ADVANCED OPERATING
SYSTEMS




Design and implementation of the
- Sun Network Filesystem (1985)

7 What kind of paper is this?
New big idea?
Measurement paper?
Experiences/lessons learnt paper?
A system description?
Performance study?
Refute-conventional wisdom?

Survey paper?



What kind of paper is this?

Motivate need for system
Establish goals

Describe real system
Evaluate performance

Design modifications into system; not glued on the
side



Is NFS a file system?

I
7 What is a file system?

1 Is NFS a file system?



Is NFS a file system?

R
7 What is a file system?

0 Is NFS a file system?

o1 NFS is a remote access protocol



Goals

Machine and OS independence
Simple crash recovery for both clients and servers

Transparent access to files
What does this mean?

Provide UNIX-semantics to client

“Reasonable” performance
What do they mean?



Overall design
A e
-1 Motivate the VFS /vnode design
1 What was the vnode interface? Why have it



Overall design

Motivate the VFS/vnode design

Virtual File System (VFS): encapsulates operations on
file systems (mount, unmount, sync)

Virtual Node (Vnode): encapsulates objects within a file
system (read, write)

Advantage: separate generic FS operations from
specific implementation






Virtual FS Module

Allows processes to access file via descriptors
Just like local Unix files

For a given file access, decides whether to route to local FS
or to NFS client system

Names all files (local or remote) uniquely using

“NFS file handles”

Keeps a data structure for each mounted FS
Keeps a data structure (the v-node) for all open
files

If local file, v-node points to local disk i-node

If remote, v-node contains address of remote NFS server



NFS Protocol

A small number of calls
Largely OS independent

Implementation used Sun RPC for communication
layered on UDP

XDR for data representation

Servers are stateless
What does this mean?

Advantages?

File handles: used to identify files in messages (fsid,
file id, generation number)

Protocol routines: very similar to v-node ops



NFS RPC

RPC: Remote Procedure Call
Layered on UDP, XDR (marshalling layer)
Think Google protocol buffers

RPCs were supposed to be idempotent

Servers didn’t keep track of past requests

Clients retransmitted till they got a reply back



NFS Server

“Stateless”
Refers to connection state, not file data

Statelessness simplifies crash recovery

Servers synchronously wrote data (and metadata)
to their local file systems

Performance?

Add generation numbers to distinguish newly
created files from old files

Server’s local file system can be mounted by
programs!

i-nodes could disappear under the NFS server!



NFS Client

Typically built below the vnode layer of the kernel

Vnode = virtual inode, vnode refers to inode for local
FS or to file handles for NFS

Behaved like a local file system
Programs were unaware of the difference
Cached dataq, attributes, direntries
Pathname traversals below the vnode layer

Client machine could mount several different file
systems from different NFS servers



NFS Recovery
I

7 What happens on a server crash?

7 What happens on a client crash?



NFS Recovery

Server crashes
No state kept on server
Recover local file system and the server is back online
Client will keep retrying
Client crash
Loses cached data (if any)

No effect on server

“Stupid server, smart client”



Implementation issues

Convert kernel to vnodes
Identify all places that use inodes explicitly
Convert all calls to jump through vnodes
Rewrite namei to use vnode op (lookup)

Abstraction cost up to 2% in performance

Add RPC and XDR to system

Took about 3 months

Tuned RPC round-trip to 8.8 ms
Write the XDR routines that implement the NFS protocol

Modify kernel to do synchronous writes
Build mount protocol; break out from NFS
Two types of mount: hard and soft (retry or fail)

Implement user-level nfsd daemons (nfsd)



Challenging issues

Root file systems; no NFS-mounted root

Authentication based on vid/gid
Assumes consistent mappings across machines

Provoked development of yp
Turn off root mapping on most machines
No network locking (still no good solution)

Deletes while file open: implemented as rename,
delete on close (leaves garbage around in case of
crashes)

Time skew can be problematic



Performance

Base performance on common UNIX utilities (compile, tbl, nroff,
t77, sort, matrix inversion, make)

Measurements: number of runs?2 Standard deviations?

Improvements (basic engineering):
Client caching
Enlarge UDP packets (2K to 92000)
Remove one bcopy from path length
Added client attribute cache
Read-ahead small executables
Added name caching
Multiple getattr hack



Some Corners NFS Cut

Security model
Cient OSs trusted

Client can impersonate others
No coherent caching

Two clients could see different copies of the same file
File locking not implemented initially

Later, lockd for advisory locks

Did not support exact Unix file open semantics



NFS Caching Model

Multiple clients could cache a file /directory for
read /write
Open/close caching

On close, client flushes all data to server

On open, client check attributes for change

Attributes refreshed periodically

Supports most applications adequately

A single client’s updates might change attributes

Client has no way of telling



Current NFS

Allows root file system mounts
Server write-behind

Added stateful protocol
Better crash recovery

Can layer on UDP or TCP
Added strong security



Write-behind in NFS

Server can return without synchronously writing
data

Returns “write verifier” token
Client can force a write
Server returns “write verifier” token

Client must buffer writes, until it knows server has

written

On server crash, server loses data, but client has it
Client forces a write

Users “write verifier” sequence number that the server
changes on each crash



Scale and Peformance in a Distributed

. File System (1988)

7 What kind of paper is this?
New big idea?
Measurement paper?
Experiences/lessons learnt paper?
A system description?
Performance study?
Refute-conventional wisdom?

Survey paper?



Scale and Peformance in a Distributed

File st’rem 51 988;
25 |

7 What kind of paper is this?

= Retrospective



Overview

Give system overview

Define a benchmark to measure distributed
performance

Measure VICE-|

Summarize problems in VICE-1
Discuss VICE-II

Measure VICE-II



The Andrew Benchmark
A

- What does it measure /compare?



The Andrew Benchmark

Goal: compare local and remote execution times to understand
the impact of scale and distribution

Dataset size: 70 files; 200 KB

Five phases
1. Make Dir: construct a target subtree
2. Copy: copy each file into target subtree
3. ScanDir: traverse hierarchy, obtaining stat info
4. ReadAll: read every byte
5. Make: Compile and link the application



The Andrew Benchmark

Results of benchmark

Shared tree 70% slower than local tree
TestAuth saturated at about 5 load units

CPU vutilization was peaking above 75% on servers

Conclusion: overall architecture is OK, but
implementation could use some work

Use benchmark results to moticate VICE-| to VICE-II
redesign



Major Changes

Cache Management: callbacks
What are these?
Naming: FIDs
How does this help?
Server Process structure
Multi-threaded process instead of per-client process
Low-level file system

Built new access-by-inode syscalls into UNIX



Consistency model

Writes are visible immediately locally; remotely in
a delayed fashion

Upon close, writes are visible everywhere (except to
existing opens)
All other operations are globally visible

E.g., protection changes

Workstations can operate on a file concurrently; no
locking is provided



New performance numbers

Changed clients!
Shared files only 20% slower than local
Scale to 20 clients with slowdown of 2X

Callbacks eliminate most server interaction on
ScanDir and ReadAll

Scalability results are impressive: 70% CPU
utilization at 20 load units



Comparison with NFS

NSF is remote-open system

i.e., not whole-file caching like AFS
Run the Andrew benchmark on both systems
NFS time-outs improperly handled by apps, result in
errors

Paper results show AFS is superior to NFS except at
very low load

Andrew claims superior scalability



Operability

Volumes: small grouping of files

Map volumes to users

Multiple volumes to a disk partition

Can move volume just by updating volume DB

Move volumes by creating clones, moving clone,
repeating until there are no more updates

Quotas enforced per volume

Backups handled via clones



AFS evolved into Coda

With proliferation of laptops in mid 1990s

AFS users often went a long time without any
communication between desktop client and any AFS

Why not use AFS-like implementation when
disconnected from the network

On a plane, at home, during network failure
Issues:

Which files to get before disconnection

consistency



Hoarding in Coda

AFS keeps recently used files on local disk
Most of what you need will be around
Users can specify “hoard lists” to tell Coda to cache

a bunch of other things even if not already stored
locally

System can also learn over time which files a user
tends to use



Consistency

What if two disconnected users write the same file
at the same time?

No way to use callback promises since server and client
cannot communicate

Codad’s solution: cross your fingers, hope it does not
happen and pick up pieces if it does

Log of changes kept while disconnected

Apply changes upon reconnect

If conflict detected, try to resolve automatically, else
ask the user

In practice, unfixable conflicts almost never happen



