
ADVANCED OPERATING
SYSTEMS

Disco, Virtual Machines

Disco: Running Commodity Operating Systems on
Scalable Multiprocessors (1997)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

� Something else?

2

Disco: Running Commodity Operating Systems
on Scalable Multiprocessors (1997)

 What kind of paper is this?

� New application of old technology

� History repeats itself

� A new twist on an old idea

3

What was the problem they were
trying to solve?

4

What was the problem they were
trying to solve?

 A quick and dirty way to implement a multi-
processor OS

 Developing multi-processor operating systems is
hard and time-consuming

 What were the alternatives?

5

What was the problem they were
trying to solve?

 A quick and dirty way to implement a multi-
processor OS

 Developing multi-processor operating systems is
hard and time-consuming

 What were the alternatives?

� Port uni-processor OS to MP

� Partition HW and run uni-processor OS per partition

� Disco

 “reduces the gap between hardware innovation and the
adaptation of system software”

6

What are the new ideas?

 Run multiple single-processor operating sytems over DISCO
VMM

� How is this different from the hardware partition option of previous
slide?

 Use distributed system facilities to provide a single-system
image to the user

 Eliminates inefficiencies

� E.g., allow transparent buffer cache sharing among virtual machines

 Use page placement and dynamic page migration to hide non-
uniformity of memory access

� What is a NUMA machine?

7

What is a NUMA?

 Non-uniform memory access

 Some memory is closer than other

 ccNUMA is cache-coherent NUMA

8

Note

 This was binary-compatible virtualization

� OSs were compiled for the same hardware that was
virtualized

� Can you have an OS written for different hardware running
on top of the VMM?

9

10

Hardware

Virtual Machine Monitor

Your
OS

Unix
OS

Unix
Process

Windows

Simplified VMM Example

11

Hardware

Microkernel

File
server

Unix
OS

Unix
Process

VM
server

Simplified Microkernel Example

History of Virtual Machines

 Started at IBM in 1970s

� Were used for time-sharing to multiplex expensive hardware

 Following development of Multics, IBM hurried to announce
plans to build TSS, its time-sharing system

 Multics and TSS were late

 But IBM released a system CP/CMS

� CP stands for “Control Program”, i.e., a virtual machine monitor

� CMS was a single-user operating system

� This was their quick-and-dirty way to implement time-sharing

 CP/CMS was a precursor of IBM OS/360 and OS/390 –
OS/390 still in use today on IBM mainframes

12

What are VMs used for?

 Time-sharing (1970s)

 Operating system debugging when hardware is
expensive

 Running Windows office software

 Security: honeypots

 Multi-platform OS development (Solaris):

� develop OS for virtual hardware platform

� run on top of hypervisor

� simplifies development and reduces the size of code tree

 What’s the big one I’ve left out??

13

Back to Disco – System
Implementation

 Multiple OSs run over Disco. Don’t have to be all the
same OSs.

 Single-system image is accomplished by configuring
the systems as a cluster

 Machine resources are managed by the VMM and
are dynamically allocated among virtual machines

 A virtual machine is the unit of scalability and the
unit of fault containment: contains both software
and hardware faults

 VMM code base is very small

� 13K lines, 72 KB – it’s replicated

14

DISCO system implementation

 Machine-wide data structures are partitioned such that they
are located on the processor where they are likely to be
accessed more often

 Wait-free synchronization used to improve scalability

 Inter-VM communication is done through shared memory

 Devices are virtualized: what does this mean?

15

DISCO system implementation

 Machine-wide data structures are partitioned such that they
are located on the processor where they are likely to be
accessed more often

 Wait-free synchronization used to improve scalability

 Inter-VM communication is done through shared memory

 Devices are virtualized: what does this mean?

� All operations on devices are intercepted and emulated

 Non-privileged instructions are run directly on hardware,
privileged instructions are emulated: what does this mean?

16

Definition of virtualizability

 By Goldberg, the father of virtual machines, 1974

 For efficiency, most instructions execute natively.
“Privileged instructions must be trapped and
emulated: accessing processor state: status registers,
TLB, I/O instructions”

17

Disco system implementation
(cont’d)

 Memory pages are migrated and replicated to
ensure better locality

� they use FLASH hardware counters to find out whether
a page should be migrated or replicated

 Memory and disk are transparently shared

� Block cache is shared

� Disco uses copy-on-write disks

18

Performance results

 To get the overhead to its minimum, modifications to operating
systems were required

 Main sources of performance overhead:

� TLB reloading for scientific mostly user-level workloads

� High TLB fault rate for unpredictable database workloads

� Emulation overhead for pmake

� Nonetheless, max overhead observed was 16%

 They showed better scalability with Disco compared to IRIX, a
commercial SMP operation system

� Is this a fundamental property of VMs? Or can IRIX be fixed by using
better synchronization primitives?

19

Discussion

 What are the traditional problems with virtual
machines

� Virtualization overhead

 E.g., memory usage was a problem (code and data of
hosted OSs were replicated on the machine)

� Resource management

 don’t know when a resource is no longer in use and can be
taken away from a VM

� Communication and sharing

 old VMs could not communicate: a user could not start two
virtual machines that accessed files on the same disk

 How did they solve these problems in Disco?

20

Discussion

 What are the traditional problems with virtual
machines

� Virtualization overhead

 Code+data of identical OSs shared

� Resource management

 Change HAL to give hints to monitor about resource
utilization (idle loop, page reclamation hints)

� Communication and sharing

 Use DS protocols to communicate; one VM mounts disk,
others grab files via NFS

21

Discussion

 What performance optimizations helped the
scalability of Disco?

� Software TLB cache

� Shared-memory communication for VMs

� Replicated code

� Partitioned data structures

� Wait-free synchronization

� Page migration and replication

� Transparently shared memory buffer cache

22

Discussion

 Why didn’t the world adopt this idea? Why are
people building SMP operating systems?

� One reason is that it is difficult to run parallel
applications

� Disco had to provide special support for parallel
applications run on different virtual machines and share
memory through these segments

 Why is Disco a good idea?

 Why is this a not-so-good idea?

23

Discussion

 What did you like about this paper? What are the
good ideas you would use in future system designs?

 Throughout history, we have seen VMs being used
as a “quick-and-simple” solution to complicated
problems

� IBM OS/360 for time-sharing, Disco for running over
SMP hardware, VMWare Workstation for running
Microsoft office apps by Unix geeks

 Do VMs have a place of their own, or do they
simply serve as technology placeholders until the
better technology comes around?

24

Are Virtual Machine Monitors Microkernels Done
Right? (2005)

 What kind of paper is this?

� Position paper

� VMMs are the practical approach to systems research

� VMMs enable innovation

� VMMs produce the virtue of microkernels

25

Differences between VMMs and
Microkernels

 Microkernels are prone to liability inversions

� The OS depends on user-level components (e.g., pagers)

� Avoiding deadlock is hard

 VMMs are designed to avoid such problems

� Resource management is done in the VMM

� VMs are isolated

 IPC performance dominates microkernel design, but
isn’t relevant to VMM

� Inter-server communication is paramount in microkernel
systems, but simply network communication in VMMs

26

Differences between VMMs and
Microkernels

 Compatibility achieved in VMMs through guest OS’s

� In microkernels, it required huge compatibility libraries

 VMMs provide developer familiarity, which improves
innovation

27

Similarities between VMMs and
Microkernels

 The quest for narrow interfaces

 High-confidence in system security

 Investigate ilities, not performance

� Security, reliability, extensibility

28

Are Virtual Machine Monitors Microkernels Done
Right? (2006)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

� Something else?

29

Are Virtual Machine Monitors Microkernels Done
Right? (2006)

 What kind of paper is this?

� Position

� Response to other paper of the same name

� Claims the other paper is erroneous and this paper
corrects it

30

Definitions

 VMM: “software which transforms the single
machine interface into the illusion of many”

 Microkernel: “to minimize the kernel and to
implement whatever possible outside of the kernel”

31

Goals

 VMM: software reliability, data security, alternative
system APIs, improved and new mechanisms

 Microkernels: flexibility, extensibility, fault isolation,
mantainability, and restricted interdependencies

32

Revisiting Hand’s Assertions

 Liability inversion

� Claim Xen suffers from identical problem

� Both cite Parallax as example to prove their point

� Hand says that Parallax only affects other client VMs

� Heiser says that this is the same as a failure of an L4 server

 IPC performance

� Xen uses Dom0 for drivers, so all I/O requires IPC (simple asynchronous
unidirectional event mechanism) with Dom0

� CPU load of Dom0 dominates all other CPU load, so it is performance
critical

 VMMs provide familiar environment

� L4 Linux was presented many years ago, apparently satisfying the same
criteria

33

Hype and Virtue (2007)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

� Something else?

34

Hype and Virtue (2007)

 What kind of paper is this?

� Position paper

� Hypervisors are leading OS research astray

� X86 ABI is just a bad interface for most things

� Long-term value focus; not short-term product focus

35

Two kinds of VMM research

 Building a better hypervisor

 Neat VMM tricks: this entire class is simply exposing
inadequacies of existing systems

� Examples: replay debugging, honeypots, etc.

36

Nothing new is new (Much Ado
section)

 Sharing and protection

� VMM research here is simply rehash of old work

 Communication:

� Normal networking or microkernel fast-paths rehashed

 Abstraction

� HW as the new OS abstraction (it’s a bad one)

37

HW as an API

 More code between an app and the real hardware

 HW interface is not necessarily simple (e.g., x86
MMU)

38

The Plan

 Use hypervisors as an excuse to really experiment
with OS design

 Give up on backward compatibility and really
explore

39

Suggested areas

 New APIs

� Assume something other than single-threaded C
programs

� Take advantages of concurrency, transactional memory,
MMUs, etc.

 Implementation techniques

� Use theorem proving and other techniques to make
precise claims about what your kernel is doing

 Find killer apps that require fundamentally new OS
technology

 Metrics for OS scalability and/or isolation

40

