ADVANCED OPERATING
SYSTEMS

A Fast File System (1984)

What kind of paper is this?
New big idea?
Measurement paper?
Experiences/lessons learnt paper?
A system description?
Performance study?
Refute-conventional wisdom?

Survey paper?

A Fast File System (1984)

Original Unix file system — simple, elegant, slow.
Only achieve 20Kb /sec (2% of disk maximum)

What were the problems with the original design?

Problems

Blocks too small — 512 bytes
file index too large, transfer rate low.
Consecutive file blocks not close together
Poor sequential access performance
i-nodes far from data blocks
Poor file data access performance
i-nodes of a directory not close together
Poor “Is” command performance

No read-ahead

Block size too small

TR
1 Why not just make larger?

7 What did they wind up doing?

Block size too small

Most Unix file systems composed of many small files

Increasing block size, increases file bandwidth but
wastes space

Choose 4K or 8K byte blocks

Allow large blocks to be chopped into small ones
Called fragments
Used for little files and pieces at the end of files

Limit number of fragments per block to 2,4, or 8

Freelist
2

1 Freelist leads to random allocation

-1 How was this addressed?

Random allocation problem
e

1 Switch from freelist to bit map of free blocks

Easier to find contiguous free blocks

Bitmap: 01110000000111111110101111

Cylinder groups

Divided disk into cylinder groups containing
Superblock
i-nodes
Bitmap of free blocks

Usage summary info

Why introduce cylinder groups?

Cylinder groups

Divided disk into cylinder groups containing
Superblock
i-nodes
Bitmap of free blocks

Usage summary info
Why introduce cylinder groups?¢ Used to:
Keep i-nodes near their data blcoks

keep i-nodes of a directory together

Cylinder groups act like lots of little Unix file
systems

Key to high performance: locality

Two techniques for achieving locality
1. don’t let the disk fill up
Always find free space nearby

2. paradox: spread unrelated things far apart

Room for related things to be placed together

Application of locality in BSD
allocator

Keep files in a directory in same cylinder group
Locality of i-nodes in a directory
Locality of files in a directory

Spread out directories among the cylinder groups
Make room for locality within a directory

Allocate runs of blocks within a cylinder group

locality of blocks in a file

Switch to a different cylinder group after 48K

Prevent one file from filling a cylinder group

Layout policies: Global and local

Global

Allocate files and directories to cylinder group

Pick “optimal” next block for allocation
Local
Handles request for specific blocks

If available, use it

If not free, check a sequence of alternatives

Alternative for local placement

1. Rotationally optimal block

2. Next block rotationally close on same cylinder

3. A block within cylinder group
4. Rehash cylinder group # to choose another
cylinder group

5. Exhaustive search

Rotationally optimal placement
s

01 Skip-sector allocation
based on CPU speed
and device

characteristics
Disk head

Performance improvements

Able to get 20-40% of disk bandwidth on large
files

10x-20x original Unix file system
Better small file performance

Could have done more; later versions do

Enhancements made to system interface
(really a second mini-paper)
7 Long file names (14 - 255)
o Adpvisory file locks (shared or exclusive)
flock()

Process id of holder stored with lock; can reclaim the
lock if process is no longer around

1 Symbolic links
Inter-file system links

Links to directories

Enhancements made to system interface
(cont’d)
18|
-1 Atomic rename capability
rm name; In name tmpName; rm tmpName
versus

Rename tmpName name;

-1 Disk quotas

Problems for FFS

Crash recovery

Synchronous writes of metadata

Scavenger program fsck
Small file performance

Ties to disk geometry

Head switch times
Disk arrays (RAIDs)

Three key features of paper
0

- Parametrize FS implementation for the hw it’s
running on

1 Measurement-driven design decisions

11 Locality “wins”

A major flaw

Measurements derived from a single installation

Ignored technology trends

A lesson for the future: don’t ignore underlying hw
characteristics

Contrasting research approaches:

improve what you’ve got vs. design something new

The design and implementation of @

- Log-Structured File System (1991)

7 What kind of paper is this?
New big idea?
Measurement paper?
Experiences/lessons learnt paper?
A system description?
Performance study?
Refute-conventional wisdom?

Survey paper?

Hardware trend

1 What is the key hardware trend motivating this
paper?

Hardware trend

What is the key hardware trend motivating this
paper?
Problem: CPU speeds increasing faster than | /O speeds
Result: program will all be 1/O bound

Solution: decouple performance of programs from | /O
Take advantage of file data caches

Reduce number of synchronous operations

Just increase size of the file cache?

Just increase size of the file cache?
24y
o Improves read performance

71 Doesn’t improve write performance much
1 Why?

Just increase size of the file cache?

Improves read performance

Doesn’t improve write performance much
Why?¢

Data must still be written to disk for safety

Sooner is safer

Later reduces traffic (overwrites and deletes)
Metadata is a problem
Assumption of paper: use caches for reads, but
need another technique for writes

Approach

Write data to disk sequentially in a log

Eliminate almost all seeks, hence write perf increases

Write data in large pieces

Reduce number of accesses

Problem

Problem achieving large sequential areas (extents)
Unix workload is mostly access to small files
Many of these are temporary files
Lots of metadata and seek overhead

5 writes required to create a file
What are these?

LFS concentrates on improving small file performance

5 seeks to create a new file

Create i-node for file

Add file data

Update directory (add new directory entry)
Finalize i-node for file

Update i-node for directory (modification time)

Two key challenges

How to locate data in a log without a complete
scane

How to find large extends of free space?

Two key challenges

How to locate data in a log without a complete
scan?

Soln: write index (i-nodes) to log as well
How to find large extends of free space?

Soln: cleaning process & usage information

compromise between extents and blocks: fixed-size but
large segments

Segment writes

A segment write contains
Data for multiple files
Their i-node information
Directory data and i-node changes

Inode map (where to find the i-nodes for files)

How do you retrieve something

from the log?¢
L ————

0 Just find the inode, how?

How do you retrieve something
from the log?

Inode map
Given inumber of file, gives location of inode on disk
Cached in main memory to avoid disk accesses
Divided into blocks that are written to segments

Checkpoint region gives location of all inode map
blocks

Periodically we will checkpoint whole log so recovery
doesn’t take too long

Checkpoints

What is a checkpoint?

A position in the log at which all the FS structures are
consistent and complete

To perform a checkpoint:

Write out datq, inodes, inode map blocks and segment
usage table (described later) to log

In fixed checkpoint region write

The address of inode map blocks and segment usage table
blocks

A pointer to last segment written

Current timestamp

Checkpoints (cont’d)

Alternate between 2 fixed checkpoint regions for
safety
“Roll forward” to recover data after last checkpoint
How does it work?
What do you lose if you don’t do roll forward?

Roll forward never implemented successfully

Maintaining free space

This is the hardest part
What to do when log wraps around on disk?

Some data earlier in log is no longer valid (no longer
“live”

We must take advantage of this to continue logging
Choices

Threading: leave “live” data on disk and place new
data in the now dead areas; Downside?

Copy live data, coalescing it, fo new place in log;
Downside?

LFS Solution: “segment cleaning”

Divide disk into fixed-sized but large segments

Copy new data to free segments (threading at
segment level)

To free up segments, copy live data from several
segments to one new segment (packs live data
together)

Avoids copying segments with lots of live data

Problems

How to identify live blocks in a segment?

How to identify file and offset of each live block?

How to update that file’s inode with new location of

ive blocks?

Solution

Segment summary block written at end of each
segment

|dentifies each piece of info in segment (file
number /offset, etc.)

Summary block written after every partial segment
write

Used to detect block liveness (inode still points to this
block?)

Version number optimizes this for deleted /truncated
files; How?

Note: there is no free list or bitmap in LFS

Segment cleaning questions
T [———
0 When?
0 How many?
1 Which segments?

1 How should live data be sorted when written out?

Write cost

Measure of how busy disk is per byte of new data
written

Includes segment cleaning overhead
Ignore rotational latency — look just at # of bytes
1.0 is perfect

10 means only 1/10 of disk time is spent writing new
data

Write cost = (read segs + write segs +write
new)/write new

Write cost (cont’d)

If utilization (live data) of segments is u & we read
N segs:

Read N segs

Write N*u old data

Leaves space for N*(1-u) of new data

Write cost=[N + N*u + N*(1-u)] / N*(1-u)

If u =0, then no need to read segment and the write

cost is 1

Note that v is not overall disk utilization!

Segment cleaning costs simulated

Key to good performance: bimodal distribution of
segments

Must be easy to find low-utilization segments

Therefore other segments should be very high in
utilization

Simulation of greedy policy
(cleaner chooses least-filled seq)

Uniform: each file equal likelihood of being
overwritten

No reorganization of data when written out

Hot & cold: simulate locality of access

10% of the files have 920% chance of being
overwritten

Live blocks sorted by age when written

Attempt to provide a bimodal distribution of hot & cold
data

Surprising result: locality and “better” grouping
make things worsel

Why?

Each segment chosen as it passes cleaning threshold
Cold segments take longer to cross threshold

Many cold segments hover at this point, pinning
down lots of free space

Solution: treat hot and cold data differently

Treat cold segments as more valuable (once cleaned,
they free stuff up for longer)

Hot segments will continue to fragment, so wait longer
to clean them

Value of a segment’s free space depends on the
stability of data in the segment

Problem: requires predicting future
of segment usage

Solution:

Approximate future usage by current age of data in
segment

Choose highest ration of benefit to cost of cleaning

Benefit:
Amount of free space released: 1-u

Amount of time that space will stay free: use age of
youngest block in segment

Cost of cleaning: 1 (for segment) plus u (amount still

live)

Ratio: free space generated * age of data / cost=
= (1-u)*age / (1+v)

Simulation

Cost-benefit policy
Cleans cold segments at 75% utilization
Wiaits till 15% utilization for hot segments

Most segments cleaned are hot (20% of writes to hot
segments)

Up to 50% better than greedy policy
Better than FFS cost for up to 80% utilization

Performance measurements

Microbenchmarks:

Small file performance:

Much faster than SunOS at file creation and deletion

Large file performance:
Better than FFS on sequential and random writes
About the same on sequential and random reads
Much worse on sequential re-reads of randomly written
data; Why?
Cleaning overheads seem to be lower than the
simulations

Locality

Traditional file system
Logical locality on disk

Extra overhead for writes to maintain this locality

LFS

Temporal locality
Temporal locality may match logical locality

When it doesn’t LFS read performance will be worse

Key lesson

Rethink your basic assumptions about what’s
primary and what’s secondary in a design.

In this case, they made the log the truth instead of
just a recovery aid

Problems with the paper

No roll forward — what cost of
complexity /performance?

Performance measurements didn’t include cleaning
Read traffic not modeled

Assumes that files get written in their entirety; else
would get intra-file fragmentation in LFS

If small files “get bigger” then how would LFS
compare to Unix?

Controversy

Lots of controversy ensued

Debate includes performance issues on _real_
workloads

John Qusterhout @ Berkeley vs Margo Seltzer @
Harvard

Bottom line

Very hard to come up with definitive benchmarks
proving that one system is better than another

Can always find a scenario where one system design
outperforms another

Difficult to extrapolate and make definitive conclusions
based on benchmark tests

