
ADVANCED OPERATING
SYSTEMS
FFS

LFS

A Fast File System (1984)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

2

A Fast File System (1984)
3

 Original Unix file system – simple, elegant, slow.

� Only achieve 20Kb/sec (2% of disk maximum)

 What were the problems with the original design?

Problems

 Blocks too small – 512 bytes

� file index too large, transfer rate low.

 Consecutive file blocks not close together

� Poor sequential access performance

 i-nodes far from data blocks

� Poor file data access performance

 i-nodes of a directory not close together

� Poor “ls” command performance

 No read-ahead

4

Block size too small

 Why not just make larger?

 What did they wind up doing?

5

Block size too small

 Most Unix file systems composed of many small files

 Increasing block size, increases file bandwidth but
wastes space

 Choose 4K or 8K byte blocks

 Allow large blocks to be chopped into small ones

� Called fragments

� Used for little files and pieces at the end of files

� Limit number of fragments per block to 2,4, or 8

6

Freelist

 Freelist leads to random allocation

 How was this addressed?

7

Random allocation problem

 Switch from freelist to bit map of free blocks

� Easier to find contiguous free blocks

� Bitmap: 01110000000111111110101111

8

Cylinder groups

 Divided disk into cylinder groups containing

� Superblock

� i-nodes

� Bitmap of free blocks

� Usage summary info

 Why introduce cylinder groups?

9

Cylinder groups

 Divided disk into cylinder groups containing

� Superblock

� i-nodes

� Bitmap of free blocks

� Usage summary info

 Why introduce cylinder groups? Used to:

� Keep i-nodes near their data blcoks

� keep i-nodes of a directory together

 Cylinder groups act like lots of little Unix file
systems

10

Key to high performance: locality

 Two techniques for achieving locality

� 1. don’t let the disk fill up

 Always find free space nearby

� 2. paradox: spread unrelated things far apart

 Room for related things to be placed together

11

Application of locality in BSD
allocator

 Keep files in a directory in same cylinder group

� Locality of i-nodes in a directory

� Locality of files in a directory

 Spread out directories among the cylinder groups

� Make room for locality within a directory

 Allocate runs of blocks within a cylinder group

� locality of blocks in a file

 Switch to a different cylinder group after 48K

� Prevent one file from filling a cylinder group

12

Layout policies: Global and local

 Global

� Allocate files and directories to cylinder group

� Pick “optimal” next block for allocation

 Local

� Handles request for specific blocks

� If available, use it

� If not free, check a sequence of alternatives

13

Alternative for local placement

 1. Rotationally optimal block

 2. Next block rotationally close on same cylinder

 3. A block within cylinder group

 4. Rehash cylinder group # to choose another
cylinder group

 5. Exhaustive search

14

Rotationally optimal placement

 Skip-sector allocation
based on CPU speed
and device
characteristics

15

Disk head

Performance improvements

 Able to get 20-40% of disk bandwidth on large
files

 10x-20x original Unix file system

 Better small file performance

 Could have done more; later versions do

16

Enhancements made to system interface
(really a second mini-paper)

 Long file names (14 255)

 Advisory file locks (shared or exclusive)

� flock()

� Process id of holder stored with lock; can reclaim the
lock if process is no longer around

 Symbolic links

� Inter-file system links

� Links to directories

17

Enhancements made to system interface
(cont’d)

 Atomic rename capability

� rm name; ln name tmpName; rm tmpName

versus

� Rename tmpName name;

 Disk quotas

18

Problems for FFS

 Crash recovery

� Synchronous writes of metadata

 Scavenger program fsck

 Small file performance

 Ties to disk geometry

� Head switch times

� Disk arrays (RAIDs)

19

Three key features of paper

 Parametrize FS implementation for the hw it’s
running on

 Measurement-driven design decisions

 Locality “wins”

20

A major flaw

 Measurements derived from a single installation

 Ignored technology trends

� A lesson for the future: don’t ignore underlying hw
characteristics

 Contrasting research approaches:

� improve what you’ve got vs. design something new

21

The design and implementation of a
Log-Structured File System (1991)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

22

Hardware trend

 What is the key hardware trend motivating this
paper?

23

Hardware trend

 What is the key hardware trend motivating this
paper?

� Problem: CPU speeds increasing faster than I/O speeds

� Result: program will all be I/O bound

� Solution: decouple performance of programs from I/O

 Take advantage of file data caches

 Reduce number of synchronous operations

� Just increase size of the file cache?

24

Just increase size of the file cache?

 Improves read performance

 Doesn’t improve write performance much

 Why?

25

Just increase size of the file cache?

 Improves read performance

 Doesn’t improve write performance much

 Why?

� Data must still be written to disk for safety

 Sooner is safer

 Later reduces traffic (overwrites and deletes)

 Metadata is a problem

 Assumption of paper: use caches for reads, but
need another technique for writes

26

Approach

 Write data to disk sequentially in a log

� Eliminate almost all seeks, hence write perf increases

 Write data in large pieces

� Reduce number of accesses

27

Problem

 Problem achieving large sequential areas (extents)

� Unix workload is mostly access to small files

� Many of these are temporary files

� Lots of metadata and seek overhead

� 5 writes required to create a file

 What are these?

� LFS concentrates on improving small file performance

28

5 seeks to create a new file

 Create i-node for file

 Add file data

 Update directory (add new directory entry)

 Finalize i-node for file

 Update i-node for directory (modification time)

29

Two key challenges

 How to locate data in a log without a complete
scan?

 How to find large extends of free space?

30

Two key challenges

 How to locate data in a log without a complete
scan?

� Soln: write index (i-nodes) to log as well

 How to find large extends of free space?

� Soln: cleaning process & usage information

� compromise between extents and blocks: fixed-size but
large segments

31

Segment writes

 A segment write contains

� Data for multiple files

� Their i-node information

� Directory data and i-node changes

� Inode map (where to find the i-nodes for files)

32

How do you retrieve something
from the log?

 Just find the inode, how?

33

How do you retrieve something
from the log?

 Inode map

� Given inumber of file, gives location of inode on disk

� Cached in main memory to avoid disk accesses

� Divided into blocks that are written to segments

� Checkpoint region gives location of all inode map
blocks

 Periodically we will checkpoint whole log so recovery
doesn’t take too long

34

Checkpoints

 What is a checkpoint?

� A position in the log at which all the FS structures are
consistent and complete

 To perform a checkpoint:

� Write out data, inodes, inode map blocks and segment
usage table (described later) to log

� In fixed checkpoint region write

 The address of inode map blocks and segment usage table
blocks

 A pointer to last segment written

 Current timestamp

35

Checkpoints (cont’d)

 Alternate between 2 fixed checkpoint regions for
safety

 “Roll forward” to recover data after last checkpoint

� How does it work?

� What do you lose if you don’t do roll forward?

� Roll forward never implemented successfully

36

Maintaining free space

 This is the hardest part

� What to do when log wraps around on disk?

� Some data earlier in log is no longer valid (no longer
“live”

� We must take advantage of this to continue logging

 Choices

� Threading: leave “live” data on disk and place new
data in the now dead areas; Downside?

� Copy live data, coalescing it, to new place in log;
Downside?

37

LFS Solution: “segment cleaning”

 Divide disk into fixed-sized but large segments

 Copy new data to free segments (threading at
segment level)

 To free up segments, copy live data from several
segments to one new segment (packs live data
together)

 Avoids copying segments with lots of live data

38

Problems

 How to identify live blocks in a segment?

 How to identify file and offset of each live block?

 How to update that file’s inode with new location of
live blocks?

39

Solution

 Segment summary block written at end of each
segment

� Identifies each piece of info in segment (file
number/offset, etc.)

� Summary block written after every partial segment
write

� Used to detect block liveness (inode still points to this
block?)

� Version number optimizes this for deleted/truncated
files; How?

 Note: there is no free list or bitmap in LFS

40

Segment cleaning questions

 When?

 How many?

 Which segments?

 How should live data be sorted when written out?

41

Write cost

 Measure of how busy disk is per byte of new data
written

� Includes segment cleaning overhead

� Ignore rotational latency – look just at # of bytes

� 1.0 is perfect

� 10 means only 1/10 of disk time is spent writing new
data

 Write cost = (read segs + write segs +write
new)/write new

42

Write cost (cont’d)

 If utilization (live data) of segments is u & we read
N segs:

� Read N segs

� Write N*u old data

� Leaves space for N*(1-u) of new data

� Write cost=[N + N*u + N*(1-u)] / N*(1-u)

� If u = 0, then no need to read segment and the write
cost is 1

� Note that u is not overall disk utilization!

43

Segment cleaning costs simulated

 Key to good performance: bimodal distribution of
segments

� Must be easy to find low-utilization segments

� Therefore other segments should be very high in
utilization

44

Simulation of greedy policy
(cleaner chooses least-filled seg)

 Uniform: each file equal likelihood of being
overwritten

� No reorganization of data when written out

 Hot & cold: simulate locality of access

� 10% of the files have 90% chance of being
overwritten

� Live blocks sorted by age when written

� Attempt to provide a bimodal distribution of hot & cold
data

 Surprising result: locality and “better” grouping
make things worse!

45

Why?

 Each segment chosen as it passes cleaning threshold

 Cold segments take longer to cross threshold

 Many cold segments hover at this point, pinning
down lots of free space

 Solution: treat hot and cold data differently

� Treat cold segments as more valuable (once cleaned,
they free stuff up for longer)

� Hot segments will continue to fragment, so wait longer
to clean them

 Value of a segment’s free space depends on the
stability of data in the segment

46

Problem: requires predicting future
of segment usage

 Solution:

� Approximate future usage by current age of data in
segment

� Choose highest ration of benefit to cost of cleaning

� Benefit:

 Amount of free space released: 1-u

 Amount of time that space will stay free: use age of
youngest block in segment

� Cost of cleaning: 1 (for segment) plus u (amount still
live)

� Ratio: free space generated * age of data / cost=

= (1-u)*age / (1+u)

47

Simulation

 Cost-benefit policy

� Cleans cold segments at 75% utilization

� Waits till 15% utilization for hot segments

� Most segments cleaned are hot (90% of writes to hot
segments)

� Up to 50% better than greedy policy

� Better than FFS cost for up to 80% utilization

48

Performance measurements

 Microbenchmarks:

� Small file performance:

 Much faster than SunOS at file creation and deletion

� Large file performance:

 Better than FFS on sequential and random writes

 About the same on sequential and random reads

 Much worse on sequential re-reads of randomly written
data; Why?

 Cleaning overheads seem to be lower than the
simulations

49

Locality

 Traditional file system

� Logical locality on disk

� Extra overhead for writes to maintain this locality

 LFS

� Temporal locality

� Temporal locality may match logical locality

� When it doesn’t LFS read performance will be worse

50

Key lesson

 Rethink your basic assumptions about what’s
primary and what’s secondary in a design.

 In this case, they made the log the truth instead of
just a recovery aid

51

Problems with the paper

 No roll forward – what cost of
complexity/performance?

 Performance measurements didn’t include cleaning

 Read traffic not modeled

 Assumes that files get written in their entirety; else
would get intra-file fragmentation in LFS

 If small files “get bigger” then how would LFS
compare to Unix?

52

Controversy

 Lots of controversy ensued

� Debate includes performance issues on _real_
workloads

� John Ousterhout @ Berkeley vs Margo Seltzer @
Harvard

53

Bottom line

 Very hard to come up with definitive benchmarks
proving that one system is better than another

� Can always find a scenario where one system design
outperforms another

� Difficult to extrapolate and make definitive conclusions
based on benchmark tests

55

