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Mesa, Why Threads,  Why Events



Experience with Processes and 
Monitors in Mesa (1980)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

� Something else?
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Experience with Processes and 
Monitors in Mesa (1980)
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Focus of this paper

 Light-weight processes (threads in today’s 
terminology) and how they synchronize with each 
other
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History

 2nd system; followed the Alto

 Planned to build a large system using many 
programmers (some thoughts about 
commercializing)

 Advent of things like server machines and 
networking introduced applications that are heavy 
users of concurrency
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Considerations

 Chose to build a single address space system:

� Single user system, so protection not an issue (safety 
was to come from the language)

� Wanted global resource sharing

 Large system, took many programmers

� Module-based programming with information hiding

 Since they were starting “from scratch”, they could 
integrate the hw, the runtime sw, and the language 
with each other
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Programming model choice

 Programming model for inter-process 
communication: shared memory (monitors) vs. 
message passing

� Needham & Lauer claimed the two models are duals of 
each other
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How to synchronize processes?

 Non-preemptive scheduler tends to yield very 
delicate systems.  Why?

 What is non-preemptive scheduling?
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Non-preemptive vs. preemptive 
scheduling

 In non-preemptive scheduling, a thread runs until it 
terminates, stops, blocks, suspends, or yields. 

 In preemptive scheduling, even if the current thread is 
still running, a context switch will (likely) occur when its 
time slice is used up.  Ways for thread to leave running 
state:

� It ceases to be ready to execute (e.g., by calling a blocking 
I/O method)

� It gets preempted by a high-priority thread which becomes 
ready to execute

� It explicitly calls a thread-scheduling method such as wait or 
suspend
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How to synchronize processes?

 Non-preemptive scheduler tends to yield very 
delicate systems.  Why?
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How to synchronize processes?

 Non-preemptive scheduler tends to yield very 
delicate systems.  Why?

� Have to know whether or not a yield might be called 
for every procedure you call.   Violates information 
hiding

� Prohibits multiprocessor systems

� Need a separate preemptive mechanism for I/O 
anyway

� Can’t do multiprogramming across page faults
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How to synchronize processes?

 Simple locking (e.g., semaphores): too little structuring 
discipline

� No guarantee that locks will be released on every code 
path

� Wanted something that could be integrated into a Mesa 
language construct

 Message passing (vs shared memory)

� Needham & Lauer claimed two models are duals of each 
other 

� Hard to integrate with Mesa

� Chose shared memory model because they thought they 
could fit it into Mesa as a language construct more naturally
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How to synchronize processes?

 Chose preemptive scheduling of light-weight 
processes and monitors

13



The Mesa programming language

 Modules, strong type checking

 Lightweight processes

 Monitors
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Mesa processes – lightweight 
processes

 All processes share a single address space

 Easy forking: any procedure can be forked

 Fast performance for creation, switching and 
synchronization: low storage overhead

 Integrated in the language

� Process is a first-class type in language

� Why is this good?
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Mesa processes – lightweight 
processes

 All processes share a single address space

 Easy forking: any procedure can be forked

 Fast performance for creation, switching and 
synchronization: low storage overhead

 Integrated in the language

� Process is a first-class type in language

� Why is this good?

 Subject to same strict type checking as other constructs so 
compiler can catch frequent errors
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Monitors

 Monitor lock (for synchronization)

� Tied to module structure of the language: makes it clear 
what’s being monitored

� like processes, monitors were a language construct

� Language automatically acquires and releases the lock

 Tied to a particular invariant, which helps users think 
about the program

 Condition variables (for scheduling)
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Monitors

 3 types of procedures in a monitor module

� Entry (acquires and releases lock)

� Internal (no locking done):  can’t be called from outside 
the module

� External (no locking done): externally callable.  Why is 
this useful?
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Monitors

 3 types of procedures in a monitor module

� Entry (acquires and releases lock)

� Internal (no locking done):  can’t be called from outside 
the module

� External (no locking done): externally callable.  Why is 
this useful?

 Allows grouping of related things into a module

 Allows doing some of the work outside the monitor lock

 Allows controlled release and reacquisition of monitor lock

� Caller can’t tell difference between External and Entry

� Caller can’t even tell that module has a monitor
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Mesa and Java

 Monitors (and Mesa in particular) led to several 
aspects of Java.  

� Java’s synchronized objects are the object-oriented 
programming version of monitors
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Mesa and Java

 Monitors (and Mesa in particular) led to several 
aspects.  

� Java’s synchronized objects are the object-oriented 
programming version of monitors
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Monitors                                            Java Synchronized Objects

external                                             public

internal                                              private synchronized

entry                                                  public synchronized



Notify semantics options

 Cede lock to waking process (Hoare style)

� Let waking process run right away

� Waking process knows the condition it was waiting on is 
guaranteed to hold
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Hoare-style Notify semantics
23

Process B

Process A

Enter monitor

Signal C

Enter monitor

Wait C

Run

Exit monitor

Run

Exit monitor

• Problem with Hoare-style semantics:
• Must establish invariant before executing Signal

• Requires additional context switches



Notify semantics options

 Cede lock to waking process (Hoare style)

� Let waking process run right away

� Waking process knows the condition it was waiting on is 
guaranteed to hold

 Notifier keeps lock, waking process get put in front 
of monitor queue.  

� Doesn’t work in the presence of priorities

 What they chose:  Notifier keeps lock, wakes 
process with no guarantees 

� Waking process must recheck its condition
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Mesa-style Notify semantics
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Process B

Process A

Enter monitor

NOTIFY C

Enter monitor

Wait C

Run

Exit monitor

Acquire monitor
Run

Exit monitor

• Advantages:
• Can notify at anytime.  Notify is a hint.
• Fewer context switches

• Disadvantage: 
• Process must check after Wait returns.
If (!ready to go) WAIT()   while (!ready to go) WAIT()



Aside: hints vs guarantees

 Notify is only a hint

� Don’t have to wake up the right process, don’t have to 
change the notifier if we slightly change the wait 
condition (the two are decoupled)

� Easier to implement, because it’s always OK to wake up 
too many processes.  If we get lost, we could even wake 
up everybody (broadcast)

� Enables timeouts and aborts

 General principle: use hints for performance that 
have little effect or no effect on correctness
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Other Mesa wakeups

 Timeouts: wait until notified or 10 seconds

 Abort: feeble sort of process termination

� Allows target process to reach a wait or monitor exit 
and then it voluntarily aborts

� No need to re-establish the invariant – as compared to 
just killing the process outright!

 Broadcast: wake everybody who is waiting

� What’s the problem with example in Sec. 3.1?

� Why not always use broadcast?
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Additional problem: deadlock

 Wait only releases the current monitor locks

� nested calls to monitors are not released

 Need to avoid cyclic dependencies between 
monitors

� Impose partial ordering

 General problem with modular systems and 
synchronization

� Synchronization requires global knowledge about locks, 
which violates the information hiding paradigm of 
modular programming

� Absolute hierarchy of locks isn’t always feasible
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Lock granularity

 Mesa has finer-grain locking than single lock for 
code

� Monitored record: a monitor lock per data object

� Useful for parallelism in multiprocessors

 General locking trade-off: fine-grained vs coarse-
grained
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Interrupts

 Device can’t block waiting to acquire a monitor lock

 Introduced naked notifies: notifies done without 
holding the monitor lock

 Had to worry about a timing race: the notify could 
occur between a monitor’s condition check and its 
call on Wait.

 Removes race condition by adding wakeup-waiting

flag to condition variable
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Priority inversion

 High-priority processes may block on lower-priority 
processes

 Solution: temporarily increase the priority of the 
holder of the monitor lock to that of the highest 
priority block process 

 The Mars rover stalled due to this kind of bug and 
had to be debugged and fixed from earth!

31



Exceptions

 Must restore monitor invariant as you unwind the 
stack.  What does Java do? (you must use a 
sequence of try-finally blocks)

 Idea that you can just kill a process and release its 
locks is naïve

� Each lock protects some invariant that must be restored 
before you can release the lock

� Entry procedures that have an exception but no 
exception handler DO NOT release the monitor lock.   

 Ensures deadlock but at least it maintains the invariant
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Three key features of the paper

 Describes the experiences designers had with 
designing, building, and using a large system that 
aggressively relies on heavy-weight processes and 
monitor facilities for all its concurrency needs

 Describes various subtle issues of implementing a 
threads-with-monitors design in real life for a  large 
system

 Discusses the performance and overhead of various 
primitives and three representative apps, but 
doesn’t give big picture of how important various 
things turned out to be
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Some flaws

 Gloss over how hard it is to program with locks and 
exceptions sometimes. (Not clear if there are better 
ways!)

 Performance discussion doesn’t give the big picture

 A lesson: the light-weight threads-with-monitors 

programming paradigm can be used to 

successfully build large systems, but there are 

subtle points that have to be correct in the design 

and implementation to do so.
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The Mesa Legacy

 Ironed out the practical aspects of monitor usage

 Created standard idioms of concurrent 
programming in shared address spaces

 Created standardized interfaces

 Influenced design of Java

 Had a huge impact on Topaz threads design, which 
had a big impact on the POSIX pthread interface
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Events versus Threads (over) 
simplified

 Threads can block, so we make use of the CPU by 
switching between threads

 Event handlers cannot block, so we can make use of 
the CPU by simply running events to completion

� We must write handlers so they are so small they don’t 
ever block, and if they need to block, they create an 
event that someone else will have to handle
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Events versus Threads (over) 
simplified

 With threads, getting good concurrency relies on 
switching between them 

 With event-based programming, getting good 
concurrency relies on writing events in a way that I 
can process a lot of them in a row really quickly 
and keep the system busy
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Why Events are a Bad Idea (for 
high con-currency servers) (2003)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

� Something else?
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Why Events are a Bad Idea (for 
high concurrency servers) (2003)

 What kind of paper is this?

� A position paper
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What’s the position?
40



What’s the position?

 “Event-based programming is the wrong choice for 
highly concurrent systems”

 Perceived weaknesses of threads are “artifacts of 
specific threading implementations and are not 
inherent to the threading paradigm”
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“Problems” with Threads (1)

 Performance

� Criticism: Many attempts to use threads for high 
concurrency have not performed well

� Response: the implementation is to blame; many current 
packages have ops that are O(n) in number of threads

 Repeat SEDA benchmark with their package and show 
performance matches event-based server
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“Problems” with Threads (2)

 Control flow

� Criticism: Threads have restrictive control flow

 Makes programmer think “too linearly about control flow”, potentially 
precluding use of more efficient control flow patterns

� Response: complicated control flow patterns are rare in 
practice

 Most control flow patterns fall into:

 Call/return

 Parallel calls

 Pipelines

 These patterns are expressed more naturally with threads

 Common event patterns map cleanly onto call/return mechanism 
of threads

 Robust systems need acks for error handling, cleanup, etc. so they 
need a “return” event in the event model
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“Problems” with Threads (3)

 Synchronization

� Criticism: thread synchronization mechanisms are too 
heavyweight

 Event systems claim that cooperative multitasking gives them 
synchronization “for free”   -- what does this mean?
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“Problems” with Threads (3)

 Synchronization

� Criticism: thread synchronization mechanisms are too 
heavyweight

 Event systems claim that cooperative multitasking gives them 
synchronization “for free”   -- no overhead from supporting 
mutexes, handling wait queue, etc.

� Response?
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“Problems” with Threads (3)

 Synchronization

� Criticism: thread synchronization mechanisms are too 
heavyweight

 Event systems claim that cooperative multitasking gives them 
synchronization “for free”   -- no overhead from supporting 
mutexes, handling wait queue, etc.

� Response: thread systems can also perform cooperative 
multitasking

� “free” synchronization due to cooperative multitasking 
holds only on uniprocesses.  Why?
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“Problems” with Threads (4)

 State management

� Criticism: thread stacks are an ineffective way to 
manage live state, why?
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“Problems” with Threads (4)

 State management

� Criticism: thread stacks are an ineffective way to 
manage live state

 Tradeoff between risking stack overflow and wasting virtual 
address space on large stacks

� Response?
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“Problems” with Threads (5)

 Scheduling

� Criticism: the virtual processor model provided by 
threads forces runtime system to be too generic and 
prevents it from making optimal scheduling decisions

 Event systems can schedule events to be delivered flexibly 
(e.g., app chooses shortest remaining completion time 
scheduling, favors certain request streams, etc.)

� Response: same scheduling tricks can be applied to 
cooperatively scheduled threads

 Making argument for user-level threads
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The case for threads (1)

 Threads are more appropriate abstraction for high-
concurrency servers

� In modern servers, concurrent requests are largely 
independent

� Code that handles each request is usually sequential

50



The case for threads (2)

 Event based programming obfuscates control flow 
of the app

� Often “call” a method in another module by sending an 
event and expect a “return” from that method via 
another event

� Programmer must mentally match call/return pairs that 
are in different parts of the code

� Programmer must manually save and restore live state

 major burden for programmers using event systems

 Thread systems allow programmers to express 
control flow and encapsulate state more naturally
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The case for threads (3)

 Cleaning task state after exceptions and after 
normal termination simpler in threaded system

� Thread stack naturally tracks the live state for that task

 In event systems, task state is heap allocated

� Freeing state at correct time is tough due to branches in 
control flow of app

� Garbage collection mechanisms inadequate
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The case for threads (4)

 In existing systems, threads are preferred (at least 
in most complex parts)
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Compiler support for threads

 Dynamic stack growth

 Live state management

 Synchronization
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Compiler support for threads

 Dynamic stack growth

� Size of stack adjusted at run-time

� Estimate amount of stack space needed when calling 
each function

 Live state management

� Compiler purges unnecessary state from stack before 
making function calls

 Synchronization – use compiler-based analyses for

� Race detection

� Determining which atomic sections of code can run 
concurrently 
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Why Threads are a Bad Idea 
(1996)

 Keynote talk by John Ousterhout at Usenix 
Conference
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What is main position of the talk?
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What is main position of the talk?

 For most purposes proposed for threads, events are 
better

 Threads should be used only when true CPU 
concurrency is needed
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Questions

 Ousterhout outlines why threads are hard to 
program

� How does this claim mesh with von Behren et al paper’s 
claim that threads are more natural to think about than 
event-driven programming?  What do you think?

 Ousterhout claims debugging easier with events

� “timing dependencies only related to events, not to 
internal scheduling”; what do you think?
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