
ADVANCED OPERATING
SYSTEMS

Lottery Scheduling, Finding Bugs

Lottery Scheduling: Flexible Proportional-
Share Resource Management (1994)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

� Something else?

2

Lottery Scheduling

 Very general, proportional-share scheduling algorithm

 Problems with traditional schedulers

� Priority systems are ad hoc at best: highest priority always
wins

� “Fair share” implemented by adjusting priorities with a
feedback loop to achieve fairness over the (very) long term
(highest priority still wins all the time, but now Unix priorities
are always changing)

� Priority inversion: high-priority jobs can be blocked behind
low-priority jobs

� Schedulers are complex and difficult to control

3

How fair is lottery scheduling?
4

How fair is lottery scheduling?



5

Properties

 Probabilistically fair

 Starvation problem “solved”

� Any client with a non-zero number of tickets will
eventually win a lottery

 Responsive

� Any changes to relative ticket allocations are
immediately reflected in the next allocation decision

6

What is ticket transfer, why have it?
7

Ticket transfer: how to deal with
dependencies

 Basic idea: if you are blocked on someone else,
give them your tickets

 Example: client-server

� Server has no tickets of its own

� Clients give server all of their tickets during RPC

� Server’s priority is the sum of the priorities of all of its
active clients

� Server can use lottery scheduling to give preferential
service to high-priority clients

 Very elegant solution to long-standing priority
inversion problem (not the first solution however)

8

What is ticket inflation, why have
it?

9

Ticket inflation

 Idea: make up your own tickets (print your own
money)

� Only works among mutually trusting clients

� Presumably works best if inflation is temporary

� Allows clients to adjust their priority dynamically with
zero communication

10

Currencies

 Idea: set up an exchange rate with the base
currency

� Enables inflation just within a group

� Simplifies mini-lotteries, such as for a mutex

11

Question

 What happens if a thread is I/O bound and
regularly blocks before its quantum expires?

12

Question

 What happens if a thread is I/O bound and
regularly blocks before its quantum expires?

� Without adjustment, this implies that thread gets less
than its share of the processor

� How do they deal with this?

13

Question

 What happens if a thread is I/O bound and
regularly blocks before its quantum expires?

� Without adjustment, this implies that thread gets less
than its share of the processor

� How do they deal with this?

 Compensation tickets: if you complete fraction f of the
quantum, your tickets are inflated by 1/f until the next time
you win

 Example: if B on average uses 1/5 of a quantum, its tickets
will be inflated 5x and it will win 5 times as often and get
its correct share overall

 What if B alternates between 1/5 and whole quantums

14

Problems with lottery scheduling

 Not as fair as we’d like: mutex comes out 1.8:1
instead of 2:1, while multimedia apps come out
1.92:1.50:1 instead of 3:2:1

� Are these statistically significant?

15

Problems with lottery scheduling

 Not as fair as we’d like: mutex comes out 1.8:1
instead of 2:1, while multimedia apps come out
1.92:1.50:1 instead of 3:2:1

� Are these statistically significant?

� Probably are, which would imply that the lottery is
biased or that there is a secondary force affecting the
relative priority

16

Why didn’t multimedia app
achieve 3:2:1?

17

Why didn’t multimedia app
achieve 3:2:1?

 Biased results due to X server assuming uniform
priority instead of using tickets

 Conclusion: to really work, tickets must be used
everywhere.

� Every queue is an implicit scheduling decision

� Every spinlock ignores priority

18

Problems with lottery scheduling (2)

 Can we force it to be unfair?

� Is there a way to use compensation tickets to get more
time, e.g., quit early to get compensation tickets and
then run for the full time next time?

� What about kernel cycles?

 If a process uses a lot of cycles indirectly, such as through
the Ethernet driver, does it get higher priority implicitly?
(probably)

19

Evaluation

 Are you happy with the evaluation? Workloads
chosen?

20

Follow-on to lottery scheduling

 Stride scheduling

� Basic idea: make a deterministic version to reduce
short-term variability

� Mark time virtually using “passes” as the unit

� A process has a stride which is the number of passes
between executions. Strides are inversely proportional
to the number of tickets, so high priority jobs have low
strides and thus run often

� Very regular: a job with priority p will run every 1/p
passes

21

Stride scheduling

 Algorithm (roughly): always pick the job with the
lowest pass number. Update its pass number by
adding its stride

 Similar mechanism to compensation tickets: if a job
uses only fraction f, update its pass number by (f x
stride) instead of just using the stride

 Overall result: it is far more accurate than lottery
scheduling and error can be bounded absolutely
instead of probabilistically

22

Rotating Staircase Deadline
Scheduler (RDSL)

 “A starvation free, strict fairness O(1) scalable design with
interactivity as good as the above restrictions can provide.
There is no interactivity estimator, no sleep/run measurements
and only simple fixed accounting. The design has strict enough
a design and accounting that task behavior can be modelled
and maximum scheduling latencies can be predicted by the
virtual deadline mechanisms that manages run queues. The
prime concern in this design is to maintain fairness at all costs
determined by nice level, yet to maintain as good interactivity
as can be allowed within the constraints of strict fairness.”

--- Con Kolivas, 2007

23

RDSL

 One parameter: the round-robin interval
(RR_INTERVAL)

 One input: a thread priority

 Priority defines the levels at which each task can run

� High priority tasks: more levels, more chances to run

� Low priority tasks: fewer levels, fewer chances to run

 Tasks can run more at most a fixed amount of time
per level

 Each level can also run for at most a fixed amount
of time – ensures bounded latency

24

RDSL

 To begin a scheduling epoch:

� Put all threads in a queue determined by their priority

� Then:

 1. Run threads from the highest non-empty queue round-
robin

 2. If a thread blocks or yields, it remains at that level

 3. If a thread runs out of its quota, it moves to the next level

down

 4. If the level runs out of its quota, all threads move to the

next level down.

 5. Continue until all quotas are exhausted or no threads are
runnable, then restart another epoch

25

OS Scheduler

 Never-ending, evolving task for kernel developers

 RSDL  BFS  MuQSS

 …

26

Bugs as Deviant Behavior: A General Approach
to Inferring Errors in Systems Code (2001)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

� Something else?

27

Bugs as Deviant Behavior: A General Approach
to Inferring Errors in Systems Code (2001)

 What kind of paper is this?

� Describes a technique – a new way of tackling an old
problem

 Old problem: figure out what rules code is supposed to
obey

 New approach: “crowd source it” – look in the code for
things that allude to rules and then use the statistics of their
appearance to decide on right and wrong

� The system described embodies the technique, but the
contribution is in the technique, not the system

28

Overview

 Source code encapsulates programmer beliefs
about a system

 Examples

� Dereferencing a pointer indicates a belief that the
pointer is non-null

� Lock/unlock pairs indicate that all Locks followed by
unlocks

29

Overview

 If you can extract beliefs automatically, then you
can find bugs when code contradicts belief

� MUST: Beliefs are directly implied by the code

� MAY: beliefs are probabilistically implied

 Finds hundreds of bugs in operating systems

 Key insight is that we’re going to try to find
incorrect behavior without even knowing the correct
behavior!

30

Methodology

 Construct belief sets based upon the code

 Contradictions in belief sets are errors (e.g., a
belief that a value is NULL and then a belief that a
value is non-NULL, via a dereference)

 Rules are expressed as templates

 Templates contain slots where you fill in variables,
function, etc.

 A particular assignment is a slot instance

 Each slot instance has a particular belief set

31

Details

 If you can propagate beliefs across different
functions/modules, then you greatly enhance the
power of the checker

 Paper a bit fuzzy on exactly what you need to
specify manually to write an effective checker

� Do I need to figure out a big set of possible beliefs?

32

Static analysis

 Paper makes case for static analysis:

� 1) scalable: once fixed cost of writing an analysis
pass is paid, analysis is automatic

� 2. precise: can say exactly what file and line led to an
error

� 3. immediate: does not require executing code

33

Evaluation

 Demonstrate the efficacy of this approach in real
kernels

 Find real bugs

 False positive rate “OK”

34

