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Disco: Running Commodity Operating Systems on 
Scalable Multiprocessors (1997)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

� Something else?

2



Disco: Running Commodity Operating Systems 
on Scalable Multiprocessors (1997)

 What kind of paper is this?

� New application of old technology

� History repeats itself

� A new twist on an old idea
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What was the problem they were 
trying to solve?
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What was the problem they were 
trying to solve?

 A quick and dirty way to implement a multi-
processor OS

 Developing multi-processor operating systems is 
hard and time-consuming

 What were the alternatives?
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What was the problem they were 
trying to solve?

 A quick and dirty way to implement a multi-
processor OS

 Developing multi-processor operating systems is 
hard and time-consuming

 What were the alternatives?

� Port uni-processor OS to MP

� Partition HW and run uni-processor OS per partition

� Disco

 “reduces the gap between hardware innovation and the 
adaptation of system software”
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What are the new ideas?

 Run multiple single-processor operating sytems over DISCO 
VMM

� How is this different from the hardware partition option of previous 
slide?

 Use distributed system facilities to provide a single-system 
image to the user

 Eliminates inefficiencies

� E.g., allow transparent buffer cache sharing among virtual machines

 Use page placement and dynamic page migration to hide non-
uniformity of memory access

� What is a NUMA machine?
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What is a NUMA?

 Non-uniform memory access

 Some memory is closer than other

 ccNUMA is cache-coherent NUMA
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Note

 This was binary-compatible virtualization

� OSs were compiled for the same hardware that was 
virtualized

� Can you have an OS written for different hardware running 
on top of the VMM?   
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History of Virtual Machines

 Started at IBM in 1970s

� Were used for time-sharing to multiplex expensive hardware

 Following development of Multics, IBM hurried to announce 
plans to build TSS, its time-sharing system

 Multics and TSS were late

 But IBM released a system CP/CMS 

� CP stands for “Control Program”, i.e., a virtual machine monitor

� CMS was a single-user operating system

� This was their quick-and-dirty way to implement time-sharing

 CP/CMS was a precursor of IBM OS/360 and OS/390 –
OS/390 still in use today on IBM mainframes
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What are VMs used for?

 Time-sharing (1970s)

 Operating system debugging when hardware is 
expensive 

 Running Windows office software

 Security: honeypots

 Multi-platform OS development (Solaris): 

� develop OS for virtual hardware platform

� run on top of hypervisor

� simplifies development and reduces the size of code tree

 What’s the big one I’ve left out??
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Back to Disco – System 
Implementation

 Multiple OSs run over Disco.  Don’t have to be all the 
same OSs.

 Single-system image is accomplished by configuring 
the systems as a cluster

 Machine resources are managed by the VMM and 
are dynamically allocated among virtual machines

 A virtual machine is the unit of scalability and the 
unit of fault containment: contains both software 
and hardware faults

 VMM code base is very small

� 13K lines, 72 KB – it’s replicated
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DISCO system implementation

 Machine-wide data structures are partitioned such that they 
are located on the processor where they are likely to be 
accessed more often

 Wait-free synchronization used to improve scalability

 Inter-VM communication is done through shared memory

 Devices are virtualized:  what does this mean?
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DISCO system implementation

 Machine-wide data structures are partitioned such that they 
are located on the processor where they are likely to be 
accessed more often

 Wait-free synchronization used to improve scalability

 Inter-VM communication is done through shared memory

 Devices are virtualized:  what does this mean?

� All operations on devices are intercepted and emulated

 Non-privileged instructions are run directly on hardware, 
privileged instructions are emulated: what does this mean?
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Definition of virtualizability

 By Goldberg, the father of virtual machines, 1974

 For efficiency, most instructions execute natively.  
“Privileged instructions must be trapped and 
emulated: accessing processor state: status registers, 
TLB, I/O instructions”
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Disco system implementation 
(cont’d)

 Memory pages are migrated and replicated to 
ensure better locality

� they use FLASH hardware counters to find out whether 
a page should be migrated or replicated

 Memory and disk are transparently shared

� Block cache is shared

� Disco uses copy-on-write disks
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Performance results

 To get the overhead to its minimum, modifications to operating 
systems were required

 Main sources of performance overhead:

� TLB reloading for scientific mostly user-level workloads

� High TLB fault rate for unpredictable database workloads

� Emulation overhead for pmake

� Nonetheless, max overhead observed was 16%

 They showed better scalability with Disco compared to IRIX, a 
commercial SMP operation system

� Is this a fundamental property of VMs?  Or can IRIX be fixed by using 
better synchronization primitives?
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Discussion

 What are the traditional problems with virtual 
machines

� Virtualization overhead

 E.g., memory usage was a problem (code and data of 
hosted OSs were replicated on the machine)

� Resource management 

 don’t know when a resource is no longer in use and can be 
taken away from a VM

� Communication and sharing

 old VMs could not communicate: a user could not start two 
virtual machines that accessed files on the same disk

 How did they solve these problems in Disco?
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Discussion

 What are the traditional problems with virtual 
machines

� Virtualization overhead

 Code+data of identical OSs shared

� Resource management 

 Change HAL to give hints to monitor about resource 
utilization (idle loop, page reclamation hints)

� Communication and sharing

 Use DS protocols to communicate;  one VM mounts disk, 
others grab files via NFS
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Discussion

 What performance optimizations helped the 
scalability of Disco?

� Software TLB cache

� Shared-memory communication for VMs

� Replicated code

� Partitioned data structures

� Wait-free synchronization

� Page migration and replication

� Transparently shared memory buffer cache
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Discussion

 Why didn’t the world adopt this idea?  Why are 
people building SMP operating systems?

� One reason is that it is difficult to run parallel 
applications

� Disco had to provide special support for parallel 
applications run on different virtual machines and share 
memory through these segments

 Why is Disco a good idea? 

 Why is this a not-so-good idea?
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Discussion

 What did you like about this paper? What are the 
good ideas you would use in future system designs?

 Throughout history, we have seen VMs being used 
as a “quick-and-simple” solution to complicated 
problems 

� IBM OS/360 for time-sharing, Disco for running over 
SMP hardware, VMWare Workstation for running 
Microsoft office apps by Unix geeks

 Do VMs have a place of their own, or do they 
simply serve as technology placeholders until the 
better technology comes around?
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Are Virtual Machine Monitors Microkernels Done 
Right? (2005)

 What kind of paper is this?

� Position paper

� VMMs are the practical approach to systems research

� VMMs enable innovation

� VMMs produce the virtue of microkernels
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Differences between VMMs and 
Microkernels

 Microkernels are prone to liability inversions 

� The OS depends on user-level components (e.g., pagers)

� Avoiding deadlock is hard

 VMMs are designed to avoid such problems

� Resource management is done in the VMM

� VMs are isolated

 IPC performance dominates microkernel design, but 
isn’t relevant to VMM

� Inter-server communication is paramount in microkernel 
systems, but simply network communication in VMMs
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Differences between VMMs and 
Microkernels

 Compatibility achieved in VMMs through guest OS’s  

� In microkernels, it required huge compatibility libraries

 VMMs provide developer familiarity, which improves 
innovation
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Similarities between VMMs and 
Microkernels

 The quest for narrow interfaces

 High-confidence in system security

 Investigate ilities, not performance

� Security, reliability, extensibility
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Are Virtual Machine Monitors Microkernels Done 
Right? (2006)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

� Something else?
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Are Virtual Machine Monitors Microkernels Done 
Right? (2006)

 What kind of paper is this?

� Position

� Response to other paper of the same name

� Claims the other paper is erroneous and this paper 
corrects it
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Definitions

 VMM: “software which transforms the single 
machine interface into the illusion of many”

 Microkernel: “to minimize the kernel and to 
implement whatever possible outside of the kernel”
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Goals

 VMM: software reliability, data security, alternative 
system APIs, improved and new mechanisms

 Microkernels: flexibility, extensibility, fault isolation, 
mantainability, and restricted interdependencies
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Revisiting Hand’s Assertions

 Liability inversion

� Claim Xen suffers from identical problem

� Both cite Parallax as example to prove their point

� Hand says that Parallax only affects other client VMs

� Heiser says that this is the same as a failure of an L4 server

 IPC performance

� Xen uses Dom0 for drivers, so all I/O requires IPC (simple asynchronous 
unidirectional event mechanism) with Dom0

� CPU load of Dom0 dominates all other CPU load, so it is performance 
critical

 VMMs provide familiar environment

� L4 Linux was presented many years ago, apparently satisfying the same 
criteria
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Hype and Virtue (2007)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

� Something else?
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Hype and Virtue (2007)

 What kind of paper is this?

� Position paper

� Hypervisors are leading OS research astray 

� X86 ABI is just a bad interface for most things

� Long-term value focus; not short-term product focus
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Two kinds of VMM research

 Building a better hypervisor

 Neat VMM tricks: this entire class is simply exposing 
inadequacies of existing systems

� Examples: replay debugging, honeypots, etc.
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Nothing new is new (Much Ado 
section)

 Sharing and protection

� VMM research here is simply rehash of old work

 Communication:

� Normal networking or microkernel fast-paths rehashed

 Abstraction

� HW as the new OS abstraction (it’s a bad one)
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HW as an API

 More code between an app and the real hardware

 HW interface is not necessarily simple (e.g., x86 
MMU)
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The Plan

 Use hypervisors as an excuse to really experiment 
with OS design

 Give up on backward compatibility and really 
explore
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Suggested areas

 New APIs

� Assume something other than single-threaded C 
programs

� Take advantages of concurrency, transactional memory, 
MMUs, etc.

 Implementation techniques

� Use theorem proving and other techniques to make 
precise claims about what your kernel is doing

 Find killer apps that require fundamentally new OS 
technology

 Metrics for OS scalability and/or isolation
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