of keys to nodes would be K/N

PDF of number of keys per node (5x10° keys, 104 nodes)

T T
1st and B8th percentiles ——

450
400 002
3 250 j|
EL 300 0.015 l
?. e L ¢
2 25 =] ||U
‘<:|
%; N 001 p \Jll
z] ||||‘!1
g 0.005 | !’JN
] N»lﬂ
i iy
I 1] 1 1 I'ﬁv;%““'r*llm: LT, VR PP I I
20 40 a0 g0 100 0 50 100 150 200 250 300 350 400 450 500
Total number of keys (x 10.000) Wumber of keys per node

Path length

The path length as a function of network size

path length is almost 2logN

PDF of path lenath in a 2'2? node network

T — T —
tst and B0th percentiles ——

" P | " " P | " " M| " " 1 L L "
10 100 1000 10000 10DDD0D
Mumber of nodes

12

Node failures

First case lookups happen
after stabilization

fraction of failed queries
proportional to fraction of lost
nodes

Second case lookups happen
during stabilization

nodes stabilize every 30 sec

Chord’s performance is sensitive to
the frequency of node joins and
leaves versus stabilize frequency

only failures due to chord
inconsistency are considered, not
failures due to lost keys

Failed Lockuges {Fracfion of Total

Fan il Lo cliged {Frmclicn of Todal

023

n2r

s

Los

0.os

0.ov

0.0s

0.os

0.3

o.o2

0.m

95% confidence Intenal —se—

0 {
-

0.1 015 oz
Falied Modes [Fraction of Total)

B5% nontdence Interval —s—i

0.4 0.6 0.03 o
Moge Falllon Rale (Per Second)

Lookup Latency

Experiment over internet hosts
only 1O hosts

experiments run with virtual nodes on the 10 physical hosts

700 | | | | |

'Sth. 50%, '3 95t Bercenties —e—

al0

500

200

300

L =i L By (il

200

100

o 1 1 1 1 1 1 1 1 1
b 20 40 &l B0 100 a0 140 160 180
Humber of Kodes

Future Work?
I

Future Work

1 Suggested future directions:
o heal partition rings
o address consistency attack
= address deny attack
= reducing hops

o1 RTT combined with recursive style of execution

