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Eraser: A Dynamic Data Race Detector 
for Multi-threaded Programs (1997)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

� Something else?
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Synchronization background

 What happens if you run this function in two threads 
concurrently?

void f () {

x++;

}
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Synchronization background

 What happens if you run this function in two threads 
concurrently?

void f () {

x++;

}

 Undefined – e.g., could increment x by 1 or 2 
depending on interleaving

 Note even one instruction not atomic on 
multiprocessor
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Synchronization background 

 What might p2 return if run concurrently with p1?

int data=0, ready=0;

void p1()  {

data = 2000;

ready = 1;

}

int p2() {

while (!ready);

return data;

}
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Synchronization background 

 What might p2 return if run concurrently with p1?

int data=0, ready=0;

void p1()  {

data = 2000;

ready = 1;

}

int p2() {

while (!ready);

return data;

}
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• Undefined – e.g., could be 0 or 2000
• Depends on memory model of the machine
• If hardware has sequential consistency, always

returns 2000



What is sequential consistency?

 Definition: sequential consistency means the result of 
execution is as if all operations were executed in 
some sequential order, and the operations of each 
processor occurred in the order specified by the 
program [Lamport]

 Boils down to two requirements:

� 1. maintaining program order on individual processors

� 2. ensuring write atomicity

7



Bottom line

 Need synchronization primitives to write correct concurrent 
code

� Monitor: exclusive code and associated data

 Shared variables in monitor an only be accessed by its 
methods

 System ensures only one method of a given monitor executes 
at a time

 Accesses to variables ordered across method invocations

� Mutex (lock): bracket access to shared variable with 
lock(m) & unlock(m)
 System ensures lock(m) returns before next unlock(m)

 Memory ops after lock(m) appear to happen after ones before 
lock(m)

 Memory ops before unlock(m) happen before ones after it
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Bottom line

 Need synchronization primitives to write correct concurrent 
code

� Semaphore: two functions P(S) [a.k.a wait] and V(S) [a.k.a
signal].  Only N more waits will return than signals (for 
initialization par N)  I N==1, will act like a mutex

� Interrupt masking:
 Bracket code with x=spl(high, ..)  (i.e., block out all interrupts)
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Eraser

 What is the goal of this work?
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Eraser

 What is the goal of this work?

� Find data races by checking whether program follows 
locking discipline

 What is a data race?

� Two accesses to same memory location in different 
threads

� At least one is a write

� No synchronization mechanisms to prevent simultaneous 
execution

 Why are races a hard problem?
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Races are a hard problem

 Highly timing dependent

 Often has to do with interaction of two different 
modules

 Manifestation of bug may be far away from or 
long after buggy code was initially deployed

� E.g., linked list corrupted, discover next time you 
traverse
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Happens before model [Lamport]

 Processes are an ordered sequence of events, 
including send & receive events

 A happens before B (A-> B) if:

� 1) A&B are events in same process P, and A precedes B, 
or

� 2) A is the send of a message m by P1, and B is receive 
of same m by P2

 A and B concurrent if neither happened before the 
other

� Idea: neither events could have influenced the other
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What does happens-before have 
to do with race conditions?
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What does happens-before have 
to do with race conditions?

 Idea: say that action A happens before B if:

� 1. A&B are events in same thread T, and A preceded B, 
or

� 2. A&B are accesses to same synchronization object, 
and A preceded B

 If A and B access same variable and neither 
happens before other, it’s a race

� So run program over test cases, and see if you get any 
such races

 Example: look at figure 1

 What are deficiencies of happens before approach?
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Happens before approach

 Deficiencies: 

� Hard to implement efficiently (how would you detect 
races?)

� Depends on particular interleaving of events (see 
Figure 2)

 Eraser “enforces a locking discipline”;  which one?

16



Happens before approach

 Deficiencies: 

� Hard to implement efficiently (how would you detect 
races?)

� Depends on particular interleaving of events (see 
Figure 2)

 Eraser “enforces a locking discipline”

� Every shared variable must be protected by some lock

� How can se detect this?

� Use ATOM to implement lockset algorithm 

 ATOM: a binary instrumentation tool
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What is the lockset algorithm?
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What is the lockset algorithm?

 For each variable, keep track of set of candidate 
locks

 If set becomes empty, no lock protecting data, so 
flag error

 Example: figure 3

 Why is this better than happens before?
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What is the lockset algorithm?

 For each variable, keep track of set of candidate 
locks

 If set becomes empty, no lock protecting data, so 
flag error

 Example: figure 3

 Why is this better than happens before?

� Because Eraser detects violations of locking discipline, 
not races;  

� It can detect possible races even if they never occur 
during testing!
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What does Eraser instrument with 
ATOM?
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What does Eraser instrument with 
ATOM?

 Every load and store (except stack-relative)

 Every mutex operation (so you know what locks a 
thread has)

 Thread initialization and finalization code

 Malloc and free operations (so you know when 
memory reused)
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Observations

 Locking discipline only necessary for data accessed 
by more than one thread

 What memory locations should not be subject to 
lockset algorithm?
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Observations

 Locking discipline only necessary for data accessed 
by more than one thread

 What memory locations should not be subject to 
lockset algorithm?

� Initialization – data only accessed by one thread 
during initialization

� Read-shared data – no one writes, so no lock

 Examples: version number of program, global configuration 
parameter, constant string entered into hash table, etc

� Read-write locks 

 Allow multiple readers to access a shared variable but only 
singler write to do so
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How to avoid generating false 
positive for these?

 Keep track of state of each variable (figure 4)

 When accessed by only 1 thread, no updates made 
to C(v)

 When accessed by reads only, C(v) update but 
races not reported when C(v) becomes empty

 A write access from new thread switches to Shared-
Modified sate where C(v) updated and races are 
reported
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Supporting Read-write locks

 Modify lockset algorithm slightly for read-write 
locks

� On read of v by thread t, C(v) gets intersected with 
locks_held(t)

� On write of v by thread t, C(v) gets intersected with 
write_locks_held(t)
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Discussion

 P. 4 bottom:  “Our support for initialization makes 
Eraser’s checking more dependent on the scheduler 
than we would like.”  Why?
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Discussion

 P. 4 bottom:  “Our support for initialization makes 
Eraser’s checking more dependent on the scheduler 
than we would like.”  Why?

 If variable made available before initialization 
complete, might not detect
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What does Eraser report?  How to 
find the bugs?  (Section 3)

 Reports line of code (backtrace, regs) where lockset 
becomes empty set

 Is that enough?

� Say in 100 places var accessed with correct lock, in 1 
it’s not

� Likely lockset becomes empty on offending access, 
unless it was first access

� But what it unlucky?

 Ask Eraser to log all access that change a variable’s lockset

 One of them will have to be incorrect line of code
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Implementation details

 How much memory?
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Implementation details

 How much memory?

� Slightly more than double the heap 

� For each 32 bit word, keep extra 32 bits of state:

 2 bits for state – Initialization, Exclusive, Shared, Shared-
Modified

 30 bits for thread ID (Initialization) or lockset index number 
– what is the lockset index number?
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Lockset index number

 Number of locksets much smaller than maximum 
possible

 Only keep one, sorted copy of lockset in a table

 Sorting helps speed up comparison/intersection; 
intersection also cached

 Hash list of locks to look up possible index number 
in hash table

 Cache intersection of different locks

 So… small amount of memory needed for lockset 
and hash tables
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Why does this work?

 Greatest number of locksets seen 10,000

 Could have been exponential in number of locks –
why not?

� Lock usage very stylized – same patterns, sets of locks, 
etc.

� E.g., each instant of object foo might have an internal 
lock but foo objects don’t call each other’s methods so 
will only lock one foo at a time (#lock sets = #locks)
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Evaluation

 Performance slows down by factor of 10-30

 What possible causes of false positive are there?
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Possible causes of false positive are 
there?

 Memory reuse – private allocators

� Example: Vesta Log flush routine makes all entries 
private & empties list

 Private locks – why would you do this?

� Pthreads does not include shared/exclusive locks

 Benign races 

� True data races that do not affect correctness of the 
program

� Example: set kill_queries =1, then when threads notice, 
they exit 

 How do they eliminate false positives?
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Annotations

 EraserIgnoreOn(), EraserIgnoreOff()

� Don’t report any races in the bracketed code

 EraserReuse (address, size)

� Tells Eraser to reset shadow memory in the memory 
range indicated to Virgin state

 To indicated private lock usage

� EraserReadLock(lock), EraserReadUnlock(lock)

� EraserWriteLock(lock), EraserWriteUnlock(lock)

 “We found that a handful of annotations usually 
suffices to eliminate all false alarms.”
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Discussion

 p. 7 (Sec 4.1): “… it might seem safe to access the 
p->ip_fp field in the rest of the procedure… But in 
fact this would be a mistake.”

� Why? P->ip_fp might point to unitialized data because 
alpha architecture does not offer sequential consistency

 p. 8 (Sec 4.2): why is Combine::XorFPTag::FPVal
incorrect?

� Again no sequential consistency; need some kind of 
locking before setting this->validFP=true
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What to do about deadlock?

 Add partial order checking to enforced lockset 
discipline

 Seemed to find one deadlock easily this way
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Results

 Performance  slowdown by factor of 10-30

 Utility?

� No serious bugs in AltaVista

 But might have found bugs that earlier took several months 
to fix

� One bug in Vesta

� No serious bugs in Petal
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Results

 How about claim that less sensitive to schedule than 
happens before?

� Found same bugs in AltaVista & Vesta using 2 or 10 
threads – good sign

 Undergraduate programs?

� 10% of seemingly working programs had bugs
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Capriccio: Scalable Threads for 
Internet Services (2003)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

� Something else?
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What is goal of Capriccio?

 Gain benefits of event-drive systems

� Cooperative (non-preemptive) threads package

� Scalability to 100,000 threads – O(1) efficient ops, 
minimize stack space

� “Resource-aware” scheduling

 Look at Figure 1.  Why do NPTL/LinuxThreads
tank?

� Capriccio non-preemptive, so no lock contention!
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What are the real scalability 
bottlenecks?

 Virtual and physical memory for stacks

� Why do we care about VM?
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What are the real scalability 
bottlenecks?

 Virtual and physical memory for stacks

� Why do we care about VM?

 32-bit machines, max stack might be 2MB

 Note: newer 64-bit machines typically have 48-bit virtual 
address space

� Why do we care about PM?

 OS might not be clever enough to reclaim thread stack 
space 

 Algorithms?

� Generally we want O(1), not O(# threads)

� Examples: prioritizing run threads and stride scheduling 
in Sec 4.2
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What is linked stack management?
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What is linked stack management?

 Break stack into pieces

 Can code deal with non-contiguous stack?

� Yes, if discontinuity across procedure boundary;

� Return usually restores stack pointer based on frame 
pointer can just restore to different place

� But we have to know max space used within function

 What about alloca(size) – oops, probably can’t allow
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Compute graph

 Place checkpoints where might overflow 

 What is internal wasted space?

 What is external wasted space?

 How do these get tuned?
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Compute graph

 Place checkpoints where might overflow 

 What is internal wasted space?

� Skipped rest of chunk, added bookkeeping to get new 
chunk

 What is external wasted space?

� Bottom of current chunk is unused 

� This is what traditional threads packages have with one 
big stack

 How do these get tuned?

� MaxPath and MinChunk parameters
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Discussion on compute graph

 How to deal with library code?

 How to handle function pointers?

� Guess based on type signature

 Sec 3.5 compares to guard pages – what are these?

� If have enough VM, use page faults to allocate physical 
memory as needed

� Idea: overflowing stack always gives page fault on guard 
page

 Adv: common case is cheap (no extra code)

 Drawbacks: overhead for handling page faults probably higher than 
check point; might use more physical memory? 
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What is resource-aware 
scheduling?

 What resources?
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What is resource-aware 
scheduling?

 What resources?

� CPU, memory, file descriptors

� What about disk?  Hard because request rate depends 
on locality

� Compute blocking graph (Fig 8)

 How do they annotate this graph?
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Annotating blocking graph

 Avg running time on each edge

 Node annotated with how long next edge will take 
on avg

 Annotate graph change in resource usage

 Track resource utilization

 Maintain run Q for each node

 Promote nodes (and thus threads) that release a 
resource that is becoming scarce and demote those 
that acquire the resource

� “Natural admission control” on p. 9
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Discussion

 What about tasks that don’t yield?

� P. 10 suggest “use multiple kernel threads”

� Think this would just work?

 Extending to multiprocessor machines

� “we can no longer rely on the cooperative threading 
model to provide atomicity”
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Evaluation

 Convincing?

 Improvement worth the effort?

54


