
M120: DISTRIBUTED SYSTEMS

Time

*Slides are variant of slides provided by Andrew Tanenbaum & MarartenVan Steen

Time in Distributed Systems

 Related to notions of replication/consistency is

notion of time

 Simplest (incomplete) defn of DS: set of processes

that communicate by msg passing and carrying out

desired actions over time

 Components in DS need some sense of time for

synchronizing and/or coordinating tasks

 specs of DSs include terms like “when”, “before”,

“after”, “simultaneously”

Synchronization

 Allows processes

 To share resources (e.g., data or printer) in orderly

manner

 To figure out ordering of events (msg1 from P was sent

before msg2 from Q)

 Outline of lecture

 Synchronization based on actual time

 Synchronization where only relative ordering matters

Clock synchronization

 In centralized system, time is unambiguous

 Time T1: A asks for time, gets back T1 from kernel

 At time T2>T1, B asks for time, gets back T2

 T2 returned to B will always be >= T1 returned to A

 In a DS, achieving agreement on time is NOT trivial

 Example of why clock syncing is important: running

make on multiple machines

Why clock synchronization is important

 When each machine has its own clock, an event that occurred
after another event may nevertheless be assigned an earlier
time.

 Cloud airline reservation system

 Server A receives a client request to purchase last ticket on flight

ABC 123.

 Server A timestamps purchase using local clock 9h:15m:32.45s, and

logs it. Replies ok to client.

 That was the last seat. Server A sends message to Server B saying

“flight full.”

 B enters “Flight ABC 123 full” + its own local clock value (which

reads 9h:10m:10.11s) into its log.

 Server C queries A’s and B’s logs. Is confused that a client purchased

a ticket at A after the flight became full at B.

 This may lead to further incorrect actions by C

Why clock synchronization is important (2)

 End hosts in Internet-based distributed systems (like clouds)

 Each have their own clocks

 Unlike processors (CPUs) within one server or workstation which

share a system clock

 Processes in Internet-based systems follow an asynchronous

system model

 No bounds on

Message delays

 Processing delays

 Unlike multi-processor (or parallel) systems which follow a

synchronous system model
7

Why is clock synchronization a challenge?

 An Asynchronous Distributed System consists of a number of

processes.

 Each process has a state (values of variables).

 Each process takes actions to change its state, which may be an

instruction or a communication action (send, receive).

 An event is the occurrence of an action.

 Each process has a local clock – events within a process can be

assigned timestamps, and thus ordered linearly.

 But – in a distributed system, we also need to know the time

order of events across different processes.

8

Possible to synchronize all clocks in a DS?

 It’s surprisingly complicated

 Computers suffer from clock skew (aka drift)

 In system of n computers, very likely each has different time (even

if started out same)

 UTC (Coordinated Universal Time)

 Time standard by which world regulates clocks & time

 Based on the use of cesium 133 atomic clocks

 Shortwave radio stations in several countries broadcast short

pulse at start of a UTC second to receivers that need precise time

Model

 Each machine has timer that causes interrupt H times/sec

 On interrupt, add 1 to a software clock that tracks number

of ticks, C, since some agreed-upon time in the past

 Ideally, when UTC=t, C = t

Clock Synchronization Algorithms

 The relation between clock time and UTC when clocks tick at different
rates.

Clock Synchronization Algorithms

 Internal synchronization
 Goal: each process tracks its own time, try to keep all processes together

 Every pair of processes in group have clocks within bound D

 |C(i)-c(k)| < D at all times, for all processes i and k

 E.g. Berkeley algorithm

 External Synchronization

 Goal: one process is the timekeeper, try to keep the others synchronized to it

 Εach process C(i)’s clock is within a bound D of a well-known clock S external to
the group

 |C(i) – S| < D at all times

 External clock S may be connected to UTC (Universal Coordinated Time) or an
atomic clock

 E.g., NTP, Cristian’s algorithm

The Berkeley Algorithm

 (a) The time daemon asks all the other machines for their clock values.

 (b) The machines answer.

 (c) The time daemon tells everyone how to adjust their clock.

NTP = Network Time Protocol

 NTP Servers organized in a tree

 Each Client = a leaf of tree

 Each node synchronizes with its tree parent

Client

Primary servers

Secondary servers

Tertiary servers

14

NTP Protocol

Child

Parent

Time

Let’s start protocol

Message 1

Message 1 send time ts1

Message 2 send time ts2
Message 1 recv time tr1

Message 2 recv time tr2

Message 2 ts1, tr2

15

What the Child Does

 Child calculates offset between its clock and parent’s clock

 Uses ts1, tr1, ts2, tr2

 Offset is calculated as

o = (tr1 – tr2 + ts2 – ts1)/2

16

Why

 Offset o = (tr1 – tr2 + ts2 – ts1)/2

 Let’s calculate the error

 Suppose real offset is oreal

 Child is ahead of parent by oreal

 Parent is ahead of child by -oreal

 Suppose one-way latency of Message 1 is L1 (L2 for Message 2)

 No one knows L1 or L2!

 Then

tr1 = ts1 + L1 + oreal

tr2 = ts2 + L2 – oreal
17

Why

 Then

tr1 = ts1 + L1 + oreal

tr2 = ts2 + L2 – oreal

 Subtracting second equation from the first

oreal = (tr1 – tr2 + ts2 – ts1)/2 + (L2 – L1)/2

=> oreal = o + (L2 – L1)/2

=> |oreal – o| = |(L2 – L1)/2| < |(L2 + L1)/2|

 Thus, the error is bounded by the round-trip-time
18

And so…

 We have a non-zero error that we can’t get rid of…

 …as long as message latencies are non-zero

 Can we avoid synchronizing clocks altogether, and still

be able to order events?

19

Ordering Events in a Distributed System

 Often apps need to agree on the order in which events occur

 To order events across processes, trying to sync clocks is one

approach

 What if we instead assigned timestamps to events that were

not absolute time?

 As long as these timestamps obey causality, that would work

 If an event A causally happens before another event B, then

timestamp(A) < timestamp(B)

 Humans use causality all the time

 E.g., I enter a house only after I unlock it

 E.g., You receive a letter only after I send it

20

Lamport’s algorithm (1978)

 Key idea: synchronization need not be based on time (real or

virtual)

 For make, what counts is whether input.c is older or newer

than input.o, not their absolute modification times

 Often apps need only agree on the order in which events occur

 Lamport’s algorithm synchronizes logical clocks

 Used in almost all distributed systems since then

Lamport’s Logical Clocks (1)

 Define a logical relation “happens-before” among pairs of events

 The "happens-before" relation (denoted as →) can be observed

directly in two situations:

 If a and b are events in the same process, and a occurs before b, then a

→ b is true.

 If a is the event of a message being sent by one process, and b is the

event of the message being received by another process, then a → b.

 Happens-before is transitive

 If a → b and b → c then a → c

 Creates a partial order among events

 Not all events related to each other via →

Lamport’s Logical Clocks (2)

 If events x and y happen in different processes that do

not exchange messages (not even indirectly via third

parties), then

x → y NOT true

 x and y are concurrent

 Nothing can be said (or need be said) about when the

events happened or which one happened first

Example

P2

Time

Instruction or step

P1

P3

Message

A B C D E

E F G

H I J

While P1 and P2 each have an event

labeled E, these are different events as

they occur at different processes.

Happens-Before

P2

Time

Instruction or step

P1

P3

Message

• A B

• B F

• A F

A B C D E

E’ F G

H I J

Happens-Before (2)

P2

Time

Instruction or step

P1

P3

Message

• H G

• F J

• H J

• C J

A B C D E

E’ F G

H I J

Lamport’s Logical Clocks (3)

 For every event a, we can assign it a (logical) time

value C(a) on which all processes agree.

 such that:

 If a->b then C(a) < C(b)

 Clock time C must always go forward, never decrease

 Lamport’s algorithm assigns logical times to events

while respecting these properties

Lamport’s Logical Clocks (4)

 (a) Three processes, each with its own clock. The clocks run at

different rates. (b) Lamport’s algorithm corrects the clocks.

Lamport’s Logical Clocks (5)

 The positioning of Lamport’s logical clocks in distributed

systems.

Lamport’s Logical Clocks (6)

Each process Pi maintains a local counter Ci

1. Before executing an event (e.g., send msg over net, deliver msg to
app, or some internal event), Pi executes Ci ← Ci + 1.

2. When process Pi sends a message m to Pz, it sets m’s timestamp ts(m)
equal to Ci.

3. Upon receipt of message m, process Pz adjusts its own local counter
as
Cz ← max{Cz , ts(m)}, + 1, and delivers the message to the
application.

Lamport’s Logical Clocks (7)

 We can attach the number/ID of the process in which the event

occurs to the event’s timestamp

 E.g., event at time 40 at Pi is timestamped with 40.i

 When we assign C(a) = Ci(a), if a happened at process Pi at

time Ci(a), we get a distributed implementation of the global

time value of all events

Example: Totally Ordered Multicasting

 Updating a replicated database and leaving it in an inconsistent state.

Bank example: add $100 to account in SF copy while increasing with

1% interest the amount in NY copy

 Need totally-ordered multicast: all msgs delivered in same order to

each node

Totally-ordered multicast

 Goal: all msgs delivered in same order to each node.

 Lamport’s clocks can be used to implement totally-ordered multicast in a
distributed fashion.

 When process receives msg, puts in local queue, ordered according to
timestamp

 Receiver multicasts ack to other processes (Note: ack has higher timestamp
than msg)

 Eventually all processes will have the same copy of the local queue
(provided no msgs are removed)

 A process delivers a queued msg to app only when msg is at head of queue
and has been acknowledged by all others

 Thus, all msgs are delivered in same order everywhere

 Aka state machine replication

With Lamport’s Clocks…

 All events in a distributed system are totally

ordered with property that

 If a happened before b, then a will be positioned in

that ordering before b (i.e., C(a) < C(b))

 However, converse not necessarily true

 If C(a) < C(b), does not necessarily mean that a indeed

happened before b

 So we can’t simply compare time values to determine if

a happened before b

Example: Lamport timestamps

P2

Time

Instruction or step

P1

P3

Message
35

P2

Time

Instruction or step

P1

P3

Message

0

0

0

Initial counters (clocks)

Example: Lamport timestamps

P2

Time

Instruction or step

P1

P3

Message
Message send

ts = 1

ts = 1

Message carries

ts = 1

0

0

0

Example Lamport timestamps

P2

Time

Instruction or step

P1

P3

Message

1

1

Message carries

ts = 1

ts = max(local, msg) + 1

= max(0, 1)+1

= 2

0

0

0

Example Lamport timestamps

P2

Time

Instruction or step

P1

P3

Message

1

1

Message carries

ts = 2

2

2

max(2, 2)+1

=3

0

0

0

Example: Lamport timestamps

P2

Time

Instruction or step

P1

P3

Message

1

1

2

2 3 4

3

max(3, 4)+1

=50

0

0

Example: Lamport timestamps

P2

Time

Instruction or step

P1

P3

Message

1

1

2

2 3 4

3 5 6

72

0

0

0

Example: Lamport timestamps

Obeying Causality

P2

Time

Instruction or step

P1

P3

Message

1

1

2

2 3 4

3 5 6

7
• A B :: 1 < 2

• B F :: 2 < 3

• A F :: 1 < 3

A B C D E

E’ F G

H I J

2

0

0

0

Obeying Causality (2)

P2

Time

Instruction or step

P1

P3

Message

1

1

2

2 3 4

3 5 6

7

A B C D E

E’ F G

H I J

• H G :: 1 < 4

• F J :: 3 < 7

• H J :: 1 < 7

• C J :: 3 < 7

2

0

0

0

Not always implying Causality

P2

Time

Instruction or step

P1

P3

Message

1

1

2

2 3 4

3 5 6

7

A B C D E

E’ F G

H I J

• ? C F ? :: 3 = 3

• ? H C ? :: 1 < 3

• (C, F) and (H, C) are pairs of

concurrent events

2

0

0

0

Concurrent Events

 A pair of concurrent events doesn’t have a causal path

from one event to another (either way, in the pair)

 Lamport timestamps not guaranteed to be ordered or

unequal for concurrent events

 Ok, since concurrent events are not causality related!

 Remember

E1 E2 timestamp(E1) < timestamp (E2), BUT

timestamp(E1) < timestamp (E2)

{E1 E2} OR {E1 and E2 concurrent}

Lamport clocks do not capture causality (Example 2)

 Concurrent message transmission using logical clocks. Note: Lamport’s clocks do not

capture causality.

 Sending m3 might depend on what was received through m1

 Sending of m2 (by P3) definitely has nothing to do with receipt of m1, so even

though Trcv(m1) < Tsnd(m2), can’t be sure that m1 was indeed received before m2

was sent

Next

 Can we have causal or logical timestamps from which we

can tell if two events are concurrent or causally related?

47

Vector Clocks (1)

 Causality can be captured by vector clocks

 Vector clocks are constructed by letting each process Pi

maintain a vector VCi with the following two properties:

1. VCi[i] is the number of events that have occurred so far

at Pi. In other words, VCi[i] is the local logical clock at

process Pi .

2. If VCi[z] = k then Pi knows that k events have occurred at

Pz. It is thus Pi’s knowledge of the local time at Pz.

Property 1 attained by incrementing VCi[i] at every new

event at process Pi.

Vector Clocks (2)

 Steps carried out to accomplish property 2 of previous
slide:

1. Before executing an instruction or send event Pi executes
VCi[i] ← VCi[i] + 1.

2. When process Pi sends a message m to Pz, it sets m’s
(vector) timestamp ts(m) equal to VCi.

3. Upon receipt of a message m, process Pz adjusts its own
vector by setting:
VCz[k] ← max{VCz[k], ts(m)[k]} for k !=z

VCz[k] ← VCz[k] + 1 for k=z .

Vector Clocks (3)

 If event a has ts(a), then ts(a)[i]-1 = # events

processed at Pi that causally precede a

 When Pz receives msg from Pi with ts(m), it knows

 # events that have occurred at Pi that causally preceded the

sending of m AND

 #events at other processes that took place before Pi sent

msg m

 Hence, ts(m) tells Pz the # events in other processes that

preceded the sending of m and on which m may causally

depend

Enforcing causal communication

 With vector clocks, we can ensure that a message is
delivered only if all messages that causally precede
it have also been received

 Assumptions

 messages are multicast within a group of processes

 Clocks are adjusted only when sending/receiving messages

 Causally-ordered multicasting is weaker than totally-
ordered multicasting

 If 2 messages unrelated, we do not care about the order
they are delivered to apps

Enforcing causal communication

 Suppose Pz receives m from Pi with (vector)

timestamp ts(m)

 Delivery of message m to the application is

delayed until following conditions are met:

 ts(m)[i] = VCz[i] + 1 [i.e., m is the next message that Pz

was expecting from process Pi]

 for all k != i, ts(m)[k] <= VCz[k] [i.e., Pz has seen all the

messages that have been seen by Pi when it sent

message m]

P2

Time

Instruction or step

P1

P3

Message

A B C D E

E’ F G

H I J

53

P2

Time

P1

P3

(0,0,0)

(0,0,0)

(0,0,0)

Initial counters (clocks)

(0,0,0) (1,0,0)

(0,0,0)

Message(0,0,1)

(0,0,0) (0,0,1)

P2

Time

P1

P3

P2

Time

P1

P3

(0,0,0) (1,0,0)

(0,0,0) (0,1,1)

Message(0,0,1)

(0,0,0) (0,0,1)

P2

Time

P1

P3

(0,0,0) (1,0,0) (2,0,0)

Message(2,0,0)

(0,0,0) (0,1,1) (2,2,1)

(0,0,0) (0,0,1)

P2

Time

P1

P3

(0,0,0) (1,0,0) (2,0,0) (3,0,0) (4,3,1) (5,3,1)

(0,0,0) (0,1,1) (2,2,1) (2,3,1)

(0,0,0) (0,0,1) (0,0,2) (5,3,3)

Causally Related

 VT1 = VT2,

iff (if and only if)

VT1[i] = VT2[i], for all i = 1, … , N

 VT1 ≤ VT2,

iff VT1[i] ≤ VT2[i], for all i = 1, … , N

 Two events are causally related iff

VT1 < VT2, i.e.,

iff VT1 ≤ VT2 &

there exists j such that

1 ≤ j ≤ N & VT1[j] < VT2 [j]

59

 Two events VT1 and VT2 are concurrent

iff

NOT (VT1 ≤ VT2) AND NOT (VT2 ≤ VT1)

We’ll denote this as VT2 ||| VT1

60

P2

Time

P1

P3

(0,0,0) (1,0,0) (2,0,0) (3,0,0) (4,3,1) (5,3,1)

(0,0,0) (0,1,1) (2,2,1) (2,3,1)

(0,0,0) (0,0,1) (0,0,2) (5,3,3)

• A B :: (1,0,0) < (2,0,0)

• B F :: (2,0,0) < (2,2,1)

• A F :: (1,0,0) < (2,2,1)

A B C D E

E’ F G

H I J

61

P2

Time

P1

P3

(0,0,0) (1,0,0) (2,0,0) (3,0,0) (4,3,1) (5,3,1)

(0,0,0) (0,1,1) (2,2,1) (2,3,1)

(0,0,0) (0,0,1) (0,0,2) (5,3,3)

A B C D E

E’ F G

H I J

• H G :: (0,0,1) < (2,3,1)

• F J :: (2,2,1) < (5,3,3)

• H J :: (0,0,1) < (5,3,3)

• C J :: (3,0,0) < (5,3,3)

P2

Time

P1

P3

(0,0,0) (1,0,0) (2,0,0) (3,0,0) (4,3,1) (5,3,1)

(0,0,0) (0,1,1) (2,2,1) (2,3,1)

(0,0,0) (0,0,1) (0,0,2) (5,3,3)

A B C D E

E’ F G

H I J

• C & F :: (3,0,0) ||| (2,2,1)

• H & C :: (0,0,1) ||| (3,0,0)

• (C, F) and (H, C) are pairs of concurrent events

CATOCS controversy

 CATOCS (Causal and Totally Ordered Communication
Service) middleware toolkits are available

 Should support for causally and totally ordered
multicasting be provided by middleware or should
apps handle ordering of messages?
 Middleware cannot tell what a message contains, so only

potential causality is captured overly restrictive

 Middleware cannot catch all causality

 Electronic bulletin board example – Bob posts response to
Alice’s article after having heard over phone about it
from Alice

 Again, some argue application knows best (E2E)

Time and Ordering Summary

 Clocks are unsynchronized in an asynchronous distributed

system

 But need to order events, across processes!

 Clock synchronization

 NTP

 Berkeley algorithm

 But error is a function of round-trip-time

 Can avoid clock synchronization altogether by instead

assigning logical timestamps to events
65

 Lamport timestamps

 Integer clock timestamps assigned to events

 Obey causality

 Cannot distinguish concurrent events

 Vector timestamps

 Obey causality

 By using more space, can also identify concurrent events

66

Time and Ordering Summary (2)

