
M120: DISTRIBUTED SYSTEMS

Consistency and Replication
*Slides are variant of slides provided by Ken Birman, Andrew S. Tanenbaum, and Maarten Van Steen
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Replication

 Maintenance of copies at multiple sites

� Enhanced reliability

 Switch to working on other copy of a file when one replica 
crashes

 Protect against corrupted data (quorum)

 Replication of functionality – when one component fails, another 
takes up its job

� Enhanced performance

 When DS needs to scale in numbers

 When DS needs to scale in geographical area
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Replication

 Comes at a cost
� Multiple copies lead to consistency problem
� When one copy altered, others must be updated 

(uses network bw)
 How do we keep replicas consistent ?

� Want synchronous replication?  atomic updates
 Requires global synchronization: Replicas reach agreement on 

when an update is to be performed locally
 Very costly on wide-area network
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Should we bother to keep 
replicas consistent?

 Often improves application and thus, user experience 
� Example:  Browser caching of web pages

 Pages may get stale
 Possible solutions?

� Example: Disconnected operation by mobile nodes
 Stale data & resolution of conflicting updates

In many cases, for improved user experience, we need to 
loosen consistency constraints

- depending on access & update pattern
- depending on location of replicas
- depending on intended usage
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Data-Centric Consistency Models

 Deal with the general organization of a logical data store, 
physically distributed & replicated across multiple processes.

DSM, DFS, DDBMS,…
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Consistency Model

 Contract between data store & processes
� Rules for processes to obey

� Data store promises to work correctly

 Strict consistency
� Read is expected to return the value resulting from the most recent

write operation 

� … assumes absolute global time which is impossible to achieve in 
distributed system

� All writes are instantaneously visible to all

 Sequential consistency
� All processes see the same interleaving of operations  

 Relaxed consistency models

--A consistency model effectively restricts the 
values that a read operation can return …
--and dictates ordering of updates made at replicas
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Strict Consistency (I)

 Natural & obvious definition

� … assuming that the determination of “most recent” is unambiguous

 Suppose that x is stored only on host B

 At time t1, a process on host A “reads” x

� … thereby sending a message to host B

 At time t2 > t1, a process on B “writes” x

 Strict consistency  The process on host A must obtain the 
previous value of x

� … regardless of the interval (t2 – t1)

� What happens if propagation of read request from A to B takes longer 
than t2 – t1?
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Strict Consistency (II)

Behavior of two processes, operating on the same data item.

(a) A strictly consistent data store.

(b) A data store that is not strictly consistent.

Impossible to implement in a distributed system !
(assumes all writes are instantaneously visible to all processes)
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Sequential Consistency (I)

a) A sequentially consistent data store.

b) A data store that is not sequentially consistent.

Time does not play a role!

All processes agree on the same interleaving of write operations
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Sequential Consistency (II)

 Three concurrently executing processes.

Process P1 Process P2 Process P3

x = 1;

print ( y, z);

y = 1;

print (x, z);

z = 1;

print (x, y);

… 90 valid execution sequences
(that do not violate program order)

The processes must accept all of them as valid
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Sequential Consistency (III)

 Four valid execution sequences for the processes of the previous 
slide … each yielding a different result.

x = 1;

print (y, z);

y = 1;

print (x, z);

z = 1;

print (x, y);

Prints:  001011

(a)

x = 1;

y = 1;

print (x,z);

print(y, z);

z = 1;

print (x, y);

Prints: 101011

(b)

y = 1;

z = 1;

print (x, y);

print (x, z);

x = 1;

print (y, z);

Prints: 010111

(c)

y = 1;

x = 1;

z = 1;

print (x, z);

print (y, z);

print (x, y);

Prints: 111111

(d)

Summary: 1) all processes must see all writes to all data items in the SAME order
2) individual program order must be respected 
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Causal Consistency (I)

 Necessary condition:
Writes that are potentially causally related must be seen by 
all processes in the same order. 

� If event b is potentially caused or influenced by an earlier event a, 
then all processes must first see a, then see b

� Concurrent writes may be seen in a different order on different 
machines.

 Example: P1 writes x. P2 reads x and writes y.

� Reading of x and writing of y potentially causally related

 Example: P1 and P2 simultaneously write to two different 
items 

� Writes are not causally related

� Operations not causally related are concurrent
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Causal Consistency (II)

 A sequence allowed with a causally-consistent store

� … but not with sequentially or strictly consistent store.

 Causal consistency requires that all processes see W1(x)a 
before W2(x)b 

W2(x)b & W1(x)c are concurrent events
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Causal Consistency (III)

a) violation of a casually-consistent store.

b) correct sequence of events in a causally-consistent store.

Implementation by tracking dependencies  vector timestamps

(aka vector clocks)

W1(x)a  W2(x)b
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Grouping Operations

 Sequential and causal consistency defined at level of 
reads and writes
� Initially developed for shared memory MPs

� Implemented at hw level

 Applications often work at different level of granularity
� Use synchronization mechanisms for mutual exclusion and 

transactions

� Reads and writes grouped together and bracketed by enter_CS 
& leave_CS ops

� Process that enters critical section will be ensured that data in its 
local store is up-to-date, then can issue series of reads and writes 
freely
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Synchronization Variables

 Each sync variable has an owner 

� The process that last acquired it

� Owner can enter and exit CS without sending msgs to other 
processes

 A non-owner who wants to acquire the sync variable must 
send msg to current owner 

� Ask for ownership

� Ask for current values of data associated with the variable

 Multiple processes can own simultaneously a sync variable 
in non-exclusive mode
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Entry Consistency (I)

 An acquire access of a synchronization variable is not 
allowed to perform with respect to a process until all 
updates to the guarded shared data have been performed
with respect to that process.
� All remote changes to the guarded data must be made visible

 Before an exclusive mode access to a synchronization 
variable by a process is allowed to perform with respect to 
that process, no other process may hold the synchronization 
variable, not even in nonexclusive mode.

 If another process wants to enter CS in nonexclusive mode, 
must first check with owner of the sync variable guarding the 
CS to fetch most recent copies of the guarded data from the 
owner of the sync variable.
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Entry Consistency (II)

 A valid event sequence for entry consistency.

Each shared data item needs to be 
associated with a sync. variable (lock)

Current owner per sync. variable

Acquire makes visible all remote 
changes to the guarded data

Can be done implicitly 
(by the run-time system)

Only data guarded by a 
lock are kept consistent
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Summary of Data-Centric Consistency Models

Consistency Description

Strict Absolute time ordering of all shared accesses matters.

Linearizability
All processes must see all shared accesses in the same order.  Accesses are furthermore 

ordered according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order.  Accesses are not ordered in time

Causal All processes see causally-related shared accesses in the same order.

FIFO
All processes see writes from each other in the order they were used.  Writes from different 

processes may not always be seen in that order

(a)

Consistency Description

Weak Shared data can be counted on to be consistent only after a synchronization is done

Release Shared data are made consistent when a critical region is exited

Entry Shared data pertaining to a critical region are made consistent when a critical region is 

entered.

(b)
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Consistency versus Coherence

 Consistency model describes what can be expected 
w.r.t. a set of data items when multiple processes 
concurrently operate on that set
� Data set is consistent if it adheres to the model’s rules

 Coherence models describe what can be expected 
w.r.t. a single data item 
� Data item is coherent when its various copies abide by 

the coherence model’s rules
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Read-mostly Data Stores 

 Assume a data store 
� Where concurrent conflicting updates are rare

� And easy to resolve

� Most operations are reads

� Can maximize performance by following a very weak 
consistency model
 Eventual consistency



Examples of Read-mostly Data Stores

 Databases

� Most processes rarely perform updates, mostly read from 
the DB

 DNS 

� Single naming authority per zone

� “lazy” propagation of updates

 WWW

� No write-write conflicts

� Usually acceptable to serve slightly out-of-date pages from 
a cache 
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For read-mostly data stores: 
Eventual Consistency

 For data stores that tolerate a high degree of 
inconsistency

 If no updates take place for long time, all replicas 
gradually converge to identical copies
� When few processes perform updates, write-write 

conflicts easy to resolve

� Cheap to implement

 What happens when clients don’t always access the 
same replica?



24

Client-centric Consistency
 A mobile user accessing different replicas of a distributed database.

When users sometimes operate on different 
replicas, we need  client-centric consistency 
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Client-centric Consistency

 For eventually-consistent data stores where users 
sometimes operate on different replicas

 For a single client, consistency of the data items accessed by 

that client 

 No guarantees given about concurrent accesses by 
different clients

 Originated from Bayou work (Terry et al., 1994)

� Weakly connected replicated storage system for a mobile 
computing environment

� Four different consistency models



26

Bayou client-centric models

 xi[t]: version of object x at local copy Li at time t
� … result of updates to a series of writes at Li since system 

initialization

� WS(xi[t]): series of writes

� WS(xi[t2]; xz[t2]): series of writes that have also been performed at 
copy Lzat a later time

 Assume an “owner” for each data item
� … avoid write-write conflicts

 Monotonic reads

 Monotonic writes

 Read-your-values

 Writes-follow-reads 
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Monotonic Reads

 The read operations performed by a single process P at two different 
local copies of the same data store.

a) A monotonic-read consistent data store

b) A data store that does not provide monotonic reads.

If a process has seen a 
value of x at time t, it 
will never see an older 
value at a later time.

Example: 
-replicated mailboxes with 
on-demand propagation 
of updates

WS(x1) is part of WS(x2)
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Monotonic Writes

 The write operations performed by a single process P at two different local 
copies of the same data store

a) A monotonic-write consistent data store.

b) A data store that does not provide monotonic-write consistency.

If an update is made to a 
copy, all preceding updates
must have been completed first.

Example: 
- s/w library

FIFO propagation of
updates by each process

Esp. important when a write may 
affect only part of the state of a data item

No guarantee that x at L2 has the same 
value as x at L1 at the time W(x1) completed
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Read Your Writes

a) A data store that provides read-your-writes consistency.

b) A data store that does not.

A write is completed before a 
successive read (by same 
process), no matter where the 
read takes place

Negative examples:
- updates of Web pages
- changes of web passwords

The effects of the previous write 
at L1 have not yet been propagated !
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Writes Follow Reads

a) A writes-follow-reads consistent data store

b) A data store that does not provide writes-follow-reads 
consistency

Any successive write by a 
process will be performed on a 
copy that is up-to-date with 
the value most recently read 
by the process.

Example:
- updates of a newsgroup: 
Responses are visible only after
the original posting has been received
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Implementing client-centric models (I)

 Globally unique ID per write operation

� Assigned by the initiating server

 Per-client state:

� Read set

 Write IDs relevant to client’s read operations

� Write set

 IDs of writes performed by client

 Major performance issue:

� Size of read/write sets ? 
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Implementing client-centric models (II)

 Monotonic read:
� When a client issues a read, the server is given the client’s read set to 

check whether all the identified writes have taken place locally
 If not, the server contacts others to ensure that it is brought up-to-

date before carrying out the read
� After the read, the client’s read set is updated with the server’s 

“relevant” writes

 Monotonic write:
� When a client issues a write, the server is given the client’s write set to 

 … ensure that all specified writes are performed first and in the 
correct order

 Then the new write op is performed
� The write operation’s ID is appended to client’s write set 
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Implementing client-centric models (III)

 Read-your-writes:
� Before serving a read request, the server fetches (from 

other servers) all writes in the client’s write set

 Writes-follow-reads:
� Server is brought up-to-date with the writes in the client’s 

read set

� After write, the new ID is added to the client’s write set, 
along with the IDs in the read set 
 … as these have become “relevant” for the write just performed
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Implementing client-centric models (IV)

 Read and write sets get large over time

� Idea: Group a client’s read and write operations into 
sessions

� A session is typically associated with an application

 … but may also be associated with an application that can be 
temporarily shutdown (eg: email agent)

� What if the client never closes a session ?

 How to efficiently represent read & write sets ?

� List of IDs for write operations

 … Not all of these are actually needed !!
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Implementing client-centric models (V)

 Idea: Use vector timestamps to improve efficiency:
� When server Sz accepts a write operation, it assigns to it a 

globally unique WID and a timestamp ts(WID)

� Each server z maintains vector WVC(z)
 WVC(z)[i] := timestamp of the latest write initiated at server Si

that has been received & processed at Sz

 Server returns its current vector timestamp with its responses to 
read/write requests

 Client adjusts the timestamp for its own read/write set



36

Implementing client-centric models (VI)

 Efficient representation of read/write set A:

� VT(A): vector timestamp

 VT(A)[z] := max. timestamp of all operations in A that were 
initiated at server Sz

� Union of 2 sets of write IDs:

 VT(A+B)[z] := max{ VT(A)[z], VT(B)[z] }

� Efficient way to check if A is contained in B:

 VT(A)[z] <= VT(B)[z]

 Thus, we can check if a set A, of writes, has been applied at a 
server by comparing their vector timestamps rather than checking 
if individual write IDs of set A appear in the write set of the 
server



Replica Placement

 Key issue in any DS

� Where to place replicas

 Often affected by management/commercial issues (see 
Akamai example)

 Client and network properties important factors too

� Where to place content

 i.e, on which replica to place a particular data item
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Where to place content?

 The logical organization of different kinds of copies of a data store 
into three concentric rings.
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Replica Content Placement

 Permanent copies

� Initial set of replicas that make up the distributed data store

Example from the Web:
 Web site replicated on servers within a local cluster

 Mirror web site on geographically distributed sites

 Server-initiated

� Dynamic replication to handle bursts

� Usually done for read-only data

 Content Distribution Network (CDN)

 Client-initiated 

� Aka (client) caches

� Improve access time to data

 Danger of “stale” data

� Private vs Shared caches 
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Server-Initiated Replicas (Rabinovich et al, ICDCS 
1999)

 Counting access requests from different clients.

•Deletion threshold: del(S, F)

•Replication threshold: rep(S, F)

Routing DB to determine 
“closest” server for client C

P := closest server
for both C1 & C2

CntQ(P, F)

At each server:
•Count of accesses
for each file
•Originating clients 

Extra care to ensure that at least one copy remains !

Dynamic decisions to delete/migrate/replicate file F to server S
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How to propagate updates to replicas?
 State vs Operations

� Notification of an update
 Invalidation protocols
 Best for low read/write ratio (%)

� Transfer data from one copy to another
 Transfer of actual data … or delta of changes
 Batching to save communication overhead
 Best for relatively high read/write %

� Propagate the update “params/ops/description” to other copies
 Active replication

 Pull vs Push
� Push  replicas maintain a high degree of consistency

 Updates are expected to be of use to many read-only clients
� Pull  best for low read/write %
� Hybrid scheme based on lease model 

 Unicast vs Multicast
� Push  multicast group
� Pull  single server or client requests an update



42

Pull versus Push Protocols

 Comparison between push-based & pull-based protocols in the case of a 
single server, multiple client system.

Issue Push-based Pull-based

State of server List of client replicas and caches None

Messages sent
Update (or notification of update and 
possibly fetch update later)

Poll and update

Response time at 
client

Immediate (or fetch-update time) Fetch-update time

Stateful server: keeps track of all caches
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Leases

 A promise by a server that it will push updates for a 
specified time period
� After expiration, client has to “pull” for updates

 Alternatives:
� Age-based leases

 Depending on the last time an item was modified
 Long-lasting leases for items that are expected to remain unmodified

� Renewal frequency-based leases
 Short-term leases for clients that only occasionally ask for a specific 

item
 Effect: server only tracks clients where its data are popular and gives 

them high consistency

� Leases based on state-space overhead at the server:
 Lower expiration time as the server becomes overloaded
 Effect: needs to track fewer clients since leases expire more quickly  
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Back to implementation of consistency models

(i.e., consistency protocols)….
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Primary-based protocols

 Distributed app developers tend to use consistency models 
that are easy to understand
� More complex models with better performance often ignored

 For models that handle consistent ordering of operations
� Sequential consistency very popular

� Primary-based (sequential consistency) protocols prevail
 Each data item has associated primary in charge of coordinating 

writes to that item
 Remote-write vs local-write protocols

� Replicated-write (sequential consistency) protocols also 
widely used
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Remote-Write (Primary-based) Protocols

 Also called primary-backup protocol

 All write ops for item x forwarded to a fixed server; 
read ops can be done locally
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Blocking vs Non-blocking updates

 Blocking updates

� … straightforward implementation of sequential 
consistency

 The primary orders all updates

 Processes see the effects of their most recent write

 But, response time is delayed

 Non-blocking updates

� … reduce blocking delay for the process that initiated the 
update

 The process only waits until the primary’s ACK

� But, fault tolerance not ensured
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Local-Write (Primary-based) Protocols

 Primary-backup protocol in which the primary migrates to the process 
wanting to perform an update.

Suitable for disconnected operation
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Replicated-Write Protocols

 Write operations can be carried out at multiple 
replicas instead of one

 Active replication

� Write operation forwarded to all replicas

 Majority voting

� Require clients to acquire permission from multiple 
servers before reading/writing data item
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Active replication (I)

 Each replica has a process that carries out write 
operations

 Write operations from clients propagated to all 
replicas

 Write operations must be done in same order 
everywhere
� Need totally-ordered multicast mechanism (e.g., 

Lamport’s logical clocks), not scalable

� OR, use central coordinator that orders operations and 
assigns unique sequence number 



51

Active Replication (II)

 The problem of replicated invocations.
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Active Replication (III)

(a) Forwarding an invocation request from a replicated object.

(b) Returning a reply to a replicated object (from a replicated object).
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Quorum-Based Protocols

 Require clients to get permission from multiple servers 
before either reading or writing to a replicated data item

 Example:  DFS with file replicated on N servers

� To write, client must find at least N/2 + 1 (majority) servers to 
agree, servers write, file gets new version number

� To read, client must find at least N/2 + 1 (majority) of servers 
and ask for version numbers, if number are same, this is most 
recent version of the file
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Gifford’s Quorum Scheme (1979)

 Version numbers or timestamps per copy

 Obtain quorum before read/write:
� R votes before read

 To read a file, client must find quorum of R or more servers with same 
version number

� W votes before write

� W > N/2   prevents write-write conflicts

� (R + W) > N  prevents read-write conflicts

 Any quorum pair must contain common copies
� In case of partition, it is not possible to perform conflicting operations 

on the same copy
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Gifford’s Quorum Scheme

Three examples of the voting algorithm:

a) A correct choice of read & write set

b) A choice that may lead to write-write conflicts

c) A correct choice, known as ROWA (read one, write all)


