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A Fast File System (1984)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?
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A Fast File System (1984)
3

 Original Unix file system – simple, elegant, slow.

� Only achieve 20Kb/sec (2% of disk maximum)

 What were the problems with the original design?



Problems

 Blocks too small – 512 bytes

� file index too large, transfer rate low.

 Consecutive file blocks not close together

� Poor sequential access performance

 i-nodes far from data blocks

� Poor file data access performance

 i-nodes of a directory not close together

� Poor “ls” command performance

 No read-ahead
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Block size too small

 Why not just make larger?

 What did they wind up doing?
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Block size too small

 Most Unix file systems composed of many small files

 Increasing block size, increases file bandwidth but 
wastes space

 Choose 4K or 8K byte blocks

 Allow large blocks to be chopped into small ones

� Called fragments

� Used for little files and pieces at the end of files

� Limit number of fragments per block to 2,4, or 8
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Freelist

 Freelist leads to random allocation

 How was this addressed?
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Random allocation problem

 Switch from freelist to bit map of free blocks

� Easier to find contiguous free blocks

� Bitmap: 01110000000111111110101111
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Cylinder groups

 Divided disk into cylinder groups containing 

� Superblock

� i-nodes

� Bitmap of free blocks

� Usage summary info

 Why introduce cylinder groups?
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Cylinder groups

 Divided disk into cylinder groups containing 

� Superblock

� i-nodes

� Bitmap of free blocks

� Usage summary info

 Why introduce cylinder groups?  Used to:

� Keep i-nodes near their data blcoks

� keep i-nodes of a directory together

 Cylinder groups act like lots of little Unix file 
systems
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Key to high performance: locality

 Two techniques for achieving locality

� 1. don’t let the disk fill up

 Always find free space nearby

� 2. paradox:  spread unrelated things far apart

 Room for related things to be placed together
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Application of locality in BSD 
allocator

 Keep files in a directory in same cylinder group

� Locality of i-nodes in a directory

� Locality of files in a directory

 Spread out directories among the cylinder groups

� Make room for locality within a directory

 Allocate runs of blocks within a cylinder group

� locality of blocks in a file

 Switch to a different cylinder group after 48K

� Prevent one file from filling a cylinder group
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Layout policies: Global and local

 Global

� Allocate files and directories to cylinder group

� Pick “optimal” next block for allocation

 Local

� Handles request for specific blocks

� If available, use it

� If not free, check a sequence of alternatives
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Alternative for local placement

 1. Rotationally optimal block

 2. Next block rotationally close on same cylinder

 3. A block within cylinder group

 4. Rehash cylinder group # to choose another 
cylinder group

 5. Exhaustive search
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Rotationally optimal placement

 Skip-sector allocation 
based on CPU speed 
and device 
characteristics
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Performance improvements

 Able to get 20-40% of disk bandwidth on large 
files

 10x-20x original Unix file system

 Better small file performance

 Could have done more; later versions do

16



Enhancements made to system interface 
(really a second mini-paper)

 Long file names (14 255)

 Advisory file locks (shared or exclusive)

� flock()

� Process id of holder stored with lock;  can reclaim the 
lock if process is no longer around

 Symbolic links

� Inter-file system links

� Links to directories
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Enhancements made to system interface 
(cont’d)

 Atomic rename capability

� rm name; ln name tmpName; rm tmpName

versus

� Rename tmpName name;

 Disk quotas
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Problems for FFS

 Crash recovery

� Synchronous writes of metadata

 Scavenger program fsck

 Small file performance

 Ties to disk geometry

� Head switch times

� Disk arrays (RAIDs)
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Three key features of paper

 Parametrize FS implementation for the hw it’s 
running on

 Measurement-driven design decisions

 Locality “wins”
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A major flaw

 Measurements derived from a single installation

 Ignored technology trends

� A lesson for the future: don’t ignore underlying hw
characteristics

 Contrasting research approaches: 

� improve what you’ve got vs. design something new
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The design and implementation of a 
Log-Structured File System (1991)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?
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Hardware trend

 What is the key hardware trend motivating this 
paper?
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Hardware trend

 What is the key hardware trend motivating this 
paper?

� Problem: CPU speeds increasing faster than I/O speeds

� Result: program will all be I/O bound

� Solution: decouple performance of programs from I/O

 Take advantage of file data caches

 Reduce number of synchronous operations

� Just increase size of the file cache?
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Just increase size of the file cache?

 Improves read performance

 Doesn’t improve write performance much

 Why?
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Just increase size of the file cache?

 Improves read performance

 Doesn’t improve write performance much

 Why?   

� Data must still be written to disk for safety

 Sooner is safer

 Later reduces traffic (overwrites and deletes)

 Metadata is a problem

 Assumption of paper: use caches for reads, but 
need another technique for writes
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Approach

 Write data to disk sequentially in a log 

� Eliminate almost all seeks, hence write perf increases 

 Write data in large pieces 

� Reduce number of accesses
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Problem 

 Problem achieving large sequential areas (extents)

� Unix workload is mostly access to small files

� Many of these are temporary files

� Lots of metadata and seek overhead

� 5 writes required to create a file

 What are these?

� LFS concentrates on improving small file performance
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5 seeks to create a new file

 Create i-node for file

 Add file data

 Update directory (add new directory entry)

 Finalize i-node for file

 Update i-node for directory (modification time)
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Two key challenges

 How to locate data in a log without a complete 
scan?

 How to find large extends of free space?
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Two key challenges

 How to locate data in a log without a complete 
scan?

� Soln: write index (i-nodes) to log as well

 How to find large extends of free space?

� Soln: cleaning process & usage information

� compromise between extents and blocks: fixed-size but 
large segments
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Segment writes 

 A segment write contains

� Data for multiple files

� Their i-node information

� Directory data and i-node changes

� Inode map (where to find the i-nodes for files)
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How do you retrieve something 
from the log?

 Just find the inode, how?
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How do you retrieve something 
from the log?

 Inode map

� Given inumber of file, gives location of inode on disk

� Cached in main memory to avoid disk accesses

� Divided into blocks that are written to segments

� Checkpoint region gives location of all inode map 
blocks

 Periodically we will checkpoint whole log so recovery 
doesn’t take too long
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Checkpoints

 What is a checkpoint?

� A position in the log at which all the FS structures are 
consistent and complete

 To perform a checkpoint:

� Write out data, inodes, inode map blocks and segment 
usage table (described later) to log

� In fixed checkpoint region write 

 The address of inode map blocks and segment usage table 
blocks 

 A pointer to last segment written

 Current timestamp
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Checkpoints (cont’d)

 Alternate between 2 fixed checkpoint regions for 
safety

 “Roll forward” to recover data after last checkpoint

� How does it work?

� What do you lose if you don’t do roll forward?

� Roll forward never implemented successfully
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Maintaining free space 

 This is the hardest part

� What to do when log wraps around on disk?

� Some data earlier in log is no longer valid (no longer 
“live”

� We must take advantage of this to continue logging

 Choices

� Threading: leave “live” data on disk and place new 
data in the now dead areas;  Downside?

� Copy live data, coalescing it, to new place in log; 
Downside?
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LFS Solution: “segment cleaning”

 Divide disk into fixed-sized but large segments

 Copy new data to free segments (threading at 
segment level)

 To free up segments, copy live data from several 
segments to one new segment (packs live data 
together)

 Avoids copying segments with lots of live data
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Problems

 How to identify live blocks in a segment?

 How to identify file and offset of each live block?

 How to update that file’s inode with new location of 
live blocks?
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Solution

 Segment summary block written at end of each 
segment

� Identifies each piece of info in segment (file 
number/offset, etc.)

� Summary block written after every partial segment 
write

� Used to detect block liveness (inode still points to this 
block?)

� Version number optimizes this for deleted/truncated 
files;  How?

 Note: there is no free list or bitmap in LFS
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Segment cleaning questions

 When?

 How many?

 Which segments?

 How should live data be sorted when written out?
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Write cost

 Measure of how busy disk is per byte of new data 
written

� Includes segment cleaning overhead

� Ignore rotational latency – look just at # of bytes

� 1.0 is perfect

� 10 means only 1/10 of disk time is spent writing new 
data

 Write cost = (read segs + write segs +write 
new)/write new
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Write cost (cont’d)

 If utilization (live data) of segments is u & we read 
N segs:

� Read N segs

� Write N*u old data

� Leaves space for N*(1-u) of new data

� Write cost=[N + N*u + N*(1-u)] / N*(1-u)

� If u = 0, then no need to read segment and the write 
cost is 1

� Note that u is not overall disk utilization!
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Segment cleaning costs simulated

 Key to good performance: bimodal distribution of 
segments

� Must be easy to find low-utilization segments

� Therefore other segments should be very high in 
utilization
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Simulation of greedy policy 
(cleaner chooses least-filled seg)

 Uniform: each file equal likelihood of being 
overwritten

� No reorganization of data when written out

 Hot & cold: simulate locality of access

� 10% of the files have 90% chance of being 
overwritten

� Live blocks sorted by age when written

� Attempt to provide a bimodal distribution of hot & cold 
data

 Surprising result: locality and “better” grouping 
make things worse!
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Why?

 Each segment chosen as it passes cleaning threshold

 Cold segments take longer to cross threshold

 Many cold segments hover at this point, pinning 
down lots of free space

 Solution: treat hot and cold data differently

� Treat cold segments as more valuable (once cleaned, 
they free stuff up for longer)

� Hot segments will continue to fragment, so wait longer 
to clean them

 Value of a segment’s free space depends on the 
stability of data in the segment
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Problem: requires predicting future 
of segment usage

 Solution:

� Approximate future usage by current age of data in 
segment

� Choose highest ration of benefit to cost of cleaning

� Benefit: 

 Amount of free space released: 1-u

 Amount of time that space will stay free: use age of 
youngest block in segment

� Cost of cleaning: 1 (for segment) plus u (amount still 
live)

� Ratio: free space generated * age of data / cost=

= (1-u)*age / (1+u)
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Simulation

 Cost-benefit policy

� Cleans cold segments at 75% utilization

� Waits till 15% utilization for hot segments

� Most segments cleaned are hot (90% of writes to hot 
segments)

� Up to 50% better than greedy policy

� Better than FFS cost for up to 80% utilization
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Performance measurements

 Microbenchmarks:

� Small file performance:

 Much faster than SunOS at file creation and deletion

� Large file performance:

 Better than FFS on sequential and random writes

 About the same on sequential and random reads

 Much worse on sequential re-reads of randomly written 
data;  Why?

 Cleaning overheads seem to be lower than the 
simulations
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Locality

 Traditional file system

� Logical locality on disk

� Extra overhead for writes to maintain this locality

 LFS

� Temporal locality

� Temporal locality may match logical locality

� When it doesn’t LFS read performance will be worse
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Key lesson

 Rethink your basic assumptions about what’s 
primary and what’s secondary in a design.

 In this case, they made the log the truth instead of 
just a recovery aid
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Problems with the paper

 No roll forward – what cost of 
complexity/performance?

 Performance measurements didn’t include cleaning

 Read traffic not modeled

 Assumes that files get written in their entirety; else 
would get intra-file fragmentation in LFS

 If small files “get bigger” then how would LFS 
compare to Unix?
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Controversy

 Lots of controversy ensued

� Debate includes performance issues on _real_ 
workloads

� John Ousterhout @ Berkeley vs Margo Seltzer @ 
Harvard
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Bottom line

 Very hard to come up with definitive benchmarks 
proving that one system is better than another

� Can always find a scenario where one system design 
outperforms another

� Difficult to extrapolate and make definitive conclusions 
based on benchmark tests
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