
M120: DISTRIBUTED SYSTEMS

Consensus & Paxos

*Slides are variant of slides provided by Indranil (Indy) Gupta

Give it a thought

Have you ever wondered why distributed server vendors
always only offer solutions that promise five-9’s
reliability, seven-9’s reliability, but never 100% reliable?

The fault does not lie with the companies themselves.

The fault lies in the impossibility of consensus

A group of servers attempting:

 Make sure that all of them receive the same updates in the

same order as each other

 To keep their own local lists where they know about each

other, and when anyone leaves or fails, everyone is updated

simultaneously

 Elect a leader among them, and let everyone in the group

know about it

 To ensure mutually exclusive (one process at a time only)

access to a critical resource like a file

What is common to all of these?

A group of servers attempting:

 Make sure that all of them receive the same updates in the

same order as each other [Reliable Multicast]

 To keep their own local lists where they know about each

other, and when anyone leaves or fails, everyone is

updated simultaneously [Membership/Failure Detection]

 Elect a leader among them, and let everyone in the group

know about it [Leader Election]

 To ensure mutually exclusive (one process at a time only)

access to a critical resource like a file [Mutual Exclusion]

What is common to all of these?

 Let’s call each server a “process” (think of the daemon

at each server)

 All of these were groups of processes attempting to

coordinate with each other and reach agreement on the

value of something

 The ordering of messages

 The up/down status of a suspected failed process

 Who the leader is

 Who has access to the critical resource

 All of these are related to the Consensus problem

So what is common?

Formal problem statement

 N processes

 Each process p has

input variable xp : initially either 0 or 1

output variable yp : initially b (can be changed only once)

 Consensus problem: design a protocol so that at the end, either:

1. All processes set their output variables to 0 (all-0’s)

2. Or All processes set their output variables to 1 (all-1’s)

What is Consensus?

 Every process contributes a value

 Goal is to have all processes decide same (some) value

 Decision once made can’t be changed

 There might be other constraints

 Validity = if everyone proposes same value, then that’s

what’s decided

 Integrity = decided value must have been proposed by

some process

 Non-triviality = there is at least one initial system state

that leads to each of the all-0’s or all-1’s outcomes

What is Consensus? (2)

 Many problems in distributed systems are equivalent to (or

harder than) consensus!

 Perfect Failure Detection

 Leader election (select exactly one leader, and every

alive process knows about it)

 Agreement (harder than consensus)

 So consensus is a very important problem, and solving it

would be really useful!

 So, is there a solution to Consensus?

Why is it Important?

 Synchronous System Model and Asynchronous System Model

 Synchronous Distributed System

 Each message is received within bounded time

 Drift of each process’ local clock has a known bound

 Each step in a process takes lb < time < ub

E.g., A collection of processors connected by a communication

bus, e.g., a Cray supercomputer or a multicore machine

Two Different Models of Distributed Systems

 Asynchronous Distributed System

 No bounds on process execution

 The drift rate of a clock is arbitrary

 No bounds on message transmission delays

E.g., The Internet is an asynchronous distributed system, so

are ad-hoc and sensor networks

 This is a more general (and thus challenging) model than

the synchronous system model. A protocol for an

asynchronous system will also work for a synchronous

system (but not vice-versa)

Asynchronous System Model

 In the synchronous system model

 Consensus is solvable

 In the asynchronous system model

 Consensus is impossible to solve

 Whatever protocol/algorithm you suggest, there is always a

worst-case possible execution (with failures and message

delays) that prevents the system from reaching consensus

 Powerful result (see the FLP proof)

 Subsequently, safe or probabilistic solutions have become

quite popular to consensus or related problems.

Possible or Not

 First, what’s the system model? (assumptions!)

 Synchronous system: bounds on

 Message delays

 Upper bound on clock drift rates

 Max time for each process step

e.g., multiprocessor (common clock across processors)

 Processes can fail by stopping (crash-stop or crash failures)

Let’s Try to Solve Consensus!

- For a system with at most f processes crashing

- All processes are synchronized and operate in “rounds” of
time

- the algorithm proceeds in f+1 rounds (with timeout), using
reliable communication to all members

- Valuesr
i: the set of proposed values known to pi at the

beginning of round r.

Consensus in Synchronous Systems

Round 1 Round 2 Round 3

- For a system with at most f processes crashing

- All processes are synchronized and operate in “rounds” of time

- the algorithm proceeds in f +1 rounds (with timeout), using reliable
communication to all members

- Valuesr
i: the set of proposed values known to pi at the beginning of round r.

- Initially Values0
i = {} ; Values1

i = {vi}

for round = 1 to f+1 do

multicast (Values ri – Valuesr-1
i) // iterate through processes, send each a message

Values r+1
i Valuesr

i

for each Vj received

Values r+1
i = Values r+1

i Vj

end

end

di = minimum(Values f+2
i)

Possible to achieve!
Consensus in Synchronous System

 After f+1 rounds, all non-faulty processes would have received the same set of Values.

Proof by contradiction.

 Assume that two non-faulty processes, say pi and pj , differ in their final set of values

(i.e., after f+1 rounds)

 Assume that pi possesses a value v that pj does not possess.

 pi must have received v in the very last round

 Else, pi would have sent v to pj in that last round

 So, in the last round: a third process, pk, must have sent v to pi, but then crashed

before sending v to pj.

 Similarly, a fourth process sending v in the second-to-last round must have crashed;

otherwise, both pk and pj should have received v.

 Proceeding in this way, we infer at least one (unique) crash in each of the preceding rounds.

 This means a total of f+1 crashes, while we have assumed at most f crashes can occur =>

contradiction.

Why does the Algorithm work?

 Let’s be braver and solve Consensus in the Asynchronous

System Model

Next

 Consensus impossible to solve in asynchronous systems (FLP

Proof)

 Key to the Proof: It is impossible to distinguish a failed process

from one that is just very very (very) slow. Hence the rest of the

alive processes may stay ambivalent (forever) when it comes to

deciding.

 But Consensus important since it maps to many important

distributed computing problems

 So, can’t we just solve consensus?

Consensus Problem

Paxos algorithm

 Most popular “consensus-solving” algorithm

 Does not solve consensus problem (which would be impossible,

because FLP already proved that)

 But provides safety and eventual liveness

 A lot of systems use it

 Zookeeper (Yahoo!), Google Chubby, and many other

companies

Yes we Can!

 Paxos invented by Leslie Lamport

 Paxos provides safety and eventual liveness

 Safety: Consensus is not violated

 Eventual Liveness: If things go well sometime in the future

(messages, failures, etc.), there is a good chance consensus

will be reached. But there is no guarantee.

 FLP result still applies: Paxos is not guaranteed to reach

Consensus (ever, or within any bounded time)

Yes we Can!

 Paxos has rounds; each round has a unique ballot id

 Rounds are asynchronous

 Time synchronization not required

 If you’re in round j and hear a message from round j+1, abort

everything and move over to round j+1

 Use timeouts; may be pessimistic

 Each round itself broken into phases (which are also

asynchronous)

 Phase 1: A leader is elected (Election)

 Phase 2: Leader proposes a value, processes ack (Bill)

 Phase 3: Leader multicasts final value (Law)

Political Science 101 (Paxos Grokked)

 Potential leader chooses a unique ballot id, higher than anything seen so far

 Sends to all processes

 Processes wait, respond once to highest ballot id

 If potential leader sees a higher ballot id, it can’t be a leader

 Paxos tolerant to multiple leaders, but we’ll only discuss 1 leader case

 Processes also log received ballot ID on disk

 If a process has in a previous round decided on a value v’, it includes value v’
in its response

 If majority (i.e., quorum) respond OK then you are the leader

 If no one has majority, start new round

 (If things go right) A round cannot have two leaders (why?)

Please elect me! OK!

Phase 1 – Election

 Leader sends proposed value v to all

 use v=v’ if some process already decided in a previous

round and sent you its decided value v’

 Recipient logs on disk; responds OK

Please elect me! OK!

Value v ok?

OK!

Phase 2 – Proposal (Bill)

 If leader hears a majority of OKs, it lets everyone know of the

decision

 Recipients receive decision, log it on disk

Please elect me! OK!

Value v ok?

OK!

v!

Phase 3 – Decision (Law)

 That is, when is consensus reached in the system

Please elect me! OK!

Value v ok?

OK!

v!

Which is the point of No-Return?

 If/when a majority of processes hear proposed value and
accept it (i.e., are about to/have respond(ed) with an OK!)

 Processes may not know it yet, but a decision has been made
for the group
 Even leader does not know it yet

 What if leader fails after that?
 Keep having rounds until some round completes

Please elect me! OK!

Value v ok?

OK!

v!

Which is the point of No-Return?

 Paxos guarantees that two different values are not decided by two
different processes

 If some round has a majority (i.e., quorum) hearing proposed value
v’ and accepting it (middle of Phase 2), then subsequently at each
round either: 1) the round chooses v’ as decision or 2) the round
fails

Please elect me! OK!

Value v ok?

OK!

v!

Safety

 If some round has a majority (i.e., quorum) hearing proposed value
v’ and accepting it (middle of Phase 2), then subsequently at each
round either: 1) the round chooses v’ as decision or 2) the round
fails

 Proof:

 Potential leader waits for majority of OKs in Phase 1

 At least one will contain v’ (because two majorities or quorums
always intersect)

 It will choose to send out v’ in Phase 2

 Success requires a majority, and any two majority sets intersect

Please elect me! OK!

Value v ok?

OK!

v!

Safety

 Process fails

 Majority does not include it

 When process restarts, it uses log to retrieve a past decision (if any) and past-
seen ballot ids. Tries to know of past decisions.

 Leader fails

 Start another round

 Messages dropped

 If too flaky, just start another round

 Note that anyone can start a round any time

 Protocol may never end – tough luck, buddy!

 Impossibility result not violated

 If things go well sometime in the future, consensus reached

Please elect me! OK!

Value v ok?

OK!

v!

What could go Wrong?

 A lot more!

 This is a highly simplified view of Paxos.

 See Lamport’s original paper: “A Part-time
Parliament”

 The algorithm is for a single instance of consensus

Please elect me! OK!

Value v ok?

OK!

v!

What could go Wrong?

Paxos optimizations

 Using a separate leader-election scheme we can

reduce the risk of having two competing leaders that

interfere with each other (if that happens, they can

repeatedly abort)

 We can batch requests and do several a time

 We can combine several proposals and run them all

at the same time, for distinct slots

 Lamport extended Paxos to support changing

membership

 The trick is that we build this as incremental steps so

the “correctness” of the core protocol is unchanged

30

Paxos summary

 An important and widely studied/used protocol

(perhaps the most important agreement protocol)

 Developed by Lamport but the protocol per-se

wasn’t really the innovation

 Similar protocols were widely used prior to Paxos

 The key advance was the proof methodology

 We touched on one corner of it

 Lamport addresses the full set of features in his papers

31

Leslie Lamport’s Reflections

 “Inspired by my success at popularizing the consensus problem
by describing it with Byzantine generals, I decided to cast the
algorithm in terms of a parliament on an ancient Greek island.

 “To carry the image further, I gave a few lectures in the persona
of an Indiana-Jones-style archaeologist.

 “My attempt at inserting some humor into the subject was a
dismal failure.

32

The History of the Paper by Lamport

 “I submitted the paper to TOCS in 1990. All three referees said
that the paper was mildly interesting, though not very
important, but that all the Paxos stuff had to be removed. I was
quite annoyed at how humorless everyone working in the field
seemed to be, so I did nothing with the paper.”

 “A number of years later, a couple of people at SRC needed
algorithms for distributed systems they were building, and
Paxos provided just what they needed. I gave them the paper to
read and they had no problem with it. So, I thought that maybe
the time had come to try publishing it again.”

 Along the way, Leslie kept extending Paxos and proving the
extensions correct. And this is what made Paxos important: the
process of getting there while preserving correctness!

33

 Consensus is a very important problem

 Equivalent to many important distributed computing problems that

have to do with reliability

 Consensus is possible to solve in a synchronous system where

message delays and processing delays are bounded

 Consensus is impossible to solve in an asynchronous system where

these delays are unbounded

 Paxos protocol: widely used implementation of a safe, eventually-live

consensus protocol for asynchronous systems

 Paxos (or variants) used in Apache Zookeeper, Google’s Chubby system,

Active Disk Paxos, and many other cloud computing systems

Summary

 Impossible to achieve!

 Proved in a now-famous result by Fischer, Lynch and

Patterson, 1983 (FLP)

 Stopped many distributed system designers dead in their tracks

 A lot of claims of “reliability” vanished overnight

Consensus in an Asynchronous System

Asynchronous system: All message delays and processing delays can be

arbitrarily long or short.

Consensus:

Each process p has a state

 program counter, registers, stack, local variables

 input register xp : initially either 0 or 1

 output register yp : initially b (undecided)

Consensus Problem: design a protocol so that either

 all processes set their output variables to 0 (all-0’s)

 Or all processes set their output variables to 1 (all-1’s)

 Non-triviality: at least one initial system state leads to each of the above two outcomes

Recall

 For impossibility proof, OK to consider

1. more restrictive system model, and

2. easier problem

 Why is this is ok?

Proof Setup

p p’

Global Message Buffer

send(p’,m)
receive(p’)

may return null

“Network”

Network

 State of a process

 Configuration=global state. Collection of states, one for each
process; alongside state of the global buffer.

 Each Event (consists of 3 steps, executed atomically)

 receipt of a message by a process (say p)

 processing of message (may change recipient’s state)

 sending out of all necessary messages by p

 Schedule: sequence of events

States

C

C’

C’’

Event e’=(p’,m’)

Event e’’=(p’’,m’’)

Configuration C

Schedule s=(e’,e’’)

C

C’’

Equivalent

C

C’

C’’

Schedule s1

Schedule s2

s2

s1

s1 and s2 involve

disjoint sets of

receiving processes,

and are each

applicable

on C

Disjoint schedules

are commutative

Lemma 1

 Easier Consensus Problem:

 some process eventually sets yp to be 0 or 1

 Only one process crashes

 we’re free to choose which one

Easier Consensus Problem

 Let config. C have a set of decision values V

reachable from it

 If |V| = 2, config. C is bivalent

 If |V| = 1, config. C is 0-valent or 1-valent, as is the

case

 Bivalent means outcome is unpredictable

Easier Consensus Problem

What the FLP proof shows

1. There exists an initial configuration that is

bivalent

2. Starting from a bivalent config., there is

always another bivalent config. that is

reachable

Some initial configuration is bivalent

•Proof by contradiction

•Suppose all initial configurations were either 0-valent or 1-valent.

•If there are N processes, there are 2N possible initial configurations

•Place all configurations side-by-side (in a lattice), where adjacent

configurations differ in initial xp value for exactly one process.

1 1 0 1 0 1

•There has to be some adjacent pair of

1-valent and 0-valent configs.

Lemma 2

Example: Lattice for

2 processes P1 and

P2 will be a

square:

00--01

| |

10--11

1 1 0 1 0 1

•There has to be some adjacent pair of 1-valent and 0-valent configs.

•Let the process p, that has a different state across these two configs., be

the process that has crashed (i.e., is silent throughout)

Both initial configs. will lead to

the same config. for the same

sequence of events

Therefore, both these initial

configs. are bivalent when there

is such a failure

Lemma 2 Some initial configuration is bivalent

What we’ll show

1. There exists an initial configuration that is

bivalent

2. Starting from a bivalent config., there is

always another bivalent config. that is

reachable

Lemma 3
Starting from a bivalent config., there is always

another bivalent config. that is reachable

A bivalent initial config.
let e=(p,m) be some event

applicable to the initial config.
Let C be the set of configs. reachable

without applying e

Lemma 3

A bivalent initial config.

Let C be the set of configs. reachable

without applying e

e e e e e
Let D be the set of configs.

obtained by applying e to some

config. in C

let e=(p,m) be some event

applicable to the initial config.

Lemma 3

D

C

e e e e e

bivalent

[don’t apply

event e=(p,m)]

Lemma 3

Claim. Set D contains a bivalent config.

Proof. By contradiction. That is,
suppose D has only 0- and 1- valent
states (and no bivalent ones)

 There are states D0 and D1 in D, and
C0 and C1 in C such that

 D0 is 0-valent, D1 is 1-valent

 D0=C0 foll. by e=(p,m)

 D1=C1 foll. by e=(p,m)

 And C1 = C0 followed by some event
e’=(p’,m’)

(why?)

D

C

e e e e e

bivalent

[don’t apply

event e=(p,m)]

Proof. (contd.)

• Case I: p’ is not p

• Case II: p’ same as p

D

C

e e e e e

bivalent

[don’t apply

event e=(p,m)]

C0

D1

D0 C1

e

ee’

e’

Why? (Lemma 1)

But D0 is then bivalent!

e’=(p’,m’)

Proof. (contd.)

• Case I: p’ is not p

• Case II: p’ same as p

D

C

e e e e e

bivalent

[don’t apply

event e=(p,m)]

C0

D1

D0
C1

e e’

A

E0

e

sch. s

sch. s

E1

sch. s

(e’,e)

e

sch. s

• finite

• deciding run from C0

• p takes no stepsBut A is then bivalent!

Lemma 3 Starting from a bivalent config., there is always

another bivalent config. that is reachable

 Lemma 2: There exists an initial configuration that is

bivalent

 Lemma 3: Starting from a bivalent config., there is always

another bivalent config. that is reachable

 Theorem (Impossibility of Consensus): There is always a run

of events in an asynchronous distributed system such that the

group of processes never reach consensus (i.e., stays bivalent

all the time)

Putting it all Together

More on what “impossibility” means

 In formal proofs, an algorithm is totally correct if

 It computes the right thing

 And it always terminates

 When we say something is possible, we mean “there is a
totally correct (terminating) algorithm” solving the problem

 FLP proves that any fault-tolerant algorithm solving consensus
has runs that never terminate

 These runs are extremely unlikely (“probability zero”)

 Yet they imply that we can’t find a totally correct solution

 And so “consensus is impossible” (“not always possible”)

57

FLP Proof Methodology

 A very clever adversarial attack

 They assume they have perfect control over which
messages the system delivers, and when

 They can pick the exact state in which a message
arrives in the protocol

 They use this ultra-precise control to force the
protocol to loop in the manner we’ve described

 In practice, no adversary ever has this much control

58

In the real world?

 The FLP scenario “could happen”

 After all, it is a valid scenario.

 ... And any valid scenario can happen

 But step by step they take actions that are incredibly
unlikely. For many to happen in a row is just impossible
in practice

 A “probability zero” sequence of events

 Yet in a temporal logic sense, FLP shows that if we can prove
correctness for a consensus protocol, we’ll be unable to
prove it live in a realistic network setting, like a cloud system

59

So...

 Fault-tolerant consensus is...

 Definitely possible (not even all that hard). Just vote!

 And we can prove protocols of this kind correct.

 But we can’t prove that they will terminate

 If our goal is just a probability-based guarantee, we

actually can offer a proof of progress

 But in temporal logic settings we want perfect

guarantees and we can’t achieve that goal

60

Thus far…

 We have an asynchronous model with crash failures

 A bit like the real world!

 In this model we know how to do some things

 Tracking “happens before”, implementing total ordered multicast

 Implementing replicated data, solving consensus

 But now we also know that there will always be scenarios in
which our solutions can’t make progress

 Often can engineer system to make them extremely unlikely

 Impossibility doesn’t mean these solutions are wrong – only that they live
within this limit

61

 Consensus Problem

 Agreement in distributed systems

 Solution exists in synchronous system model (e.g.,

supercomputer)

 Impossible to solve in an asynchronous system (e.g., Internet,

Web)

 Key idea: with even one (adversarial) crash-stop process failure, there

are always sequences of events for the system to decide any which way

 Holds true regardless of whatever algorithm you choose!

 FLP impossibility proof applies to all consensus protocols

 One of the most fundamental results in distributed systems

Lecture Summary

