
ADVANCED OPERATING
SYSTEMS
On Microkernel Construction

The UNIX Time-Sharing System

On micro-Kernel Construction
(by Jochen Lietdke, 1995)

2

 The topic of how to structure an OS implementation
is a religious debate

 Other religious debates:

� Threads vs events

� CATOCS (group communication)

� Windows vs Linux

� Unix vs Unix

� PL vs PL

� Others?

What kind of paper is this?

 New big idea?

 Measurement paper?

 Experiences/lessons learnt paper?

 A system description?

 Performance study?

 Refute-conventional wisdom?

 Survey paper?

3

What kind of paper is this?

 Refute-conventional wisdom

 Big idea (microkernels are fast enough)

4

Brief summary

 There are two widely held beliefs:

� Microkernel systems are inherently inefficient

� Microkernel systems are not sufficiently flexible

 Paper’s claim: these are not correct beliefs

5

Microkernel concept

 What is the kernel?

6

Microkernel concept

 What is the kernel?

� The part of the OS that is mandatory and common to
all other software

 Microkernel concept:

� Minimize the kernel

 Implement outside the kernel whatever is not absolutely
necessary

 Advantages?

7

Paper’s main message

 MYTH: microkernels are inefficient and inflexible
due to

� increased user-kernel mode switches

� address space switches (aka context switches)

 Lietdke states

� “maybe it’s the developers at fault – poor
implementation, not a poor concept”

� If you build a microkernel correctly, then you get good
performance AND flexibility

� So what should you do?

 Reason carefully about microkernel concepts

8

What must go in the microkernel?

 Only put in the kernel that which, if moved outside,
would prohibit functionality

 Assumptions?

� Require security

 subsystems must be isolated from one another

� Require page-based VM

� Must be able to communicate between 2 subsystems
without interference from a 3rd

9

What exactly should go in the
kernel?

10

What exactly should go in the
kernel?

 Address spaces

 Threads and IPC

 Unique ID (so you can identify address spaces,
threads, and messages)

11

Address spaces

 All through inheritance

 One master address space (physical memory)

 All others are selections from this space

 Interface

� Grant: move a page from your addr space to a new
one

� Map: share a page with another addr space

� Flush: remove a page from someone’s addr space

 This approach leaves memory mgt and paging
decisions outside the kernel

12

Threads

 Threads execute in an address space

 Included in micro-kernel because a thread is
associated with a particular addr space

� Although association may change over time

� Changes to state must be managed by kernel

 Thread state includes registers and addr space

 Communication among threads (IPC) must also be a
microkernel feature

13

IPC

 Represents an agreement

� Sender sends and receiver agrees to receive

 Interrupts are IPC messages with no payload

� Only purpose is to supply the sender ID so that the
interrupt can be associated with a particular hw device

 Kernel must turn real hw interrupts into message
events

� But kernel need NOT be involved in device-specific
interrupt-handling

14

Implementing user-level services on
a microkernel

 Memory manager/Pager

� Grant, map, flush are the basic mechanisms

� Policies for how and when you issue these calls can be
made in a user-level manager

� Each address space can have its own manager

� Can have app-specific mgrs. (e.g., multimedia resource
allocator) coordinate with other managers to make
appropriate guarantees

15

Implementing user-level services on
a microkernel

 Device drivers

� Can live outside the kernel because they don’t access
hw directly

 They send/receive mesgs from the thread that represents the
hw

 Cache and TLB handling

� User pagers to implement whatever policies you like

� In practice, 1st level TLB handling still needs to be in the
kernel for performance

 What about Unix server?

16

17

Hardware

Microkernel

File
server

Unix
OS

Unix
Process

VM
server

Simplified Microkernel Example

18

Hardware

Virtual Machine Monitor

Your
OS

Unix
OS

Unix
Process

Windows

Simplified VMM Example

Performance

 User-kernel switches (e.g. system calls) shouldn’t be
that expensive

� Conventional systems pay almost 90% of their switch
time in “overhead”

� L3 does not

� Why?

 Similarly, context switches between address spaces
shouldn’t be so expensive

19

Context switches between addr spaces

 Similarly, context switches between addr spaces
shouldn’t be so expensive

� Lietdke includes thread and addr space switching in the
discussion because that’s what people measure

� If caches are physical, these don’t affect context switch
time

� If TLBs are untagged, an addr space switch requires a
flush of the TLB

� Use PowerPC hacks to get rid of TLB reload problem,
by use of segment registers

� Tailor context switch code to the hw and figure out how
to get it fast

20

Thread switches and IPC

 Empirically shows that microkernel can have fast IPC

 Graph compares multiplexing idea vs standard
address space switch on L4

21

Memory Effects

 Chen and Bershad “showed” that microkernels had
significantly worse memory behavior (higher MCPI)

 Lietke shows that the difference in memory overhead
is in the cache miss behavior (system cache misses)

 Capacity or conflict misses?

� What would each imply?

� Ratio of conflict to capacity much lower in Mach than
Ultrix

 Conclusion: problem is simply too much code in Mach;
soln: reduce the cache working set of microkernel

22

Portability

 Microkernels should NOT be portable

� They _are_ the hw compatibility layer

� Must take advantage of specific hw features

� Must take precautions to avoid problems of specific hw
features

 Example: implementation decision between 486
and Pentium is different if you are going for high
performance

� Suggest significant rewriting to port from 486 to
Pentium even though they are binary compatible!!!

23

The Unix Time-sharing system
24

What kind of paper is this?

 New big idea?

 Measurement paper?

 Experiences/ lessons learnt paper?

 A system description?

 Performance study?

 Refute-conventional wisdom?

 Survey paper?

25

The Unix Time-Sharing System

 Compare with MULTICS

� Multics: a visionary system, but a bit ungainly

 Proposed lots of new ideas

 Wasn’t able to fit them together harmoniously

� Unix: craftsmanship, elegance, taste

 A few key concepts that fit together well

 Few new ideas, but Unix made them work

26

Unix

 Entire systems include UI and implementation takes
10 pages to describe

 Kernel size: then 42 kilobytes, Today many
megabytes!!!

 First OS to run on “low-cost” hw

� Only $40K

� Interactive

� General purpose

� Goals: simplicity, elegance, ease of use

27

Unix

 What was the key service offered by Unix?

28

Key service of Unix: a File system

 Most of what we do can use files

 Key ideas

� Hierarchical file system

� Record-less I/O: a file is just an array of bytes

� Directories just like regular file

 only writable by the system

 Links (name, i-number pairs) place files

 Special links “.” and “..”

� Device-independent I/O

 I/O devices appear as files

 Same interface as files, same protection scheme

 Substitute for filenames in programs

29

Key ideas (cont’d)

 Mount system call

� Mount file systems on top of existing directory

� Build file systems into single hierarchy

 Disk (volume) structure is hidden

 Uniform I/O calls

� Open/read/write/seek/ioctl/close

� Bytes, no records (for simplicity – causes issues for DB
developers

� No “random” and “sequential”

30

Protection

 User-world, RWX bits (7 bits indicating permission
for user and rest of world to access file)

 Super user is just special user id

 One new idea: set user id bit

� Simple mechanism for rights amplification

� Available to user programs as well

31

Processes and images

 Text, data, and stack segments

 Process swapping

 Process management: fork() and exec()

� Inherit open files from parent
 Used for shell (pipelines and redirection)

� Separate fork and exec

 Simple to create new processes

 Easy to control child’s initial state

 Configure communication channels

32

The shell

 Users communicate with system and ask for services
via the shell

 User issues command with arguments

� Shell spawns process to execute command (via fork and
exec)

� Spawned process inherits open files (shell by default
opens a file for reading and writing with fds 0 and 1,
known as standard input and output files)

� Very elegant

 I/O redirection is transparent to the command which just
uses fd 0 and 1

33

Filters (pipes)

 Allow combination of various tasks to be achieved
through simple I/O redirection

 Otherwise, what would happen with example on p.
371?

34

Lessons Learned

 If you really want to build a system that works, USE
it!

 Systems design comes from careful selection of
design choices

 Keep it simple!

 Van Jacobson quote on Windows vs Unix

“Words and grammar vs sentences”

35

