
ADVANCED OPERATING
SYSTEMS
NFS

AFS

Design and implementation of the
Sun Network Filesystem (1985)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

2

What kind of paper is this?

 Motivate need for system

 Establish goals

 Describe real system

 Evaluate performance

 Design modifications into system; not glued on the
side

3

Is NFS a file system?

 What is a file system?

 Is NFS a file system?

4

Is NFS a file system?

 What is a file system?

 Is NFS a file system?

� NFS is a remote access protocol

5

Goals

 Machine and OS independence

 Simple crash recovery for both clients and servers

 Transparent access to files

� What does this mean?

 Provide UNIX-semantics to client

 “Reasonable” performance

� What do they mean?

6

Overall design

 Motivate the VFS/vnode design

� What was the vnode interface? Why have it?

7

Overall design

 Motivate the VFS/vnode design

� Virtual File System (VFS): encapsulates operations on
file systems (mount, unmount, sync)

� Virtual Node (Vnode): encapsulates objects within a file
system (read, write)

� Advantage: separate generic FS operations from
specific implementation

8

9

User programs

Vnode interface

FFS

N
FS

 C
lie

nt

User programs

Vnode interface

FFS

N
FS

 C
lie

nt

User programs

Vnode interface

FFS

N
FS

 C
lie

nt

NFS Server

LFS/FFS/Ext4/NTFS

Network

Virtual FS Module

 Allows processes to access file via descriptors

� Just like local Unix files

� For a given file access, decides whether to route to local FS
or to NFS client system

 Names all files (local or remote) uniquely using
“NFS file handles”

 Keeps a data structure for each mounted FS

 Keeps a data structure (the v-node) for all open
files

� If local file, v-node points to local disk i-node

� If remote, v-node contains address of remote NFS server

10

NFS Protocol

 A small number of calls

� Largely OS independent

� Implementation used Sun RPC for communication
layered on UDP

� XDR for data representation

 Servers are stateless

� What does this mean?

� Advantages?

 File handles: used to identify files in messages (fsid,
file id, generation number)

 Protocol routines: very similar to v-node ops

11

NFS RPC

 RPC: Remote Procedure Call

 Layered on UDP, XDR (marshalling layer)

� Think Google protocol buffers

 RPCs were supposed to be idempotent

� Servers didn’t keep track of past requests

 Clients retransmitted till they got a reply back

12

NFS Server

 “Stateless”

� Refers to connection state, not file data

� Statelessness simplifies crash recovery

 Servers synchronously wrote data (and metadata)
to their local file systems

� Performance?

 Add generation numbers to distinguish newly
created files from old files

 Server’s local file system can be mounted by
programs!

� i-nodes could disappear under the NFS server!

13

NFS Client

 Typically built below the vnode layer of the kernel

� Vnode = virtual inode, vnode refers to inode for local
FS or to file handles for NFS

 Behaved like a local file system

� Programs were unaware of the difference

� Cached data, attributes, direntries

 Pathname traversals below the vnode layer

� Client machine could mount several different file
systems from different NFS servers

14

NFS Recovery

 What happens on a server crash?

 What happens on a client crash?

15

NFS Recovery

 Server crashes

� No state kept on server

� Recover local file system and the server is back online

� Client will keep retrying

 Client crash

� Loses cached data (if any)

� No effect on server

 “Stupid server, smart client”

16

Implementation issues

 Convert kernel to vnodes

� Identify all places that use inodes explicitly

� Convert all calls to jump through vnodes

� Rewrite namei to use vnode op (lookup)

� Abstraction cost up to 2% in performance

 Add RPC and XDR to system

� Took about 3 months

� Tuned RPC round-trip to 8.8 ms

 Write the XDR routines that implement the NFS protocol

� Modify kernel to do synchronous writes

� Build mount protocol; break out from NFS

� Two types of mount: hard and soft (retry or fail)

� Implement user-level nfsd daemons (nfsd)

17

Challenging issues

 Root file systems; no NFS-mounted root

 Authentication based on uid/gid

� Assumes consistent mappings across machines

� Provoked development of yp

 Turn off root mapping on most machines

 No network locking (still no good solution)

 Deletes while file open: implemented as rename,
delete on close (leaves garbage around in case of
crashes)

 Time skew can be problematic

18

Performance

 Base performance on common UNIX utilities (compile, tbl, nroff,
f77, sort, matrix inversion, make)

 Measurements: number of runs? Standard deviations?

 Improvements (basic engineering):

� Client caching

� Enlarge UDP packets (2K to 9000)

� Remove one bcopy from path length

� Added client attribute cache

� Read-ahead small executables

� Added name caching

� Multiple getattr hack

19

Some Corners NFS Cut

 Security model

� Cient OSs trusted

� Client can impersonate others

 No coherent caching

� Two clients could see different copies of the same file

 File locking not implemented initially

� Later, lockd for advisory locks

 Did not support exact Unix file open semantics

20

NFS Caching Model

 Multiple clients could cache a file/directory for
read/write

 Open/close caching

� On close, client flushes all data to server

� On open, client check attributes for change

 Attributes refreshed periodically

� Supports most applications adequately

 A single client’s updates might change attributes

� Client has no way of telling

21

Current NFS

 Allows root file system mounts

 Server write-behind

 Added stateful protocol

 Better crash recovery

 Can layer on UDP or TCP

 Added strong security

22

Write-behind in NFS

 Server can return without synchronously writing
data

� Returns “write verifier” token

 Client can force a write

� Server returns “write verifier” token

 Client must buffer writes, until it knows server has
written

 On server crash, server loses data, but client has it

� Client forces a write

� Users “write verifier” sequence number that the server
changes on each crash

23

Scale and Peformance in a Distributed
File System (1988)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

24

Scale and Peformance in a Distributed
File System (1988)

 What kind of paper is this?

� Retrospective

25

Overview

 Give system overview

 Define a benchmark to measure distributed
performance

 Measure VICE-I

 Summarize problems in VICE-1

 Discuss VICE-II

 Measure VICE-II

26

The Andrew Benchmark

 What does it measure/compare?

27

The Andrew Benchmark

 Goal: compare local and remote execution times to understand
the impact of scale and distribution

 Dataset size: 70 files; 200 KB

 Five phases

� 1. Make Dir: construct a target subtree

� 2. Copy: copy each file into target subtree

� 3. ScanDir: traverse hierarchy, obtaining stat info

� 4. ReadAll: read every byte

� 5. Make: Compile and link the application

28

The Andrew Benchmark

 Results of benchmark

� Shared tree 70% slower than local tree

� TestAuth saturated at about 5 load units

� CPU utilization was peaking above 75% on servers

 Conclusion: overall architecture is OK, but
implementation could use some work

 Use benchmark results to moticate VICE-I to VICE-II
redesign

29

Major Changes

 Cache Management: callbacks

� What are these?

 Naming: FIDs

� How does this help?

 Server process structure

� Multi-threaded process instead of per-client process

 Low-level file system

� Built new access-by-inode syscalls into UNIX

30

Consistency model

 Writes are visible immediately locally; remotely in
a delayed fashion

 Upon close, writes are visible everywhere (except to
existing opens)

 All other operations are globally visible

� E.g., protection changes

 Workstations can operate on a file concurrently; no
locking is provided

31

New performance numbers

 Changed clients!

 Shared files only 20% slower than local

 Scale to 20 clients with slowdown of 2X

 Callbacks eliminate most server interaction on
ScanDir and ReadAll

 Scalability results are impressive: 70% CPU
utilization at 20 load units

32

Comparison with NFS

 NSF is remote-open system

� i.e., not whole-file caching like AFS

 Run the Andrew benchmark on both systems

 NFS time-outs improperly handled by apps, result in
errors

 Paper results show AFS is superior to NFS except at
very low load

 Andrew claims superior scalability

33

Operability

 Volumes: small grouping of files

 Map volumes to users

 Multiple volumes to a disk partition

 Can move volume just by updating volume DB

 Move volumes by creating clones, moving clone,
repeating until there are no more updates

 Quotas enforced per volume

 Backups handled via clones

34

AFS evolved into Coda

 With proliferation of laptops in mid 1990s

� AFS users often went a long time without any
communication between desktop client and any AFS

� Why not use AFS-like implementation when
disconnected from the network

 On a plane, at home, during network failure

� Issues:

 Which files to get before disconnection

 consistency

35

Hoarding in Coda

 AFS keeps recently used files on local disk

� Most of what you need will be around

 Users can specify “hoard lists” to tell Coda to cache
a bunch of other things even if not already stored
locally

 System can also learn over time which files a user
tends to use

36

Consistency

 What if two disconnected users write the same file
at the same time?

� No way to use callback promises since server and client
cannot communicate

 Coda’s solution: cross your fingers, hope it does not
happen and pick up pieces if it does

� Log of changes kept while disconnected

� Apply changes upon reconnect

� If conflict detected, try to resolve automatically, else
ask the user

 In practice, unfixable conflicts almost never happen

37

