
ADVANCED OPERATING
SYSTEMS
NFS

AFS

Design and implementation of the
Sun Network Filesystem (1985)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

2

What kind of paper is this?

 Motivate need for system

 Establish goals

 Describe real system

 Evaluate performance

 Design modifications into system; not glued on the
side

3

Is NFS a file system?

 What is a file system?

 Is NFS a file system?

4

Is NFS a file system?

 What is a file system?

 Is NFS a file system?

� NFS is a remote access protocol

5

Goals

 Machine and OS independence

 Simple crash recovery for both clients and servers

 Transparent access to files

� What does this mean?

 Provide UNIX-semantics to client

 “Reasonable” performance

� What do they mean?

6

Overall design

 Motivate the VFS/vnode design

� What was the vnode interface? Why have it?

7

Overall design

 Motivate the VFS/vnode design

� Virtual File System (VFS): encapsulates operations on
file systems (mount, unmount, sync)

� Virtual Node (Vnode): encapsulates objects within a file
system (read, write)

� Advantage: separate generic FS operations from
specific implementation

8

9

User programs

Vnode interface

FFS

N
FS

 C
lie

nt

User programs

Vnode interface

FFS

N
FS

 C
lie

nt

User programs

Vnode interface

FFS

N
FS

 C
lie

nt

NFS Server

LFS/FFS/Ext4/NTFS

Network

Virtual FS Module

 Allows processes to access file via descriptors

� Just like local Unix files

� For a given file access, decides whether to route to local FS
or to NFS client system

 Names all files (local or remote) uniquely using
“NFS file handles”

 Keeps a data structure for each mounted FS

 Keeps a data structure (the v-node) for all open
files

� If local file, v-node points to local disk i-node

� If remote, v-node contains address of remote NFS server

10

NFS Protocol

 A small number of calls

� Largely OS independent

� Implementation used Sun RPC for communication
layered on UDP

� XDR for data representation

 Servers are stateless

� What does this mean?

� Advantages?

 File handles: used to identify files in messages (fsid,
file id, generation number)

 Protocol routines: very similar to v-node ops

11

NFS RPC

 RPC: Remote Procedure Call

 Layered on UDP, XDR (marshalling layer)

� Think Google protocol buffers

 RPCs were supposed to be idempotent

� Servers didn’t keep track of past requests

 Clients retransmitted till they got a reply back

12

NFS Server

 “Stateless”

� Refers to connection state, not file data

� Statelessness simplifies crash recovery

 Servers synchronously wrote data (and metadata)
to their local file systems

� Performance?

 Add generation numbers to distinguish newly
created files from old files

 Server’s local file system can be mounted by
programs!

� i-nodes could disappear under the NFS server!

13

NFS Client

 Typically built below the vnode layer of the kernel

� Vnode = virtual inode, vnode refers to inode for local
FS or to file handles for NFS

 Behaved like a local file system

� Programs were unaware of the difference

� Cached data, attributes, direntries

 Pathname traversals below the vnode layer

� Client machine could mount several different file
systems from different NFS servers

14

NFS Recovery

 What happens on a server crash?

 What happens on a client crash?

15

NFS Recovery

 Server crashes

� No state kept on server

� Recover local file system and the server is back online

� Client will keep retrying

 Client crash

� Loses cached data (if any)

� No effect on server

 “Stupid server, smart client”

16

Implementation issues

 Convert kernel to vnodes

� Identify all places that use inodes explicitly

� Convert all calls to jump through vnodes

� Rewrite namei to use vnode op (lookup)

� Abstraction cost up to 2% in performance

 Add RPC and XDR to system

� Took about 3 months

� Tuned RPC round-trip to 8.8 ms

 Write the XDR routines that implement the NFS protocol

� Modify kernel to do synchronous writes

� Build mount protocol; break out from NFS

� Two types of mount: hard and soft (retry or fail)

� Implement user-level nfsd daemons (nfsd)

17

Challenging issues

 Root file systems; no NFS-mounted root

 Authentication based on uid/gid

� Assumes consistent mappings across machines

� Provoked development of yp

 Turn off root mapping on most machines

 No network locking (still no good solution)

 Deletes while file open: implemented as rename,
delete on close (leaves garbage around in case of
crashes)

 Time skew can be problematic

18

Performance

 Base performance on common UNIX utilities (compile, tbl, nroff,
f77, sort, matrix inversion, make)

 Measurements: number of runs? Standard deviations?

 Improvements (basic engineering):

� Client caching

� Enlarge UDP packets (2K to 9000)

� Remove one bcopy from path length

� Added client attribute cache

� Read-ahead small executables

� Added name caching

� Multiple getattr hack

19

Some Corners NFS Cut

 Security model

� Cient OSs trusted

� Client can impersonate others

 No coherent caching

� Two clients could see different copies of the same file

 File locking not implemented initially

� Later, lockd for advisory locks

 Did not support exact Unix file open semantics

20

NFS Caching Model

 Multiple clients could cache a file/directory for
read/write

 Open/close caching

� On close, client flushes all data to server

� On open, client check attributes for change

 Attributes refreshed periodically

� Supports most applications adequately

 A single client’s updates might change attributes

� Client has no way of telling

21

Current NFS

 Allows root file system mounts

 Server write-behind

 Added stateful protocol

 Better crash recovery

 Can layer on UDP or TCP

 Added strong security

22

Write-behind in NFS

 Server can return without synchronously writing
data

� Returns “write verifier” token

 Client can force a write

� Server returns “write verifier” token

 Client must buffer writes, until it knows server has
written

 On server crash, server loses data, but client has it

� Client forces a write

� Users “write verifier” sequence number that the server
changes on each crash

23

Scale and Peformance in a Distributed
File System (1988)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

24

Scale and Peformance in a Distributed
File System (1988)

 What kind of paper is this?

� Retrospective

25

Overview

 Give system overview

 Define a benchmark to measure distributed
performance

 Measure VICE-I

 Summarize problems in VICE-1

 Discuss VICE-II

 Measure VICE-II

26

The Andrew Benchmark

 What does it measure/compare?

27

The Andrew Benchmark

 Goal: compare local and remote execution times to understand
the impact of scale and distribution

 Dataset size: 70 files; 200 KB

 Five phases

� 1. Make Dir: construct a target subtree

� 2. Copy: copy each file into target subtree

� 3. ScanDir: traverse hierarchy, obtaining stat info

� 4. ReadAll: read every byte

� 5. Make: Compile and link the application

28

The Andrew Benchmark

 Results of benchmark

� Shared tree 70% slower than local tree

� TestAuth saturated at about 5 load units

� CPU utilization was peaking above 75% on servers

 Conclusion: overall architecture is OK, but
implementation could use some work

 Use benchmark results to moticate VICE-I to VICE-II
redesign

29

Major Changes

 Cache Management: callbacks

� What are these?

 Naming: FIDs

� How does this help?

 Server process structure

� Multi-threaded process instead of per-client process

 Low-level file system

� Built new access-by-inode syscalls into UNIX

30

Consistency model

 Writes are visible immediately locally; remotely in
a delayed fashion

 Upon close, writes are visible everywhere (except to
existing opens)

 All other operations are globally visible

� E.g., protection changes

 Workstations can operate on a file concurrently; no
locking is provided

31

New performance numbers

 Changed clients!

 Shared files only 20% slower than local

 Scale to 20 clients with slowdown of 2X

 Callbacks eliminate most server interaction on
ScanDir and ReadAll

 Scalability results are impressive: 70% CPU
utilization at 20 load units

32

Comparison with NFS

 NSF is remote-open system

� i.e., not whole-file caching like AFS

 Run the Andrew benchmark on both systems

 NFS time-outs improperly handled by apps, result in
errors

 Paper results show AFS is superior to NFS except at
very low load

 Andrew claims superior scalability

33

Operability

 Volumes: small grouping of files

 Map volumes to users

 Multiple volumes to a disk partition

 Can move volume just by updating volume DB

 Move volumes by creating clones, moving clone,
repeating until there are no more updates

 Quotas enforced per volume

 Backups handled via clones

34

AFS evolved into Coda

 With proliferation of laptops in mid 1990s

� AFS users often went a long time without any
communication between desktop client and any AFS

� Why not use AFS-like implementation when
disconnected from the network

 On a plane, at home, during network failure

� Issues:

 Which files to get before disconnection

 consistency

35

Hoarding in Coda

 AFS keeps recently used files on local disk

� Most of what you need will be around

 Users can specify “hoard lists” to tell Coda to cache
a bunch of other things even if not already stored
locally

 System can also learn over time which files a user
tends to use

36

Consistency

 What if two disconnected users write the same file
at the same time?

� No way to use callback promises since server and client
cannot communicate

 Coda’s solution: cross your fingers, hope it does not
happen and pick up pieces if it does

� Log of changes kept while disconnected

� Apply changes upon reconnect

� If conflict detected, try to resolve automatically, else
ask the user

 In practice, unfixable conflicts almost never happen

37

