
ADVANCED OPERATING
SYSTEMS

Mesa, Why Threads, Why Events

Experience with Processes and
Monitors in Mesa (1980)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

� Something else?

2

Experience with Processes and
Monitors in Mesa (1980)

 What kind of paper is this?

� Experiences/lessons learnt paper

� A system description

3

Focus of this paper

 Light-weight processes (threads in today’s
terminology) and how they synchronize with each
other

4

History

 2nd system; followed the Alto

 Planned to build a large system using many
programmers (some thoughts about
commercializing)

 Advent of things like server machines and
networking introduced applications that are heavy
users of concurrency

5

Considerations

 Chose to build a single address space system:

� Single user system, so protection not an issue (safety
was to come from the language)

� Wanted global resource sharing

 Large system, took many programmers

� Module-based programming with information hiding

 Since they were starting “from scratch”, they could
integrate the hw, the runtime sw, and the language
with each other

6

Programming model choice

 Programming model for inter-process
communication: shared memory (monitors) vs.
message passing

� Needham & Lauer claimed the two models are duals of
each other

7

How to synchronize processes?

 Non-preemptive scheduler tends to yield very
delicate systems. Why?

 What is non-preemptive scheduling?

8

Non-preemptive vs. preemptive
scheduling

 In non-preemptive scheduling, a thread runs until it
terminates, stops, blocks, suspends, or yields.

 In preemptive scheduling, even if the current thread is
still running, a context switch will (likely) occur when its
time slice is used up. Ways for thread to leave running
state:

� It ceases to be ready to execute (e.g., by calling a blocking
I/O method)

� It gets preempted by a high-priority thread which becomes
ready to execute

� It explicitly calls a thread-scheduling method such as wait or
suspend

9

How to synchronize processes?

 Non-preemptive scheduler tends to yield very
delicate systems. Why?

10

How to synchronize processes?

 Non-preemptive scheduler tends to yield very
delicate systems. Why?

� Have to know whether or not a yield might be called
for every procedure you call. Violates information
hiding

� Prohibits multiprocessor systems

� Need a separate preemptive mechanism for I/O
anyway

� Can’t do multiprogramming across page faults

11

How to synchronize processes?

 Simple locking (e.g., semaphores): too little structuring
discipline

� No guarantee that locks will be released on every code
path

� Wanted something that could be integrated into a Mesa
language construct

 Message passing (vs shared memory)

� Needham & Lauer claimed two models are duals of each
other

� Hard to integrate with Mesa

� Chose shared memory model because they thought they
could fit it into Mesa as a language construct more naturally

12

How to synchronize processes?

 Chose preemptive scheduling of light-weight
processes and monitors

13

The Mesa programming language

 Modules, strong type checking

 Lightweight processes

 Monitors

14

Mesa processes – lightweight
processes

 All processes share a single address space

 Easy forking: any procedure can be forked

 Fast performance for creation, switching and
synchronization: low storage overhead

 Integrated in the language

� Process is a first-class type in language

� Why is this good?

15

Mesa processes – lightweight
processes

 All processes share a single address space

 Easy forking: any procedure can be forked

 Fast performance for creation, switching and
synchronization: low storage overhead

 Integrated in the language

� Process is a first-class type in language

� Why is this good?

 Subject to same strict type checking as other constructs so
compiler can catch frequent errors

16

Monitors

 Monitor lock (for synchronization)

� Tied to module structure of the language: makes it clear
what’s being monitored

� like processes, monitors were a language construct

� Language automatically acquires and releases the lock

 Tied to a particular invariant, which helps users think
about the program

 Condition variables (for scheduling)

17

Monitors

 3 types of procedures in a monitor module

� Entry (acquires and releases lock)

� Internal (no locking done): can’t be called from outside
the module

� External (no locking done): externally callable. Why is
this useful?

18

Monitors

 3 types of procedures in a monitor module

� Entry (acquires and releases lock)

� Internal (no locking done): can’t be called from outside
the module

� External (no locking done): externally callable. Why is
this useful?

 Allows grouping of related things into a module

 Allows doing some of the work outside the monitor lock

 Allows controlled release and reacquisition of monitor lock

� Caller can’t tell difference between External and Entry

� Caller can’t even tell that module has a monitor

19

Mesa and Java

 Monitors (and Mesa in particular) led to several
aspects of Java.

� Java’s synchronized objects are the object-oriented
programming version of monitors

20

Monitors Java Synchronized Objects

external ?

internal ?

entry ?

Mesa and Java

 Monitors (and Mesa in particular) led to several
aspects.

� Java’s synchronized objects are the object-oriented
programming version of monitors

21

Monitors Java Synchronized Objects

external public

internal private synchronized

entry public synchronized

Notify semantics options

 Cede lock to waking process (Hoare style)

� Let waking process run right away

� Waking process knows the condition it was waiting on is
guaranteed to hold

22

Hoare-style Notify semantics
23

Process B

Process A

Enter monitor

Signal C

Enter monitor

Wait C

Run

Exit monitor

Run

Exit monitor

• Problem with Hoare-style semantics:
• Must establish invariant before executing Signal

• Requires additional context switches

Notify semantics options

 Cede lock to waking process (Hoare style)

� Let waking process run right away

� Waking process knows the condition it was waiting on is
guaranteed to hold

 Notifier keeps lock, waking process get put in front
of monitor queue.

� Doesn’t work in the presence of priorities

 What they chose: Notifier keeps lock, wakes
process with no guarantees

� Waking process must recheck its condition

24

Mesa-style Notify semantics
25

Process B

Process A

Enter monitor

NOTIFY C

Enter monitor

Wait C

Run

Exit monitor

Acquire monitor
Run

Exit monitor

• Advantages:
• Can notify at anytime. Notify is a hint.
• Fewer context switches

• Disadvantage:
• Process must check after Wait returns.
If (!ready to go) WAIT()  while (!ready to go) WAIT()

Aside: hints vs guarantees

 Notify is only a hint

� Don’t have to wake up the right process, don’t have to
change the notifier if we slightly change the wait
condition (the two are decoupled)

� Easier to implement, because it’s always OK to wake up
too many processes. If we get lost, we could even wake
up everybody (broadcast)

� Enables timeouts and aborts

 General principle: use hints for performance that
have little effect or no effect on correctness

26

Other Mesa wakeups

 Timeouts: wait until notified or 10 seconds

 Abort: feeble sort of process termination

� Allows target process to reach a wait or monitor exit
and then it voluntarily aborts

� No need to re-establish the invariant – as compared to
just killing the process outright!

 Broadcast: wake everybody who is waiting

� What’s the problem with example in Sec. 3.1?

� Why not always use broadcast?

27

Additional problem: deadlock

 Wait only releases the current monitor locks

� nested calls to monitors are not released

 Need to avoid cyclic dependencies between
monitors

� Impose partial ordering

 General problem with modular systems and
synchronization

� Synchronization requires global knowledge about locks,
which violates the information hiding paradigm of
modular programming

� Absolute hierarchy of locks isn’t always feasible

28

Lock granularity

 Mesa has finer-grain locking than single lock for
code

� Monitored record: a monitor lock per data object

� Useful for parallelism in multiprocessors

 General locking trade-off: fine-grained vs coarse-
grained

29

Interrupts

 Device can’t block waiting to acquire a monitor lock

 Introduced naked notifies: notifies done without
holding the monitor lock

 Had to worry about a timing race: the notify could
occur between a monitor’s condition check and its
call on Wait.

 Removes race condition by adding wakeup-waiting

flag to condition variable

30

Priority inversion

 High-priority processes may block on lower-priority
processes

 Solution: temporarily increase the priority of the
holder of the monitor lock to that of the highest
priority block process

 The Mars rover stalled due to this kind of bug and
had to be debugged and fixed from earth!

31

Exceptions

 Must restore monitor invariant as you unwind the
stack. What does Java do? (you must use a
sequence of try-finally blocks)

 Idea that you can just kill a process and release its
locks is naïve

� Each lock protects some invariant that must be restored
before you can release the lock

� Entry procedures that have an exception but no
exception handler DO NOT release the monitor lock.

 Ensures deadlock but at least it maintains the invariant

32

Three key features of the paper

 Describes the experiences designers had with
designing, building, and using a large system that
aggressively relies on heavy-weight processes and
monitor facilities for all its concurrency needs

 Describes various subtle issues of implementing a
threads-with-monitors design in real life for a large
system

 Discusses the performance and overhead of various
primitives and three representative apps, but
doesn’t give big picture of how important various
things turned out to be

33

Some flaws

 Gloss over how hard it is to program with locks and
exceptions sometimes. (Not clear if there are better
ways!)

 Performance discussion doesn’t give the big picture

 A lesson: the light-weight threads-with-monitors

programming paradigm can be used to

successfully build large systems, but there are

subtle points that have to be correct in the design

and implementation to do so.

34

The Mesa Legacy

 Ironed out the practical aspects of monitor usage

 Created standard idioms of concurrent
programming in shared address spaces

 Created standardized interfaces

 Influenced design of Java

 Had a huge impact on Topaz threads design, which
had a big impact on the POSIX pthread interface

35

Events versus Threads (over)
simplified

 Threads can block, so we make use of the CPU by
switching between threads

 Event handlers cannot block, so we can make use of
the CPU by simply running events to completion

� We must write handlers so they are so small they don’t
ever block, and if they need to block, they create an
event that someone else will have to handle

36

Events versus Threads (over)
simplified

 With threads, getting good concurrency relies on
switching between them

 With event-based programming, getting good
concurrency relies on writing events in a way that I
can process a lot of them in a row really quickly
and keep the system busy

37

Why Events are a Bad Idea (for
high con-currency servers) (2003)

 What kind of paper is this?

� New big idea?

� Measurement paper?

� Experiences/lessons learnt paper?

� A system description?

� Performance study?

� Refute-conventional wisdom?

� Survey paper?

� Something else?

38

Why Events are a Bad Idea (for
high concurrency servers) (2003)

 What kind of paper is this?

� A position paper

39

What’s the position?
40

What’s the position?

 “Event-based programming is the wrong choice for
highly concurrent systems”

 Perceived weaknesses of threads are “artifacts of
specific threading implementations and are not
inherent to the threading paradigm”

41

“Problems” with Threads (1)

 Performance

� Criticism: Many attempts to use threads for high
concurrency have not performed well

� Response: the implementation is to blame; many current
packages have ops that are O(n) in number of threads

 Repeat SEDA benchmark with their package and show
performance matches event-based server

42

“Problems” with Threads (2)

 Control flow

� Criticism: Threads have restrictive control flow

 Makes programmer think “too linearly about control flow”, potentially
precluding use of more efficient control flow patterns

� Response: complicated control flow patterns are rare in
practice

 Most control flow patterns fall into:

 Call/return

 Parallel calls

 Pipelines

 These patterns are expressed more naturally with threads

 Common event patterns map cleanly onto call/return mechanism
of threads

 Robust systems need acks for error handling, cleanup, etc. so they
need a “return” event in the event model

43

“Problems” with Threads (3)

 Synchronization

� Criticism: thread synchronization mechanisms are too
heavyweight

 Event systems claim that cooperative multitasking gives them
synchronization “for free” -- what does this mean?

44

“Problems” with Threads (3)

 Synchronization

� Criticism: thread synchronization mechanisms are too
heavyweight

 Event systems claim that cooperative multitasking gives them
synchronization “for free” -- no overhead from supporting
mutexes, handling wait queue, etc.

� Response?

45

“Problems” with Threads (3)

 Synchronization

� Criticism: thread synchronization mechanisms are too
heavyweight

 Event systems claim that cooperative multitasking gives them
synchronization “for free” -- no overhead from supporting
mutexes, handling wait queue, etc.

� Response: thread systems can also perform cooperative
multitasking

� “free” synchronization due to cooperative multitasking
holds only on uniprocesses. Why?

46

“Problems” with Threads (4)

 State management

� Criticism: thread stacks are an ineffective way to
manage live state, why?

47

“Problems” with Threads (4)

 State management

� Criticism: thread stacks are an ineffective way to
manage live state

 Tradeoff between risking stack overflow and wasting virtual
address space on large stacks

� Response?

48

“Problems” with Threads (5)

 Scheduling

� Criticism: the virtual processor model provided by
threads forces runtime system to be too generic and
prevents it from making optimal scheduling decisions

 Event systems can schedule events to be delivered flexibly
(e.g., app chooses shortest remaining completion time
scheduling, favors certain request streams, etc.)

� Response: same scheduling tricks can be applied to
cooperatively scheduled threads

 Making argument for user-level threads

49

The case for threads (1)

 Threads are more appropriate abstraction for high-
concurrency servers

� In modern servers, concurrent requests are largely
independent

� Code that handles each request is usually sequential

50

The case for threads (2)

 Event based programming obfuscates control flow
of the app

� Often “call” a method in another module by sending an
event and expect a “return” from that method via
another event

� Programmer must mentally match call/return pairs that
are in different parts of the code

� Programmer must manually save and restore live state

 major burden for programmers using event systems

 Thread systems allow programmers to express
control flow and encapsulate state more naturally

51

The case for threads (3)

 Cleaning task state after exceptions and after
normal termination simpler in threaded system

� Thread stack naturally tracks the live state for that task

 In event systems, task state is heap allocated

� Freeing state at correct time is tough due to branches in
control flow of app

� Garbage collection mechanisms inadequate

52

The case for threads (4)

 In existing systems, threads are preferred (at least
in most complex parts)

53

Compiler support for threads

 Dynamic stack growth

 Live state management

 Synchronization

54

Compiler support for threads

 Dynamic stack growth

� Size of stack adjusted at run-time

� Estimate amount of stack space needed when calling
each function

 Live state management

� Compiler purges unnecessary state from stack before
making function calls

 Synchronization – use compiler-based analyses for

� Race detection

� Determining which atomic sections of code can run
concurrently

55

Why Threads are a Bad Idea
(1996)

 Keynote talk by John Ousterhout at Usenix
Conference

56

What is main position of the talk?
57

What is main position of the talk?

 For most purposes proposed for threads, events are
better

 Threads should be used only when true CPU
concurrency is needed

58

Questions

 Ousterhout outlines why threads are hard to
program

� How does this claim mesh with von Behren et al paper’s
claim that threads are more natural to think about than
event-driven programming? What do you think?

 Ousterhout claims debugging easier with events

� “timing dependencies only related to events, not to
internal scheduling”; what do you think?

59

